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In the field of reinforcement learning, tabular methods have become widespread. There are many 

important scientific results, which significantly improve their performance in specific applications. However, 

the application of tabular methods is limited due to the large amount of resources required to store value 

functions in tabular form under high-dimensional state spaces. A natural solution to the memory problem is 

to use parameterized function approximations. However, conventional approaches to function 

approximations, in most cases, have ceased to give the desired result of memory reduction in solving real-

world problems. This fact became the basis for the application of new approaches, one of which is the use of 

Sparse Distributed Memory (SDM) based on Kanerva coding. A further development of this direction was 

the method of Similarity-Aware Kanerva (SAK). In this paper, a modification of the SAK method is 

proposed, the Uniform Similarity-Aware Kanerva (USAK) method, which is based on the uniform 

distribution of prototypes in the state space. This approach has reduced the use of RAM required to store 

prototypes. In addition, reducing the receptive distance of each of the prototypes made it possible to increase 

the learning speed by reducing the number of calculations in the linear approximator. 
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1. Introduction 
 

Given the increased interest in the application of intelligent systems in various fields of science and 

technology, the relevance of the development and practical implementation of reinforcement learning 

algorithms has increased. In recent years, we can see such significant progress in this area that we can say 

that reinforced learning already has the main features of a particular field of science. A number of 

university courses have been created [1,2,3,4], there is a basic textbook on reinforced learning [5], which 

the authors constantly keep up to date. Tabular reinforcement learning methods, namely Multi-armed 

Bandits [6], Finite Markov Decision Processes [7], Monte-Carlo Methods [8], Temporal-Difference 

Learning [9] and their modifications are already considered as classical approaches. They are, in most 

cases, used as part of the development of modern approaches to reinforcement learning. The reason for 

this is the fact that the solution of modern intellectual tasks requires large or multidimensional state 

spaces, which leads to significant problems in creating optimal policies. 

The natural direction in which reinforcement learning methods are developed is that learning 

agents can use approximate functions, which makes it possible to significantly improve the productivity 

of learning in cases of large-scale state spaces [10]. In this case, as a rule, we use parameterized 

functions that ensure the successful operation of intelligent systems that describe the tasks of the real 

world. However, constructing an approximate function is not an easy task. Such construction in most 

cases requires pre-configuration, which includes manual allocation of state spaces based on expert 

evaluation or uses complex heuristic algorithms. It is known that to build effective heuristic algorithms 

it is also necessary at the first stage to perform an analysis of the properties of the state space for their 

correct separation. Therefore, the mentioned approaches to the construction of approximate functions 

have a disadvantage, which is associated with the problems of dynamic scaling of the state space. This 

scaling is extremely important for real-world tasks, as in most cases it causes a significant increase in 

RAM, the available size of which is a major constraint on the way to improving reinforced learning.  

One effective solution to this problem has been proposed in [11] in the form of a new sparse distributed 

memory (SDM). A little later, this approach was called "Kanerva coding" after its creator Pentti 

Kanerva, who first proposed it in 1988. The main advantage of the proposed approach is that it requires 
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a much smaller amount of RAM in the case of increasing state space than standard methods with 

approximate functions [12]. 

The essence of Kanerva coding method is that we choose a certain set of prototypes, each of which 

is a copy of one of the possible states of the environment. Each of these prototypes has a dimension that 

coincides with the dimension of the state space. Then the selected  s  state is called adjacent to the ip  

prototype if the bitwise difference between the s  state and the ip  prototype is less than some 

predetermined threshold number. Each ip  prototype has a corresponding value i , which is a component 

of the parameter vector.  Then the approximate value of each state-action pair is determined by the sum: 

 i i

i

s  .  With this approach, Kanerva coding eliminates the exponential growth of memory with 

increasing state space dimension. However, modern reinforced learning tasks increasingly require the use 

of state space with a dimension of several thousand. In this case, it is necessary to look for new 

approaches, some of which have been considered in detail and partially proposed in [13]. Among the 

proposed approaches, the Similarity-Aware Function Approximation method is original and effective. 

The basics of applications of this method are presented in [14]. This method generalizes the concept of 

similarity by introducing a new continuous metric, which increases the resolution of the method and thus 

reduces the number of prototypes that need to be used. 

However, the method does not solve the main problem of choosing the optimal number of 

prototypes. Therefore, the effectiveness of this method can be seen only after a detailed preliminary 

analysis, which aims to find a fine line between the  prototype starvation and over-generalization. In this 

paper, we propose an approach that allows the use in the linear approximator only those prototypes that 

are adjacent to the current state of the environment. This approach makes it possible to optimize the use 

of RAM, provided that large-scale state spaces are used in reinforcement learning. 

 

2. Basics of related methods 

 

Reinforced learning systems are based on a single concept that includes agents, environments, and 

states, as well as actions and rewards. The general scheme showing the main interactions of these entities 

is shown in Fig. 1. 

 

 
Fig. 1. Generalized structure of the reinforcement learning system 

 

The main components of this system are the agent and the environment, which interact with each 

other. An agent is a certain entity that has the ability to produce  actions that affect the environment. The 

environment is the world around the agent, which perceives the a  actions and returns the r  reward to the 

agent. The agent also has the ability to observe the current state, s, of the environment. Such a system is 

sometimes called a feedback system in which the role of feedback signals is played by signals of reward 

and state of the environment. The ways in which the agent chooses the next action are basic and are 

determined by the methods of his learning. At each point in time, the policy determines the behavior of 

the agent. It maps the set of all accumulated knowledge about the environment to the action to be 
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performed. The sole purpose of the agent is to maximize the reward he can receive from the environment. 

The size of the reward signal determines the agent's policy choice. However, a policy that only takes into 

account the remuneration for the last action may conflict with the agent's overall goal if it leads to a 

significant reduction in remuneration in the future. The size of the reward signal determines the agent's 

policy choices. However, a policy that only considers reward for the last action may conflict with the 

agent's overall goal if it leads to significantly reduced reward in the future. Previous experience of 

interaction with the environment, which takes into account the value function, helps to solve this problem. 

Figure 1 shows that the input data for the policy is formed by the value function, which takes into account 

not only the current state and current reward, but also previous states and rewards with a certain discount. 

 

2.1. Reinforced learning with function approximation 

 

  We will consider a reinforcement learning system, which includes an agent represented by an 

algorithm that has the property of training. At a t  time, the agent performs an ta  action in accordance 

with a  t ta s  policy that specifies the probability of performing the action under the ts  state of the 

environment. At the next 1t    time, the agent receives a 1tr   reward and the result of observation the 1ts   

state of the environment. At each time step, the agent tries to modify his   policy so as to maximize the 

total amount of rewards in each episode using the expression: 
1

2

1 2 3 1

0

...
T t

k

t t t t t k

k

g r r r r  
 

    



                                        (1) 

where tg   is the total return of the agent, starting from t  time;   is the rate of the discount, which varies 

in 0 1   range; T is the maximum length of the history, which in the general case can be equal to 

infinity. Consider the principle of the agent, which combines Q -learning with the mechanisms of 

approximation for the successful operation of reinforcement learning systems using   high-dimensional 

state spaces. Q -learning is based on the use of the Q -function in order to implement   policy. This 

function is also called the state-action value on-policy function. It is denoted as  ,Q s a . Using the 

Bellman optimality equation, we can find the  ,Q s a  optimal value as the maximum return; starting 

from the s  state under condition we provide the actions and operations in accordance with the    policy: 

   , max ,
a

Q s a r Q s a 



    
 

.                                            (2) 

The reinforcement learning algorithm consists in realization of iterative process of the value 

function estimation: 

   1 , max , ,i
a

Q s a r Q s a s a 




    
 

.                                     (3) 

This sequence converges to the optimal value: lim i
i

Q Q


 . However, the achievement of this result 

encounters problems of practical implementation due to the fact that the representation of the Q -function 

in tabular form leads to an exponential increase in the amount of RAM when using high-dimensional state 

spaces. To solve this problem, we present the Q  -function as a parameterized function: 

   , , ;Q s a Q s a  θ , where  θ  is parameter vector. Then the problem of representing the state-action 

function can be reduced to choosing values of a much smaller number of components of the θ  vector.  In 

most cases, this uses a linear approximator, which is represented by the expression: 

   
1

0

, ; ( , ) ,
n

T

i i

i

Q s a s a x s a




 θ θ x ,                                           (4) 

where         0 1 1, , , , ,..., ,Ns a x s a x s a x s ax  is the feature vector, which represents the state-action 

function;  
T
θ is the transposed parameter vector with the number of components equal to the number of 
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features; n  is  the number of dimensions of the state space. Features in this case are    ,ix s a  basic 

functions, because they form a linear basis to create the  , ;Q s a θ function approximation. There are 

different approaches to the selection of the feature vector components. One such approach is, for 

example, the stochastic gradient-descent method, for which   ( , ) , ;s a Q s ax θ . Then the iterative 

process of finding the vector of parameters is determined by the expression: 

     1 , , ; ,t t t t t t t tQ s a Q s a s a
    θ θ θ x .                                   (5) 

As is known, for a stochastic gradient-descent method, this iterative process converges to a local 

minimum, which does not always coincide with the global minimum. Since in most cases it is necessary 

to find out a global minimum, it is important to find other function approximation techniques.  

 

2.2. Algorithms for high-dimensional state spaces 

 

Algorithms for high-dimensional state spaces are extremely relevant because in most cases they are 

the only possible approach to solve practical tasks of reinforcement learning. A well-known algorithm for 

large state spaces is the tile coding algorithm [5]. This algorithm has become widespread due to its 

simplicity and efficiency. An important disadvantage of this algorithm is that it requires pre-allocation of 

state space manually. Such preliminary selection significantly affects the further efficiency of the 

algorithm. 

There are usually a large number of modifications of this algorithm that use different heuristic 

solutions to implement an efficient distribution of state space  

[16, 17]. However, such heuristic algorithms require the use of a large number of computing resources to 

process current information on each of the state space dimension and pre-configure a large number of 

parameters that characterize the environment. Therefore, the effective use of these algorithms for 

reinforcement learning with the high-dimensional state space is difficult and available only after gaining 

some experience. 

Radial basis functions (RBF) is the second known algorithm for the implementation  reinforcement 

learning in large state spaces [5]. For this algorithm, the features have a continuous value in the range 

[0,1].  Typically, RBF-features are subject to normal distribution. The advantage of such features over 

binary ones is that the corresponding functional dependencies are differentiated, which expands the 

possibilities of management and analysis. The disadvantages of the RBF method repeat the same 

disadvantages as tile coding. These disadvantages include the increased computational complexity and the 

need for manual adjustment, which requires an expert level of use of this method. 

The most promising algorithm has every reason to consider the Kanerva coding algorithm. Today, 

this is one of the algorithms that is characterized by the smallest increase in RAM with increasing 

dimensionality of the state space. 

In this method, as in the previous ones, it is necessary to choose the vector of basic functions. They 

are represented by prototypes of states in this method. New  0 1 1, ,..., np      prototypes are created 

based on the components of the state space. The method uses similarity for each of the dimensions of the 

state space, which is equal to the code distance between the binary representation of the vectors of the 

prototype and the state. The  , is p  function is equal to one, provided that the s  state is close to the ip  

prototype and zero otherwise. This function is called the membership grade function. It can be 

represented by the expression: 
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where j  is the bit number, n  is the state space dimensionality, c is the threshold value. 
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For Kanerva coding, there is also the problem of choosing the optimal set of prototypes, which in 

practice is solved by randomly selecting from the available set of states. Such a choice does not solve the 

problem of optimality. In this case, there may be significant disturbances in the distribution of receptive 

fields and, as a consequence, there is a decrease in the efficiency of representation of certain areas of the 

state space and the corresponding value functions. An adaptive adjacency method [15]  has been proposed 

as one of the known ways to improve the coverage of state space by prototype receptive zones [15], but 

such an approach also cannot always solve the problem, but only reduces the percentage of failed 

coatings.  

Also known methods that partially solve the problem of optimal coverage based on the use of fuzzy 

logic. But such approaches are a separate area, which we do not consider in this paper. 

An original method called Similarity-aware Kanerva or SAK for short has been proposed recently. 

 

2.3. SAK method 

 

The SAK method significantly changes the principle of determining the similarity of states and 

prototypes and thus solves the problem of determining the fields of perception for the selected set of 

prototypes. The main difference of this approach is that the features are no longer binary, but are 

represented as continuous quantities, which are represented by real numbers [14]. 

For a feature with the j  index, we determine the jd  distance between the p  prototype and the s  

state by the expression: 

j j

j

j

d
range

 




 ,                                                    (7) 

where jrange  is the range of possible values of the j  feature,   is a fixed factor, the value of which 

exceeds 1 and provides sensitivity to changes in the j j   difference. 

Define the similarity grade for the j  feature using the expression: 

   ,
, jd s p

jm s p e


 .                                                      (8) 

Fig.2 shows the graph of this function: 

 

Fig. 2. Graph of the  ,jm s p  function 

 

The figure shows that the value of the  ,jm s p  function is equal to 1, if the value of the difference 

between the dimension of the j  state and the j  prototype approaches zero with increasing distance 

between dimensions. 

The  ,s p  membership grade of states and prototypes is equal to the minimum similarity between 

their dimensions: 
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0,1,... 1

, min ,j

j n

s p m s p
 

 .                                                     (9) 

Thus, the membership grade for states is a continuous value that varies in the range [0,1]. 

When using Kanerva coding, we can specify a fixed number of prototypes. In the case of using a 

linear approximator for Kanerva coding, the value of the state-action function approximation is 

determined from the expression: 

   
 

 
0

, ; , ,

P s

i i

i

Q s a p a s p  


  ,                                          (10) 

where  P s  is the power of the indexed list of prototypes that are similar to the s  state. 

The  ,ip a parameter value will be stored and updated for each ip  prototype when selected the a  

action by the agent. When using the Sarsa algorithm, the following update is determined from the 

expression [15]: 

            1, , , , , ; , ;i i i i i i ip a p a s p s a r Q s a Q s a      
       ,       (11) 

where  
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 is a current fraction of the membership grade,  ,s a  is the step size 

parameter. 

Although the SAK algorithm significantly improves the basic parameters of reinforcement learning 

compared to the Kanerva coding algorithm, it does not solve the main problems of this type of 

algorithms. In particular, the algorithm uses random generation of prototypes. While it is known that 

using prototype tuning, actually increase the average solution rate from 67.9% to 97.1% [18]. In addition, 

the difficult question of choosing the optimal number of prototypes remains unclear. The choice of the 

optimal number of prototypes makes it possible to avoid the prototypes starvation due to the insufficient 

number of active prototypes for the value function approximation, as well as to avoid over-generalization 

of prototypes. 

 

3. USAK algorithm 

 

This paper proposes a Uniform Similarity-Aware Kanerva algorithm (USAK) that differs from 

SAK by adding a heuristic that improves the use of prototypes and proposes some modifications to 

include prototypes in the ActiveN list [14]. 

For an arbitrary j  dimension, we determine the jd  distance between the p prototype and the s  state 

from the expression: 

j j jd    .                                                            (12) 

The similarity grade for a j  feature is determined from the condition of uniform placement of 

prototypes in the range of this feature. 

 
2

, 1
j j

j

j

b d
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range
 


,                                                 (13) 

where   is the coefficient of overlap of the receptive zones  of the prototype: 1 1.5  , jrange  is the 

range  of the j  feature, jb  is the number of prototypes in the range of the  j  feature. 

The graph of the function is shown in Fig.3. 
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Fig. 3. Graph of the  ,jm s p  function for the USAK algorithm 

 

The graph in fig. 3 specifies a linear normalized value of the  ,jm s p  similarity grade for the j  

feature. The value of  ,jm s p  is equal to 1 if the value of the difference between the j  state dimension 

and the j  corresponding dimension of the prototype is zero. This  ,jm s p  function linearly decreases to 

zero with increasing distance between dimensions and is equal to 0 at the perceptive limit of the prototype 

respectively to the j  feature. 

The  ,s p  membership grade of the s   state and the p  prototypes is equal to the minimum 

similarity grade  for their dimensions (9). Thus, the membership grade for states is a continuous quantity 

that varies linearly in the range [0,1]. Since the prototype has clear and limited perceptive zones for each 

of its features, in this case it is important to fully cover the state space with prototypes for each of the 

state dimensions. In this paper, an algorithm for uniform coverage of the state field is proposed. 

In the general case, consider the n -dimensional  state space with uniform coverage of this space by 

prototypes. Then there is no need to save all prototypes, because they can be dynamically generated by 

setting the values of their dimensions with a predetermined step. Consider the pseudocode of the USAK 

algorithm, which includes the dynamic generation of features of evenly distributed prototypes. 

-------------------------------------------------------------------------- 

Algorithm 1 : Uniform Similarity-Aware Kanerva Coding 

-------------------------------------------------------------------------- 

Input:   

 0 1 1, ,..., ,...,j nb b b b b : the number of prototypes for each dimension. 

 0 1 1, ,..., ,...,j nrange range range range range : range of features for each 

                                                                      dimension. 

N : number of episodes. 

M : the maximum number of iterations in the episode. 

Output: θ  vector as a learning outcome. 

 

def  P_generator(s ): 

  for i  in range(B)     

            for j  in range(n): 

                          j s j    

                          
1

j

j

j

range
i

b
  


 

                          j j jd      
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                         if 0jm   then  . ( )jappend m  else . (0)append  

            mini   

           if 0i   then  . ( ); .active active iappend i append p μ   

   return ,active activep μ  

 

def Teta_iter( 1 1, , , ,t t t t ts a r s a  ): 

     for i  in range   :activep  

       

0

active

i

k

k

i










p

 

                    1 1 1, ; , ,i i t t t t t t t tr Q s a Q s a i           θ θ     

def Main():  

      Determining the number of prototypes: 0 1 1... nB b b b      

      Initialization of the parameter vector: 0θ , where Bθ . 

      for episode  in range(1,N): 

      Randomly choose 0s  and 0a . 

               for t in range(1,M): 

          Perform 1ta   in 1ts  .  

                        Get tr   and ts . 

                         Determine the activep  vector of active prototypes 

                         and  the  activeμ  distance vector: 

                         , P _ generator( )active active tsp μ   

                         Determine the value of the  , ;t tQ s a θ  function approximation: 

                            
0

, ;
active

t t t i active

i

Q s a i 


 
p

θ   

                          Update θ : 1t  θ Teta_iter( 1 1, , , ,t t t t ts a r s a  ) 

                          Determine  1 1,t ts a 
 using the  -greedy method: 

                             1 1, arg max , ,t t t t t
s

s a Q s a   θ  

                                     1 1,t t t ts s a a    

 
4. Practical implementation 

 
Let us consider the work of the proposed method on the example created on the basis of the popular 

problem "WaterWorld", which was first proposed by Andrej Karpathy [19]. Its essence is that the agent 

must try to survive by avoiding collisions with objects that move freely in the environment. The author of 

this problem compares it with the problem of spacecraft navigation in the field of asteroids. 

The agent receives +1 for survival for one time step and -100 points in case of collision with the 

simultaneous end of the current episode. To prevent collision, the agent has a set of sensors arranged 

evenly in a circle. The number of sensors can be changed during the experiments. Obviously, the 

dimensionality of the state space depends on their number. Each sensor allows you to determine the 



Usak  method for the reinforcement learning 12 

coordinates of the nearest object in the area of its observation, speed and direction of its movement. The 

agent also has additional sensors that determine its own coordinates, speed and direction of its movement. 

The total number of features varied from 44 to 104, creating a state space with the appropriate 

dimensionality. The agent can perform 4 actions: left, right, up and down. Each of these actions is 

represented by a real number that indicates the modulus of velocity of the object in a certain direction. 

The experiments use agents that have from 4 to 20 sensors. Figure 4 shows a screenshot of the task, 

which shows the position of the agent with 18 sensors and the environment in which objects float freely.  

 
Fig.4. An agent in an environment with "hostile" objects 

 

As shown in Figure 4, the agent is also able to distinguish the wall of the area from floating objects. 

The modulus of the inverse vector of the velocity of repulsion from the wall is proportional to the 

modulus of the vector of pushing on the wall. The purpose of the agent is to prolong its existence as much 

as possible, avoiding collisions with these "enemy objects". 

The studies were performed using the USAK algorithm for the described problem. Such studies 

aimed to experimentally determine the indicators of its effectiveness in a given range of parameters. 

Figure 5 shows the rewards for USAK algorithms with a different dimension of the state field. From 

this graph we can conclude that the speed of learning has no critical dependence on the dimensionality of 

the state speed. However, the advantage of the USAK algorithm is a 42% reduction in the number of 

calculations per episode due to the exclusion of remote prototypes from the calculations. 

 
Fig. 5. Dynamics of reward change for different dimensionalities of the state space 
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Figure 6 shows the increase in occupied RAM over time. This growth does not depend significantly on 

the size of the state space, which indicates the effectiveness of the proposed approach to the uniform 

arrangement of prototypes that cover the state space. The advantage of this approach is that remote 

prototypes do not participate in the calculation, which leads to a linear increase for data to be stored. In 

this study, as in the previous case, we considered the state spaces with 44, 54, 64, and 74 

dimensionalities. These dimensionalities of the state spaces are formed by agents with 8,10,12 and 14 

sensors, respectively. 

 

 
Fig. 6. Linear growth of occupied RAM as a function of time for state spaces of dimensionalities 

44, 54, 64 and 74. 

 

5. Conclusion 

 
This paper discusses modern approaches to reducing the use of computer RAM in solving 

reinforced learning problems with high-dimensional state spaces. The USAK method is proposed, which 

improves the characteristics of the SAK method due to the uniform distribution of prototypes that cover 

the state space. Even distribution of prototypes has reduced the amount of RAM for their storage because 

such placement of prototypes allows you to generate prototypes automatically with the appropriate step of 

their dimensions. The second advantage of uniform placement of prototypes is that it is possible to use a 

predetermined fixed perceptivity of prototypes. This fact has a positive effect on the reduction of the 

volume of calculations in the linear approximation of the value function, because in this case only those 

prototypes that have a membership value greater than zero are taken into consideration. A number of 

experiments were conducted on the basis of the well-known problem "WaterWorld", which allowed to 

determine the advantages of this method, as well as to form their vision of ways to further improve it. 
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