
UDC 004.72

DOLYNNYI O.,

NIKOLSKIY S.,

KULAKOV Y.

THE METHOD OF SDN CLUSTERING FOR CONTROLLER LOAD

BALANCING

The paper proposes the method of SDN clustering using connections density and controller load

distribution that solves the problem of controller load balancing. Clustering efficiency criteria have been

considered, including fault tolerance, controller-to-switch and intercontroller latency and network

limitations. Review of the key clustering methods has been performed, and the base algorithm for

modification has been chosen. Density-based controller placement algorithm is modified to solve the

problem of multicontroller placement. Metric of the node boundary index is introduced to advance the

efficiency of proposed algorithm. A software implementation of the developed algorithm has been

created, and its performance has been tested. The algorithm’s modelling results have been compared with

those of the other algorithms using the metrics of distribution of service traffic propagation delay and

computational speed in relation to network topology size.

Keywords: SDN clustering, network, connections density, controller placement

1. Introduction

The problem of controller placement is a critical part of implementing the Software Defined

Networks (SDN) technology. The concept of SDN, which has emerged in recent years, is increasingly

becoming a vital technology in the development of large-scale datacenter networks. The essence of the

SDN concept is to separate the control layer from the data layer, which simplifies network

management, improves network flexibility and scalability.

In large networks, the good placement of the controllers makes the best use of the existing

structure of links between the network nodes. One controller is not enough to control all the nodes in a

large SDN, as its performance is limited, and the signal propagation delays between the controller and

all nodes in the network is very large; moreover, a single controller on the network cannot meet fault

tolerance requirements. Therefore, it is logical to place many controllers at different points in the

network, which together control the entire data layer. The critical question that emerges is how to

cluster the network and where it will be most efficient to place the controllers. It is known as the

controller placement problem.

2. Clustering efficiency factors

The problem of controller placement is defined as a multifactor complexity optimization

problem [1] [2], in which the position of a controller should be decided upon with the following

characteristics taken into consideration:

(1) Fault tolerance. The switches are dependent on their controllers providing them with

instructions on how to forward packets. If the connection between a switch and its controller is

disrupted, the switch becomes unable to forward packets and, thus, becomes essentially nonfunctional

in the network [3]. Possible reactions to such failures must be taken into account when designing a

network.

(2) Controller-to-switch latency. Controllers send instructions to switches, according to which

the latter forward packets. Consequently, the transmission delays of those control signals influence the

latency metric of the entire network. The network-wide latency cannot be minimized without

minimizing local controller-to-switch latencies [4].

(3) Inter-controller communication. Each controller has a number of switches to which it sends

commands. To exchange messages at a network-wide level, i.e. between remote switches managed by

The method of SDN clustering for controller load balancing 44

different controllers, controller-to-controller communication must be implemented [5]. So the total

communication delay between remote switches in the network depends on the delay of controller-to-

controller information exchange.

(4) The density of controller placement. There is no predefined number of controllers that would

ensure the optimal performance of an SDN network. The desired number of controllers is especially

hard to decide on in large networks with advanced structure. It has to be determined using assorted

methods, some of them complex and time-consuming, as they consider a large number of placement

variants [6].

(5) Constraints set by controller capacity. Hardware limitations of a controller make it possible to

manage only a certain number of switches without getting overloaded. Controller overload, i.e. its

processing queue becoming overflown by the tasks, is a scenario that has a negative effect on the

performance of the SDN as a whole [7].

3. Related works.

Some works have proposed heuristic algorithms to solve the controller placement problem and

defined this as multi-objective combinatory optimization task. However, for a large-scale network such

algorithms demonstrate an unreasonably high solution time [3].

On the other hand, there exists an approach in which controller placement is determined by

certain defined metrics.

K-means method, developed by B.Heller in 2012, focuses on minimizing the communication

latency in a network [5]. This method doesn’t take into account the reliability aspect, as well as

controller load when solving the clustering problem.

Another popular method is the density based controller placement (DBCP) introduced by J Liao

in 2016, which uses a nodes clustering algorithm based on density distribution [6]. These nodes have

higher quantity of connectivity inside the cluster and lower quantity of connectivity with nodes from

other networks, thus there is one and only one controller in each subnetwork. To minimize costs for

intercontoller communication, the proposed algorithm advises to place them at the closest possible

distance. However, every controller’s placement is chosen independently in every cluster as well as

sequential order of cluster choosing for nodes, therefore controller position and cluster’s load is not

optimal as far as all clusters are concerned.

Pareto-Optimal Resilient Controller Placement method (POCO), introduced by D. Hock in 2013,

aims to guarantee the best possible controller placement using Pareto distribution of network metrics

for different nodes. This algorithm also considers such parameters as inter-controller communication

and load balancing for cluster controllers, but has the drawback of low computational speed due to a

large amount of calculations.

Focusing on equal load balancing goal and considering the positive and negative sides of each

method, this study uses DBCP method as the base algorithm for the following modification.

4. Aim and objectives

In this study, we propose a method of network clustering, aimed at improving the efficiency and

equal load balancing of an SDN network by analyzing the density distribution of links. This

requirement is substantial to consider due to existence of physical restrictions for cluster size, it cannot

have extremely high value due to central controller load limits.

In order to achieve the aim of our study, the following objectives are proposed:

1) to identify the factors that affect the efficiency of the clustering process;

2) to analyse the clustering methods that can be used in software-configured networks;

3) to develop a method of SDN clustering, taking into account the distribution of link density and

data flows;

4) to model and analyse the effectiveness of the proposed method of SDN clustering.

45 Information, Computing and Intelligent systems № 1

5. The proposed method
5.1. General principles of clustering method construction

In this section, the basic steps for clustering method construction are observed.

Let us assume that the network topology G(S, L)consists of a set of routers Sand a set of

bidirectional connections between themL. Note that if there is a direct connection between the nodes of

the network, the length of the connection is equal to one, otherwise it is equal to zero.

Unlike the other methods, this algorithm analyzes the network topology, which is then divided

into subnets. Nodes, that have the most common connectivity, have a relatively larger number of

connections inside the subnet, and so have fewer connections to other subnets. Therefore, they can be

considered basic nodes for separate subnets. After following the described method during the

aggregation of nodes, the constructed subnet has the feature of higher fault tolerance. Delay in the

subnet is also reduced due to fine-grained clustering.

In general, the clustering method consists of three main steps:

1) to analyze the network topology for the distribution of connection density between routers;

2) to distribute network routers in clusters according to the found values of density, distance

from the current node to the node with a higher value of density, and the node boundary index;

3) to solve the problem of controller placement for each subnet according to a given criterion (in

this case - the metrics of the average distance to other cluster nodes).

5.2. Network graph analysis of deviations in the density distribution

In the algorithm, the division of the whole network occurs due to cluster allocation. Two values

are calculated for each routersi: local densityρi and distance to a node with a higher local density value

δi (node priority for the clustering task). These values depend only on the connections between the

routers.

The local density ρi for each router is calculated by the formula (1), which uses the coupling

factor kcl and the distance between the routers dij:

 
j

cijcli ddk)( (1)

The maximum distance value to a nearby node dc is the limit of the distance that the routers

assigned to the current node can have. The coupling factor kcl is taken as one in the case of a positive

difference between the reference distance limit and the distance between the routers, and zero

otherwise. For distributed networks with more than 50 nodes, it is effective to set dc as 30% of the

network diameter.

The distance to the node with higher value of local density δi is calculated as the shortest

distance to the node with higher value of local density:

 
j

cijcli ddk)( (2)

For nodes with the highest local density in a cluster, the distance to the node with the even higher

value of local density is taken as the maximum value; such nodes will be selected first as cluster

centers.

As a result, we get the following pseudocode of the network graph analysis of deviations in the

density distribution:

int analyzeDensity(G = (S, L), dc) {

 int k = 0;

 for (s: S) {

 ro[s] = getNumberOfNodesWithinDistance(s, dc, G);

 }

 for (s: S) {

The method of SDN clustering for controller load balancing 46

 delta[s] = minDistanceToHigherDensityNode(s, ro, G);

 delta_Avg = sum(delta[0], ..., delta[S]) / S;

 if delta[s] > delta_Avg {

 k++;

 }

 }

 return k;

}

5.3. Algorithm of network graph clustering

To ensure that the even load on the cluster controllers is reached, it is necessary to introduce the

node boundary index (distance to the cluster boundary), in addition to following the formulas 1 and 2.

Let us assume that the load of each router equals l(s). Then the maximum possible controller

load L(Θ) should not be less than the sum of the traffic loads of each cluster node:





)(

)()(
Ss

slL (

3)
Let us consider the case of a cluster already containing enough nodes to control, so it cannot be

expanded with new nodes; so it is needed to join those nodes to other clusters or create a new cluster.

Maintaining the compliance with the maximum load requirement on the cluster controller, it is

necessary to distinguish between nodes that are closer to the center of the cluster and nodes that are

closer to the boundaries of the cluster. The latter nodes can be considered as candidates for joining

expandable clusters.

Let us denote total local density of current node as the sum of local densities for such nodes that

have higher density value than current node:






)(ij sULs

j

jitd  (4)

To find the nodes in the cluster that are on the border, we calculate a new value for each router,

namely the node boundary index σi. The node boundary index is a value that indicates the uncertainty

of the node membership in the current cluster. If the local density of the neighboring router, which is

greater or equal, differs by no more than the limit value of the density difference, then this router can

be considered as the border node of the cluster.

To find the node boundary index σi, we use the formulas from the theory of information

entropy:






)(

)(
log

ij

i

sULs

j i

j

sUL

i

j

i
tdtd


 (5)

In the modified algorithm, the selection of a node with a smaller value of the node boundary

index has a higher priority during the process of assigning nodes to the cluster. The router is assigned

to the same cluster as the nearest neighboring router with a higher local density value, unless the total

load on the cluster routers will exceed the maximum possible load on the controller. If there is no

cluster to which the current node can be attached, it becomes the center of the new cluster.

As a result, we get the following procedure pseudocode, that performs network graph

clustering considering limitations for maximum controller load:

void clusteringWithLoad(Graph G = (S, L), ro, delta, controllerCapacity) {

 for (s: S) {

 delta[s] = getBorderline(s, G);

47 Information, Computing and Intelligent systems № 1

 }

 S.sortBy(delta);

 for (s: S) {

 n[s] = cluster(s);

 }

 for (s: S) {

 ul = getNeighbors(s, (ro > ro[s]));

 ul.descendingSortBy(ro);

 for (s1: ul) {

 si = union(n[s], n[s1]); //si – all connections, implicit to n[s] or n[s1]

 if (controllerCapacity >= sum(l(si))) {

 n[s1].add(s);

 break;

 }

 }

 }

}

6. The example of the developed clustering method

We will demonstrate the work of the developed algorithm by example.

Let the traffic flows on each router be the same and equal to 1. Then the network clustering task

based on the controller load limitations and traffic flows can be reduced to the network clustering task

regarding the total number of routers that can be controlled by the controller.

The network topology graph is presented in Fig. 1a. Let us assume there is a limit to the total

number of routers that can be controlled by the controller, and this number is 6. We use formulas 1, 2,

and 5 in our calculations.

The simulation results of the algorithm for the mentioned network graph are shown in Fig. 1b

and Table 1.

34 routers are divided into 7 different clusters, where the routers of a separate cluster are marked

with a separate color. It should be noted that the router 22 is allocated to a separate cluster, because all

neighboring clusters are already full and cannot be expanded, so the router 22 cannot be connected to

any of them.

Fig. 1a. Original topology

The method of SDN clustering for controller load balancing 48

Fig. 1b. Marked topology

7. Results and discussion

The advantages of the developed clustering algorithm include the following aspects. First of all,

the proposed method selects the optimal number of controllers for a particular network. Secondly,

clustering based on topology link density reduces the likelihood of controllers placement in the nodes

with a high risk of a failure. Finally, the problem of multiple controllers placement in the network is

reduced to the problem of placing one controller in subnetwork, which reduces the time complexity of

solving the problem.

Table 1

The calculation of modelling results

Node id ρ δ σ Node id ρ δ σ Node id ρ δ σ

1 4 1 0.91 13 5 1 0.0 24 6 1 0.98

2 8 1 0.0 14 5 1 0.99 25 6 1 0.98

3 8 1 0.99 15 5 1 0.99 26 8 3 0.0

4 10 3 0.0 16 9 1 0.0 27 6 1 0.0

5 6 1 0.95 17 8 1 1.0 28 7 1 0.0

6 6 1 0.98 18 9 3 0.0 29 6 1 0.99

7 8 1 0.0 19 6 2 0.0 30 7 1 0.0

8 4 1 0.0 20 7 1 0.0 31 9 3 0.0

9 4 1 0.99 21 5 1 0.99 32 8 1 0.0

10 5 1 0.96 22 7 1 1.0 33 6 1 0.99

11 6 1 0.0 23 6 1 1.0 34 3 1 0.0

12 6 1 0.98

During the testing of the obtained algorithm, several metrics were measured for the analysis of

the model. A comparison of the developed algorithm with K-means and POCO algorithms was

performed. The analysis used a graph generator with a step of 25 nodes, all traffic connections were

taken as 1.

Fig. 2 compares the execution time of algorithms. With a relatively small number of nodes (up to

100), there is no big difference in computational speed between algorithms, but the difference begins

to grow with higher order polynomial complexity between K-means algorithm and POCO and the

developed algorithm.

Fig. 3 presents the results of the analysis of the delay in the propagation of service traffic

depending on the number of topology nodes. The considered algorithms have similar delay indicators,

differing on different values of the number of nodes, but according to the total efficiency index, the

49 Information, Computing and Intelligent systems № 1

developed method has the best metrics.

The developed method could be applicable for the large-scale networks due to quite good results

of modelling metrics. However, it is necessary to note the difficulty of algorithm integration into the

existing hardware infrastracture.

Further development of the algorithm could take into consideration the aspects of reliability and

minimization of cluster amount. These aspects were not considered in detail in the present paper, as

our aim was to guarantee the even controller load. It should be noted there is a possibility of finding

other flaws in the presented method, depending on the metrics used for comparison of algorithms.

Fig. 2. Comparative graph of computational speed in relation to network topology size

Fig. 3. Comparative graph of distribution of service traffic propagation delay in relation to network

topology size

The method of SDN clustering for controller load balancing 50

8. Conclusions

The paper considers a network clustering algorithm based on the connections density distribution

and the maximum load on the controllers. The example demonstrated the procedures of the algorithm.

As a result of testing on different network topologies and analyzing the obtained results, the

developed method of clustering demonstrates high efficiency in comparison with K-means and POCO

algorithms regarding the existing metrics of service traffic delay and speed.

From the practical point of view, the results obtained in this paper allow increasing the efficiency

of SDN networks management, especially large-scale networks, for which it is important to balance

the load on the controllers.

Further development of the algorithm could take into consideration the aspects of reliability and

minimization of cluster amount.

References

1. Scott-Hayward S. Are we ready for SDN? Implementation challenges for software-defined

networks? / Scott-Hayward S., Chouhan P.K., Fraser B., Lake D., Finnegan J., Viljoen N., Miller

M., Rao N. // Communications Magazine, IEEE . – 2013. – № 51(7) – pp. 36–43.

2. Hakiri, A. Software-defined networking: Challenges and research opportunities for future

internet. // Computer Networks. – 2014. – № 75. – 453-471 pp.

3. Hu, F. A survey on software-defined network and openflow: From concept to implementation /

Hu F., Hao Q., Bao K. // IEEE Communications Surveys & Tutorials. – 2014. – № 16. – 2181-

2206ppс.

4. McKeown, N. OpenFlow: Enabling Innovation in Campus Networks / McKeown N., Anderson

T., Balakrishnan H., Parulkar G., Peterson L., Rexford J., Shenker S., Turner J. // SIGCOMM

CCR – 2008. – № 38(2).

5. Heller, B. The Controller Placement Problem / Heller B., Sherwood R., McKeown N. //

HotSDN. – 2012.

6. Liao, J. Density cluster based approach for controller placement problem in large-scale software

defined networkings / Jianxin Liao, Haifeng Sun, Jingyu Wang, Qi Qi, Kai Li, Tonghong Li //

Computer Networks. – 2017. – № 112. – 24–35 pp.

7. Hock, D. Pareto-Optimal Resilient Controller Placement in SDN-based Core Networks / Hock

D., Hartmann M., Gebert S., Jarschel P., Zinner T., Tran-Gia P. // 25th International Teletraffic

Congress (ITC) – 2013.

