

UDC 004.056.57:032.26

NOVOTARSKYI M.,

KUZMYCH V.

USAK METHOD FOR THE REINFORCEMENT LEARNING

In the field of reinforcement learning, tabular methods have become widespread. There are many

important scientific results, which significantly improve their performance in specific applications. However,

the application of tabular methods is limited due to the large amount of resources required to store value

functions in tabular form under high-dimensional state spaces. A natural solution to the memory problem is

to use parameterized function approximations. However, conventional approaches to function

approximations, in most cases, have ceased to give the desired result of memory reduction in solving real-

world problems. This fact became the basis for the application of new approaches, one of which is the use of

Sparse Distributed Memory (SDM) based on Kanerva coding. A further development of this direction was

the method of Similarity-Aware Kanerva (SAK). In this paper, a modification of the SAK method is

proposed, the Uniform Similarity-Aware Kanerva (USAK) method, which is based on the uniform

distribution of prototypes in the state space. This approach has reduced the use of RAM required to store

prototypes. In addition, reducing the receptive distance of each of the prototypes made it possible to increase

the learning speed by reducing the number of calculations in the linear approximator.

Keywords: reinforcement learning, Kanerva coding, function approximation, prototype, value

function

1. Introduction

Given the increased interest in the application of intelligent systems in various fields of science and

technology, the relevance of the development and practical implementation of reinforcement learning

algorithms has increased. In recent years, we can see such significant progress in this area that we can say

that reinforced learning already has the main features of a particular field of science. A number of

university courses have been created [1,2,3,4], there is a basic textbook on reinforced learning [5], which

the authors constantly keep up to date. Tabular reinforcement learning methods, namely Multi-armed

Bandits [6], Finite Markov Decision Processes [7], Monte-Carlo Methods [8], Temporal-Difference

Learning [9] and their modifications are already considered as classical approaches. They are, in most

cases, used as part of the development of modern approaches to reinforcement learning. The reason for

this is the fact that the solution of modern intellectual tasks requires large or multidimensional state

spaces, which leads to significant problems in creating optimal policies.

The natural direction in which reinforcement learning methods are developed is that learning

agents can use approximate functions, which makes it possible to significantly improve the productivity

of learning in cases of large-scale state spaces [10]. In this case, as a rule, we use parameterized

functions that ensure the successful operation of intelligent systems that describe the tasks of the real

world. However, constructing an approximate function is not an easy task. Such construction in most

cases requires pre-configuration, which includes manual allocation of state spaces based on expert

evaluation or uses complex heuristic algorithms. It is known that to build effective heuristic algorithms

it is also necessary at the first stage to perform an analysis of the properties of the state space for their

correct separation. Therefore, the mentioned approaches to the construction of approximate functions

have a disadvantage, which is associated with the problems of dynamic scaling of the state space. This

scaling is extremely important for real-world tasks, as in most cases it causes a significant increase in

RAM, the available size of which is a major constraint on the way to improving reinforced learning.

One effective solution to this problem has been proposed in [11] in the form of a new sparse distributed

memory (SDM). A little later, this approach was called "Kanerva coding" after its creator Pentti

Kanerva, who first proposed it in 1988. The main advantage of the proposed approach is that it requires

5 Information, Computing and Intelligent systems № 1

a much smaller amount of RAM in the case of increasing state space than standard methods with

approximate functions [12].

The essence of Kanerva coding method is that we choose a certain set of prototypes, each of which

is a copy of one of the possible states of the environment. Each of these prototypes has a dimension that

coincides with the dimension of the state space. Then the selected s state is called adjacent to the ip

prototype if the bitwise difference between the s state and the ip prototype is less than some

predetermined threshold number. Each ip prototype has a corresponding value i , which is a component

of the parameter vector. Then the approximate value of each state-action pair is determined by the sum:

 i i

i

s . With this approach, Kanerva coding eliminates the exponential growth of memory with

increasing state space dimension. However, modern reinforced learning tasks increasingly require the use

of state space with a dimension of several thousand. In this case, it is necessary to look for new

approaches, some of which have been considered in detail and partially proposed in [13]. Among the

proposed approaches, the Similarity-Aware Function Approximation method is original and effective.

The basics of applications of this method are presented in [14]. This method generalizes the concept of

similarity by introducing a new continuous metric, which increases the resolution of the method and thus

reduces the number of prototypes that need to be used.

However, the method does not solve the main problem of choosing the optimal number of

prototypes. Therefore, the effectiveness of this method can be seen only after a detailed preliminary

analysis, which aims to find a fine line between the prototype starvation and over-generalization. In this

paper, we propose an approach that allows the use in the linear approximator only those prototypes that

are adjacent to the current state of the environment. This approach makes it possible to optimize the use

of RAM, provided that large-scale state spaces are used in reinforcement learning.

2. Basics of related methods

Reinforced learning systems are based on a single concept that includes agents, environments, and

states, as well as actions and rewards. The general scheme showing the main interactions of these entities

is shown in Fig. 1.

Fig. 1. Generalized structure of the reinforcement learning system

The main components of this system are the agent and the environment, which interact with each

other. An agent is a certain entity that has the ability to produce actions that affect the environment. The

environment is the world around the agent, which perceives the a actions and returns the r reward to the

agent. The agent also has the ability to observe the current state, s, of the environment. Such a system is

sometimes called a feedback system in which the role of feedback signals is played by signals of reward

and state of the environment. The ways in which the agent chooses the next action are basic and are

determined by the methods of his learning. At each point in time, the policy determines the behavior of

the agent. It maps the set of all accumulated knowledge about the environment to the action to be

Usak method for the reinforcement learning 6

performed. The sole purpose of the agent is to maximize the reward he can receive from the environment.

The size of the reward signal determines the agent's policy choice. However, a policy that only takes into

account the remuneration for the last action may conflict with the agent's overall goal if it leads to a

significant reduction in remuneration in the future. The size of the reward signal determines the agent's

policy choices. However, a policy that only considers reward for the last action may conflict with the

agent's overall goal if it leads to significantly reduced reward in the future. Previous experience of

interaction with the environment, which takes into account the value function, helps to solve this problem.

Figure 1 shows that the input data for the policy is formed by the value function, which takes into account

not only the current state and current reward, but also previous states and rewards with a certain discount.

2.1. Reinforced learning with function approximation

 We will consider a reinforcement learning system, which includes an agent represented by an

algorithm that has the property of training. At a t time, the agent performs an ta action in accordance

with a t ta s policy that specifies the probability of performing the action under the ts state of the

environment. At the next 1t time, the agent receives a 1tr reward and the result of observation the 1ts

state of the environment. At each time step, the agent tries to modify his policy so as to maximize the

total amount of rewards in each episode using the expression:
1

2

1 2 3 1

0

...
T t

k

t t t t t k

k

g r r r r

 (1)

where tg is the total return of the agent, starting from t time; is the rate of the discount, which varies

in 0 1 range; T is the maximum length of the history, which in the general case can be equal to

infinity. Consider the principle of the agent, which combines Q -learning with the mechanisms of

approximation for the successful operation of reinforcement learning systems using high-dimensional

state spaces. Q -learning is based on the use of the Q -function in order to implement policy. This

function is also called the state-action value on-policy function. It is denoted as ,Q s a . Using the

Bellman optimality equation, we can find the ,Q s a optimal value as the maximum return; starting

from the s state under condition we provide the actions and operations in accordance with the policy:

 , max ,
a

Q s a r Q s a

. (2)

The reinforcement learning algorithm consists in realization of iterative process of the value

function estimation:

 1 , max , ,i
a

Q s a r Q s a s a

. (3)

This sequence converges to the optimal value: lim i
i

Q Q

 . However, the achievement of this result

encounters problems of practical implementation due to the fact that the representation of the Q -function

in tabular form leads to an exponential increase in the amount of RAM when using high-dimensional state

spaces. To solve this problem, we present the Q -function as a parameterized function:

 , , ;Q s a Q s a θ , where θ is parameter vector. Then the problem of representing the state-action

function can be reduced to choosing values of a much smaller number of components of the θ vector. In

most cases, this uses a linear approximator, which is represented by the expression:

1

0

, ; (,) ,
n

T

i i

i

Q s a s a x s a

 θ θ x , (4)

where 0 1 1, , , , ,..., ,Ns a x s a x s a x s ax is the feature vector, which represents the state-action

function;
T
θ is the transposed parameter vector with the number of components equal to the number of

7 Information, Computing and Intelligent systems № 1

features; n is the number of dimensions of the state space. Features in this case are ,ix s a basic

functions, because they form a linear basis to create the , ;Q s a θ function approximation. There are

different approaches to the selection of the feature vector components. One such approach is, for

example, the stochastic gradient-descent method, for which (,) , ;s a Q s ax θ . Then the iterative

process of finding the vector of parameters is determined by the expression:

 1 , , ; ,t t t t t t t tQ s a Q s a s a
 θ θ θ x . (5)

As is known, for a stochastic gradient-descent method, this iterative process converges to a local

minimum, which does not always coincide with the global minimum. Since in most cases it is necessary

to find out a global minimum, it is important to find other function approximation techniques.

2.2. Algorithms for high-dimensional state spaces

Algorithms for high-dimensional state spaces are extremely relevant because in most cases they are

the only possible approach to solve practical tasks of reinforcement learning. A well-known algorithm for

large state spaces is the tile coding algorithm [5]. This algorithm has become widespread due to its

simplicity and efficiency. An important disadvantage of this algorithm is that it requires pre-allocation of

state space manually. Such preliminary selection significantly affects the further efficiency of the

algorithm.

There are usually a large number of modifications of this algorithm that use different heuristic

solutions to implement an efficient distribution of state space

[16, 17]. However, such heuristic algorithms require the use of a large number of computing resources to

process current information on each of the state space dimension and pre-configure a large number of

parameters that characterize the environment. Therefore, the effective use of these algorithms for

reinforcement learning with the high-dimensional state space is difficult and available only after gaining

some experience.

Radial basis functions (RBF) is the second known algorithm for the implementation reinforcement

learning in large state spaces [5]. For this algorithm, the features have a continuous value in the range

[0,1]. Typically, RBF-features are subject to normal distribution. The advantage of such features over

binary ones is that the corresponding functional dependencies are differentiated, which expands the

possibilities of management and analysis. The disadvantages of the RBF method repeat the same

disadvantages as tile coding. These disadvantages include the increased computational complexity and the

need for manual adjustment, which requires an expert level of use of this method.

The most promising algorithm has every reason to consider the Kanerva coding algorithm. Today,

this is one of the algorithms that is characterized by the smallest increase in RAM with increasing

dimensionality of the state space.

In this method, as in the previous ones, it is necessary to choose the vector of basic functions. They

are represented by prototypes of states in this method. New 0 1 1, ,..., np prototypes are created

based on the components of the state space. The method uses similarity for each of the dimensions of the

state space, which is equal to the code distance between the binary representation of the vectors of the

prototype and the state. The , is p function is equal to one, provided that the s state is close to the ip

prototype and zero otherwise. This function is called the membership grade function. It can be

represented by the expression:

1

0

1 ,
,

0 .

n

j j i
ji i

if XOR c
s p

otherwise

 (6)

where j is the bit number, n is the state space dimensionality, c is the threshold value.

Usak method for the reinforcement learning 8

For Kanerva coding, there is also the problem of choosing the optimal set of prototypes, which in

practice is solved by randomly selecting from the available set of states. Such a choice does not solve the

problem of optimality. In this case, there may be significant disturbances in the distribution of receptive

fields and, as a consequence, there is a decrease in the efficiency of representation of certain areas of the

state space and the corresponding value functions. An adaptive adjacency method [15] has been proposed

as one of the known ways to improve the coverage of state space by prototype receptive zones [15], but

such an approach also cannot always solve the problem, but only reduces the percentage of failed

coatings.

Also known methods that partially solve the problem of optimal coverage based on the use of fuzzy

logic. But such approaches are a separate area, which we do not consider in this paper.

An original method called Similarity-aware Kanerva or SAK for short has been proposed recently.

2.3. SAK method

The SAK method significantly changes the principle of determining the similarity of states and

prototypes and thus solves the problem of determining the fields of perception for the selected set of

prototypes. The main difference of this approach is that the features are no longer binary, but are

represented as continuous quantities, which are represented by real numbers [14].

For a feature with the j index, we determine the jd distance between the p prototype and the s

state by the expression:

j j

j

j

d
range

 , (7)

where jrange is the range of possible values of the j feature, is a fixed factor, the value of which

exceeds 1 and provides sensitivity to changes in the j j difference.

Define the similarity grade for the j feature using the expression:

 ,
, jd s p

jm s p e

 . (8)

Fig.2 shows the graph of this function:

Fig. 2. Graph of the ,jm s p function

The figure shows that the value of the ,jm s p function is equal to 1, if the value of the difference

between the dimension of the j state and the j prototype approaches zero with increasing distance

between dimensions.

The ,s p membership grade of states and prototypes is equal to the minimum similarity between

their dimensions:

9 Information, Computing and Intelligent systems № 1

0,1,... 1

, min ,j

j n

s p m s p

 . (9)

Thus, the membership grade for states is a continuous value that varies in the range [0,1].

When using Kanerva coding, we can specify a fixed number of prototypes. In the case of using a

linear approximator for Kanerva coding, the value of the state-action function approximation is

determined from the expression:

0

, ; , ,

P s

i i

i

Q s a p a s p

 , (10)

where P s is the power of the indexed list of prototypes that are similar to the s state.

The ,ip a parameter value will be stored and updated for each ip prototype when selected the a

action by the agent. When using the Sarsa algorithm, the following update is determined from the

expression [15]:

 1, , , , , ; , ;i i i i i i ip a p a s p s a r Q s a Q s a
 , (11)

where

0

,
,

,

i

i P s

k

k

s p
s p

s p

 is a current fraction of the membership grade, ,s a is the step size

parameter.

Although the SAK algorithm significantly improves the basic parameters of reinforcement learning

compared to the Kanerva coding algorithm, it does not solve the main problems of this type of

algorithms. In particular, the algorithm uses random generation of prototypes. While it is known that

using prototype tuning, actually increase the average solution rate from 67.9% to 97.1% [18]. In addition,

the difficult question of choosing the optimal number of prototypes remains unclear. The choice of the

optimal number of prototypes makes it possible to avoid the prototypes starvation due to the insufficient

number of active prototypes for the value function approximation, as well as to avoid over-generalization

of prototypes.

3. USAK algorithm

This paper proposes a Uniform Similarity-Aware Kanerva algorithm (USAK) that differs from

SAK by adding a heuristic that improves the use of prototypes and proposes some modifications to

include prototypes in the ActiveN list [14].

For an arbitrary j dimension, we determine the jd distance between the p prototype and the s state

from the expression:

j j jd . (12)

The similarity grade for a j feature is determined from the condition of uniform placement of

prototypes in the range of this feature.

2

, 1
j j

j

j

b d
m s p

range

, (13)

where is the coefficient of overlap of the receptive zones of the prototype: 1 1.5 , jrange is the

range of the j feature, jb is the number of prototypes in the range of the j feature.

The graph of the function is shown in Fig.3.

Usak method for the reinforcement learning 10

Fig. 3. Graph of the ,jm s p function for the USAK algorithm

The graph in fig. 3 specifies a linear normalized value of the ,jm s p similarity grade for the j

feature. The value of ,jm s p is equal to 1 if the value of the difference between the j state dimension

and the j corresponding dimension of the prototype is zero. This ,jm s p function linearly decreases to

zero with increasing distance between dimensions and is equal to 0 at the perceptive limit of the prototype

respectively to the j feature.

The ,s p membership grade of the s state and the p prototypes is equal to the minimum

similarity grade for their dimensions (9). Thus, the membership grade for states is a continuous quantity

that varies linearly in the range [0,1]. Since the prototype has clear and limited perceptive zones for each

of its features, in this case it is important to fully cover the state space with prototypes for each of the

state dimensions. In this paper, an algorithm for uniform coverage of the state field is proposed.

In the general case, consider the n -dimensional state space with uniform coverage of this space by

prototypes. Then there is no need to save all prototypes, because they can be dynamically generated by

setting the values of their dimensions with a predetermined step. Consider the pseudocode of the USAK

algorithm, which includes the dynamic generation of features of evenly distributed prototypes.

--

Algorithm 1 : Uniform Similarity-Aware Kanerva Coding

--

Input:

 0 1 1, ,..., ,...,j nb b b b b : the number of prototypes for each dimension.

 0 1 1, ,..., ,...,j nrange range range range range : range of features for each

 dimension.

N : number of episodes.

M : the maximum number of iterations in the episode.

Output: θ vector as a learning outcome.

def P_generator(s):

 for i in range(B)

 for j in range(n):

 j s j

1

j

j

j

range
i

b

 j j jd

11 Information, Computing and Intelligent systems № 1

2

1
j j

j

j

b d
m

range

 if 0jm then . ()jappend m else . (0)append

 mini

 if 0i then . (); .active active iappend i append p μ

 return ,active activep μ

def Teta_iter(1 1, , , ,t t t t ts a r s a):

 for i in range :activep

0

active

i

k

k

i

p

 1 1 1, ; , ,i i t t t t t t t tr Q s a Q s a i θ θ

def Main():

 Determining the number of prototypes: 0 1 1... nB b b b

 Initialization of the parameter vector: 0θ , where Bθ .

 for episode in range(1,N):

 Randomly choose 0s and 0a .

 for t in range(1,M):

 Perform 1ta in 1ts .

 Get tr and ts .

 Determine the activep vector of active prototypes

 and the activeμ distance vector:

 , P _ generator()active active tsp μ

 Determine the value of the , ;t tQ s a θ function approximation:

0

, ;
active

t t t i active

i

Q s a i

p

θ

 Update θ : 1t θ Teta_iter(1 1, , , ,t t t t ts a r s a)

 Determine 1 1,t ts a
 using the -greedy method:

 1 1, arg max , ,t t t t t
s

s a Q s a θ

 1 1,t t t ts s a a

4. Practical implementation

Let us consider the work of the proposed method on the example created on the basis of the popular

problem "WaterWorld", which was first proposed by Andrej Karpathy [19]. Its essence is that the agent

must try to survive by avoiding collisions with objects that move freely in the environment. The author of

this problem compares it with the problem of spacecraft navigation in the field of asteroids.

The agent receives +1 for survival for one time step and -100 points in case of collision with the

simultaneous end of the current episode. To prevent collision, the agent has a set of sensors arranged

evenly in a circle. The number of sensors can be changed during the experiments. Obviously, the

dimensionality of the state space depends on their number. Each sensor allows you to determine the

Usak method for the reinforcement learning 12

coordinates of the nearest object in the area of its observation, speed and direction of its movement. The

agent also has additional sensors that determine its own coordinates, speed and direction of its movement.

The total number of features varied from 44 to 104, creating a state space with the appropriate

dimensionality. The agent can perform 4 actions: left, right, up and down. Each of these actions is

represented by a real number that indicates the modulus of velocity of the object in a certain direction.

The experiments use agents that have from 4 to 20 sensors. Figure 4 shows a screenshot of the task,

which shows the position of the agent with 18 sensors and the environment in which objects float freely.

Fig.4. An agent in an environment with "hostile" objects

As shown in Figure 4, the agent is also able to distinguish the wall of the area from floating objects.

The modulus of the inverse vector of the velocity of repulsion from the wall is proportional to the

modulus of the vector of pushing on the wall. The purpose of the agent is to prolong its existence as much

as possible, avoiding collisions with these "enemy objects".

The studies were performed using the USAK algorithm for the described problem. Such studies

aimed to experimentally determine the indicators of its effectiveness in a given range of parameters.

Figure 5 shows the rewards for USAK algorithms with a different dimension of the state field. From

this graph we can conclude that the speed of learning has no critical dependence on the dimensionality of

the state speed. However, the advantage of the USAK algorithm is a 42% reduction in the number of

calculations per episode due to the exclusion of remote prototypes from the calculations.

Fig. 5. Dynamics of reward change for different dimensionalities of the state space

13 Information, Computing and Intelligent systems № 1

Figure 6 shows the increase in occupied RAM over time. This growth does not depend significantly on

the size of the state space, which indicates the effectiveness of the proposed approach to the uniform

arrangement of prototypes that cover the state space. The advantage of this approach is that remote

prototypes do not participate in the calculation, which leads to a linear increase for data to be stored. In

this study, as in the previous case, we considered the state spaces with 44, 54, 64, and 74

dimensionalities. These dimensionalities of the state spaces are formed by agents with 8,10,12 and 14

sensors, respectively.

Fig. 6. Linear growth of occupied RAM as a function of time for state spaces of dimensionalities

44, 54, 64 and 74.

5. Conclusion

This paper discusses modern approaches to reducing the use of computer RAM in solving

reinforced learning problems with high-dimensional state spaces. The USAK method is proposed, which

improves the characteristics of the SAK method due to the uniform distribution of prototypes that cover

the state space. Even distribution of prototypes has reduced the amount of RAM for their storage because

such placement of prototypes allows you to generate prototypes automatically with the appropriate step of

their dimensions. The second advantage of uniform placement of prototypes is that it is possible to use a

predetermined fixed perceptivity of prototypes. This fact has a positive effect on the reduction of the

volume of calculations in the linear approximation of the value function, because in this case only those

prototypes that have a membership value greater than zero are taken into consideration. A number of

experiments were conducted on the basis of the well-known problem "WaterWorld", which allowed to

determine the advantages of this method, as well as to form their vision of ways to further improve it.

References

1. The Stanford University (2020), “CS234: Reinforcement Learning”, available at:

https://web.stanford.edu/class/cs234/

2. The University of Edinburg (2020), “Reinforcement Learning”, available at:

http://www.inf.ed.ac.uk/teaching/courses/rl/

3. The University of Alberta (2020), “Fundamentals of Reinforcement Learning”, available at:

https://www.classcentral.com/course/fundamentals-of-reinforcement-learning-14497

https://web.stanford.edu/class/cs234/
http://www.inf.ed.ac.uk/teaching/courses/rl/
https://www.classcentral.com/course/fundamentals-of-reinforcement-learning-14497

Usak method for the reinforcement learning 14

4. Silver D. (2020), “UCL Course on RL”, University College London, available at:

https://www.davidsilver.uk/teaching/

5. Sutton R. S. and Barto A.G. (2018), “Reinforcement Learning: An Introduction”, Cambridge:

The MIT Press, , available at:

http://www.academia.edu/download/38529120/9780262257053_index.pdf

6. Slivkins A. (2019), “Introduction to Multi-Armed Bandits”, available at:

https://arxiv.org/abs/1904.07272v5

7. Levin D.A. and Peres Y. (2017), “Markov chains and mixing times”, available at:

https://www.statslab.cam.ac.uk/~beresty/teach/Mixing/markovmixing.pdf.

8. Wiering M. fand van Otello M. (2012), “Reinforcement Learning”, Berlin: Springer-Verlag.

9. Hester T. (2013), “TEXPLORE: Temporal Difference Reinforcement Learning for Robots and

Time-Constrained Domains”, Berlin: Springer-Verlag.

10. Whiteson Sh. and Stone P. (2006), “Evolutionary Function Approximation for Reinforcement

Learning“, Journal of Machine Learning Research, Vol. 7, pp. 877-917

11. Kanerva P. (2003), “Sparse Distributed Memory”, Cambridge: MIT Press.

12. Cheng Wu and Yiming Wang (2017), “Learning From Big Data: A Survey and Evaluation of

Approximation Technologies for Large-Scale Reinforcement Learning”, IEEE, Computer and

Information Technology (CIT), International Conference,-DOI: 10.1109/CIT.2017.11

13. Wei Li (2019), “Function Approximation-based Reinforcement Learning for Large-Scale

Problem Domains”, PhD dissertation, Northeastern University, Boston, Massachusetts..

14. Wei Li and Meleis W. (2018) “Similarity-Aware Kanerva Coding for On-Line Reinforcement

Learning”, Proceedings of the 2-nd International Conference on Vision, Image and Signal

Processing.

15. Wei Li and Meleis W. (2018), “Adaptive Adjacency Kanerva Coding for Memory-Constrained

Reinforcement Learning“, International Conference on Machine Learning and Data Mining in

Pattern Recognition, pp.187-201.

16. Sherstov A. A. and Stone P. (2005),” Function Approximation via Tile Coding: Automating

Parameter Choice”, International Symposium on Abstraction, Reformulation, and

Approximation, pp.194-205.

17. Waskow S. J. and Bazzan A.L.C. (2010), “Improving Space Representation in Multiagent

Learning via Tile Coding”, Brazilian Symposium on Artificial Intelligence, pp.153-162.

18. Cheng Wu (2010), “Novel Function Approximation Techniques for Large-scale Reinforcement

Learning”, PhD dissertation, Northeastern University, Boston, Massachusetts.

19. Karpathy A. (2020), “REINFORCEjs. WaterWorld: DQN”, available at:

https://cs.stanford.edu/people/karpathy/reinforcejs/waterworld.html

https://www.davidsilver.uk/teaching/
http://www.academia.edu/download/38529120/9780262257053_index.pdf
https://arxiv.org/abs/1904.07272v5
https://www.statslab.cam.ac.uk/~beresty/teach/Mixing/markovmixing.pdf
https://cs.stanford.edu/people/karpathy/reinforcejs/waterworld.html

