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The new approach to accelerate the computational implementation of the basic for a wide range of 

cryptographic data protection mechanisms operation of exponentiation on Galois Fields have been proposed. 

The approach is based on the use of a specific property of a polynomial square and the Montgomery 

reduction.  A new method of squaring reduces the amount of computation by 25% compared to the known 

ones. Based on the developed method, the exponentiation on Galois Fields procedure has been modified, 

which allows to reduce the amount of calculations by 20%. 
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1. Introduction  
 

The dynamic development of the Internet and computer technology has led to the emergence and 

widespread use of cloud technologies. These technologies provide a wide range of users with access to 

virtually unlimited computing power, large amounts of memory and modern software. Thus, cloud 

technologies can significantly increase the capabilities of the widest range of users to solve their scientific 

and applied problems. 

On the other hand, access to these technologies has become more accessible not only to ordinary 

users, but also to villains, who were among the first to join the opportunities offered by cloud technology 

[1]. The tasks of selecting keys to existing cryptographic mechanisms for information security are well 

parallelized and, accordingly, effectively solved on powerful multiprocessor remote computer systems 

[2]. Thus, the advent of cloud technology has objectively upset the balance between the level of 

cryptocurrency and the resources available to villains [2]. To counteract this, there is a need to find new 

ways to increase the level of cryptocurrency, first of all, public key information protection algorithms.  

Most of these algorithms are based on the mathematical operation of modular exposition, which is 

performed on large numbers (2048 or 4096). 

One possible solution to this problem is to increase the bit size of the keys used in the corresponding 

cryptographic algorithms.  However, such a decision will result in a significant slowdown in the 

computational implementation of cryptographic protection mechanisms.  In particular, doubling the bit 

size slows down the execution of algorithms eight times [3]. 

Another solution to the problem of accelerating the computational implementation of cryptographic 

algorithms with a public key is to move to another algebraic basis, in particular to the algebra of Galois 

fields [4].  Operations in these fields are performed an order of magnitude faster due to the lack of 

hyphens.  Further acceleration can be achieved through the use of additional resources.  To use them, it is 

necessary to develop new methods aimed at accelerating the execution of the exposure operation in the 

Galois fields. 

Thus, the scientific task of accelerating the execution of the exposure operation in the Galois fields 

is relevant at the present stage of development of information technology. 

 

2. Problem statement and review of methods for its solution 
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The tendency to expand the use of exposure to Galois fields in modern mechanisms of 

cryptographic protection of information stimulates intensive research aimed at accelerating the 

performance of multiplicative operations on numbers whose bit size far exceeds the bit size of the 

processor [5]. 

In the transition in cryptographic using to the algebra of Galois fields from traditional algebra, in 

order to distinguish operations in each of these algebras use different notation.  In particular, in the 

algebra of Galois fields, the traditional addition is replaced by the addition operation in the Galois fields, 

which is denoted by the symbol ‘’ is a bitwise operation “Excluding OR” (XOR).  In the algebra of 

Galois fields there is no subtraction operation usual in traditional algebra.  The basic multiplication 

operation in the Galois field algebra consists of two operations: polynomial multiplication and reduction 

using a base polynom of the field [6].  The polynomial multiplication is denoted by the symbol ‘’, and 

the reduction operation consists in calculating the remainder of the polynomial division of the result of 

the polynomial multiplication by the Galois field forming the polynomial P (x) [6].  The operation of 

calculating the remainder of the polynomial division of the number A by P is denoted as A rem P. The 

product of the numbers A and B in the Galois fields is denoted as AB rem P.  The operation of 

calculating exponents on Galois fields, is the calculation of the polynomial remainder from the division of 

the product E of the numbers A by the polynomial field P is denoted as A|E rem P in contrast to the 

modular exposition AE mod M adopted in traditional algebra [6]. 

The existing methods of exposition on Galois fields are based on two classical algorithms: from the 

lower and upper bits of the code the exponents Е = {en, en-1, …, e0} for any j ϵ {1, 2,…, n-1}  ;  ei ϵ {0, 

1}.  In both mentioned algorithms it is impossible to perform several cycles simultaneously [7].  The 

advantage of the lower-bit exponential algorithm is the ability to partially parallelize calculations within a 

single cycle.  This allows you to increase the speed of the algorithm by 1.5 times.  

Further acceleration of the exponent operation in Galois fields is carried out by reducing the 

execution time of multiplication in the field [8].  This operation consists of polynomial multiplication and 

reduction.  The operation of polynomial multiplication of n-bit numbers requires 0.5n logical addition 

operations and n shift operations to calculate the product.  Taking into account that the execution time of 

the logical addition command is approximately the same as the execution time of the shift command, we 

can assume that the implementation of polynomial multiplication is determined by the execution time of 

1.5n logical operations [9].  As the main reserve for accelerating multiplication in Galois fields, most 

researchers consider the reduction operation [10].  

The polynomial reduction operation is performed by adding a number corresponding to the forming 

polynomial to the current remainder.  This operation includes determining the position of the highest digit 

of the current remainder, shifting the code forming the polynomial, logically adding it to the current 

remainder [11].  Thus, to perform the reduction, you need to perform an average of n bit testing 

operations, 2n offset operations (offset code of the forming polynomial and test code containing one 

unit), as well as 0.5n logical addition operations.  The total average number of logical operations to 

perform reduction by dividing polynomials is 3.5n. 

Further increase in speed is achieved by accelerating the reduction.  Most of the known methods are 

based on the use of precalculations dependent on the unchanging polynomial P [12], which in 

cryptographic information protection systems is part of the public key and, accordingly, rarely changes. 

In acceleration methods based on the use of this property of the forming polynomial, the residues 

from the division of the codes 2n+1,…,22n by the forming polynomial P(x): T1 = 2n+1 rem P, T2 =  2n+2 rem 

P,…,Tn= 22n rem P are preliminarily calculated. The calculated codes are stored in the table memory of 

precalculations.  The reduction is reduced to the addition of tabular codes, which correspond to the units 

in the highest n digits of the code of the polynomial product.  Thus, due to the use of precalculations, it is 

possible to reduce the average number of logical operations to implement the reduction to 1.5n.  The total 

average number of logical operations for multiplication on Galois fields is 3n. 

Another way to accelerate the reduction in Galois fields is proposed in [13,14] and its essence is to 

adapt the Montgomery technology known in traditional algebra to the features of the algebra of Galois 

fields.  Using Montgomery technology, the average number of logical operations for the computational 

implementation of multiplication in Galois fields was reduced to 2n rounds [15]. 
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An analysis of both classical Galois finite-field exposition algorithms shows that 2/3 of the 

computational volume is accounted for by the square operation.  Therefore, the most promising way to 

accelerate these important cryptographic calculations is to conduct research aimed at reducing the 

computational complexity of squaring in the Galois fields. 

 

3. Purpose and objectives of research  
 

The aim of the study is to accelerate the calculation of the exponent on the finite Galois fields in 

software and hardware implementation by reducing the number of logical operations required for 

squaring in the Galois fields. 

To achieve this goal, the study solves the following tasks: 

 - analysis of the features of symmetry of operations when squaring in Galois fields and finding 

ways to use them to accelerate squaring - the basic operation of exposition in Galois fields; 

 - development of a method of accelerated squaring in the Galois fields, the difference of which is to 

eliminate duplication of calculations, thereby reducing the computational complexity; 

 - development of a modified exposition procedure in Galois fields using the accelerated method of 

squaring; 

 - evaluation of the effectiveness of the proposed method of squaring in the Galois fields and 

exposition in terms of accelerating their computational implementation. 

 

4. The method of accelerated elevation to the square in the Galois fields using the 
Montgomery reduction 

 

Two-thirds of the computational volume that makes up the Galois field exponentiation, as well as 

the traditional modular exposition, is the squaring operation [8].  Therefore, it is important to find 

opportunities to accelerate this dominant component of the implementation of cryptographic mechanisms 

in the transition from traditional modular exposure to perform this operation in Galois fields. 

The property of a polynomial square and the application of the Montgomery reduction can be 

considered as the main reserves for the acceleration of calculations related to the squaring in the Galois 

fields. 

The property of a polynomial square is that the addition to the square of the number А = an-12
n-1 + 

an-22
n-2 +…+ a12 + a0, where i{0,1,…,n-1}: ai {0,1} is reduced to the insertion of "zeros" between 

the binary digits a0, a1,…,an-1 of the number A: АА = А2 = an-12
2(n-1) + an-22

2(n-2) +…+ a14 + a0 [11].  

For example, if A = 910 = 10012, then its polynomial representation has the form: A(x) = x3 + 1.  

Accordingly, the polynomial square of this number can be represented as: A(x)A(x) = (x3+1)(x3+1)= 

x6+x3+x3+1=x6+1.  Inserting “zeros” between binary digits gives a similar result: A2 = 1 0 0 0 0 0 12 = 

65. 

Thus, the first component of squaring in the Galois fields - polynomial multiplication does not 

require for its implementation any operations other than shifts.  Montgomery technology adapted to 

Galois field algebra can be used to accelerate the computational implementation of the second 

component, the reduction of a polynomial square [12]. 

To realize the above possibilities, the following method of squaring in Galois fields is proposed. 

There is a number A such that А = an-12
n-1 + an-22

n-2 +…+ a12 + a0, and i{0,1,…,n-1}: ai 

{0,1}. It is necessary to perform the operation of squaring this number to the square, ie to calculate А 

А2 rem P, where Р is the number that corresponds to the forming polynomial of the Galois field: P = 

pn2
n + pn-12

n-1 + pn-22
n-2 +…+ p12 + p0; j{0,1,…,n}:  pj{0,1}.  Montgomery's technology involves 

the use of an auxiliary polynomial R, R = 2n for which the multiplicative inversion R-1 is determined so 

that RR-1 rem P=1. 

The proposed method involves the following sequence of actions: 

1. The counter j cycles is set to zero: j = 0. 

2. The number B is formed: B: B = b2n-12
2n-1 + b2n-22

2n-2 +…+ b12 + b0 and k{0,1,…, 2n-1}: bk 

= ak/2,  if k mod 2 = 0 and  bk = 0 if  k mod 2 = 1. 

3. If  b0 = 0, then proceed to claim 5. 
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4. To the current value of the code B is added modulo 2 the value of the code P, which corresponds 

to the forming polynomial of the code: B = BP. 

5. A shift to the right by one bit of the value of the code B of the current result: B >> = 1; 

6. The unit is added to the cycle counter: j = j + 1.  If j <n, then there is a return to re-execution of 

claim 3.  

Next will be show that as a result of the proposed procedure it obtained the value of the result B, 

which is equal to AAR-1 rem P. If we denote by D the polynomial square D = AA, which is 

obtained by inserting "zeros" between each pair of binary digits of the number  A, the value of D is equal 

to the initial value of B, which is formed in paragraph 2 of the developed procedure.  In the process of its 

implementation to the value of D are added h values of the number P, where 0 < h  n.  The addition of 

the numbers P is carried out in such a way that their logical sum with the code D has zeros in n lower 

digits.  That is, the code B, which is obtained as a result of the above procedure, excluding offsets, can be 

represented as: B = AA  S, where S is the logical sum h of shifted codes P. Offset of the obtained 

result B by n positions to the right  , provided that the lower n bits of B are equal to zero, equivalent to 

the multiplication of B by the multiplicative inversion R-1 of the code R = 2n, the multiplication by 

which is identical to the shift operation to the left by n bits.  Thus, the code B obtained as a result of the 

procedure described above is a reduction of the product: B R-1 = (AA  S)R-1 =(AA)R-1SR-

1). In other words, B = B R-1 rem P = (AA)R-1 rem P  SR-1 rem P. Due to the fact that the second 

component of the sum includes as a component of the product the sum of codes  P, then the value of its 

remainder from the polynomial division by P is zero.  This means that the obtained, as a result of the 

proposed and described above procedure is equal to B = (AA)R-1 rem P, which had to be proved.  

The proposed algorithm can be illustrated by the following numerical example. 

Let n = 4, A = 1110 = 10112, forming polynomial P = 1910 = 100112, an auxiliary polynomial R = 2n 

= 16, and its multiplicative inversion is equal to R-1 = 1410 = 11102.  Indeed, RR-1 rem P = 1614 rem 19 

= 1. It is necessary to raise to the square of the number A on the Galois field with the forming polynomial 

P (x) = x4 + x + 1, which is related to the number P  = 19: AA rem P = 1111 rem 19 = 9. 

Before performing the calculations, according to claim 1 of the above procedure, the counter j 

cycles is set to zero, and the initial value of the number B is formed from a given number A by inserting 

zeros: B = 1000101. 

The dynamics of transformations of variable B in the process of performing cycles of the above 

procedure is presented in table 1. 

Table 1 

Dynamics of transformations of variable B in the process of performing cycles of the proposed procedure 

of accelerated squaring in the Galois fields  

 

  j 
The value of the variable B 

At the beginning of the 

cycle 

 b0  After performing step 4 After performing step 5 

 0        1000101   1 
   1000101 

    10011 

   1010110 

 

          101011   

 1         101011 
  1            101011 

    10011 

           111000 

           11100 

 2 11100   0                -              1110 

 3            1110   0                -                111 

The number B obtained as a result of the proposed procedure of accelerated ascent to the square is 

equal to AAR-1 rem P = 111114 rem 19 = 7. 
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The true value of U of the square A on the Galois field with the forming polynomial Р(х)=х4+х+1, 

which corresponds to the number P = 19 can be obtained by multiplying B by R=2n =24 = 16:  U = 716 

rem 19 = 9. 

According to conducted research, the average multiplication time in Galois fields depends on the 

number of logical addition and shift operations. 

In a known variant of multiplication in the fields of the Montgomery Reduction [14], the shift is 

performed on each of n cycles, so is performed n times.  Operations of logical adding the multiplicand to 

current result are carried out when the current bit of the multiplier is equal to one.  On large length, the 

probability that the current bit will be a one or zero, is equal to 50%, thus, the multiplicand logical 

addition will occur only in half of all cycles, that is 0.5∙n times.  Operations of logical adding of Galois 

fields base polynomial depends on low bit of current result. Thus, in average this operation is executed 

also 0.5∙n times [16].  Then, the average total number of logical addition operators consist of n. Logical 

addition and shift operations require approximately the same time to execute.  Therefore, it is advisable to 

calculate all operations together when calculating the time of the algorithm together.  And the total 

number of all operations will be 2∙n. 

In the developed method, the rise time to the square depends on number of shifts and number of 

logical addition operations.  Adding a multiplicand in proposed method was replaced by the previous and 

disposable insertion of zeros.  Shifts occur on each cycle, that is their number n.  As in a well-known 

method, the logical addition operation number depends on the low bit of current result. Therefore, the 

average numbers of such operations is equal to 0.5∙n.  Acceleration occurs due to the exclusion of logical 

adding of multiplicand.  Thus, in the algorithm according to the proposed method, the average total 

number of operations for square on Galoise field calculation is 1.5∙n. 

Compared to the time of execution of a previously existing multiplication algorithm by 

Montgomery method [15], the number of operations decreased from 2∙n to 1.5∙n, that is, by 25%.  The 

conducted experimental studies were obtained by the theoretical evaluation. 

 

5. Organization of the calculation of the exponent in the Galois field using the 
proposed method of squaring 

 

As noted above, squaring in the Galois field is about 2/3 of the process of calculating the exponent 

in the Galois field - the basic operation of a wide class of cryptographic algorithms. 

Accordingly, the squaring by the proposed method, which combines the use of a polynomial square 

and the Montgomery reduction, can be effectively used to accelerate the exposure in the Galois fields.  

The squaring operation performed by the proposed and described method is hereinafter referred to as KM 

(Montgomery Square) in contrast to the known multiplication scheme in Galois fields using Montgomery 

recursion [13 which is denoted as MM. 

Modified in this way the exposition procedure on Galois fields, the calculation of AE rem P 

involves performing precalculations before the start of cycles of sequential processing of bits of the 

exponent code.  Montgomery technology determines the use of the auxiliary polynomial R(x) and its 

multiplicative inversion R-1(x).  The number R corresponding to the polynomial R(x) = xn is defined as R 

= 2n;  accordingly, the multiplicative inversion R-1(x) is correlated with the number R-1 such that RR-1 

rem P = 1.  In addition, the reduction technology according to the Montgomery method involves 

performing precalculations before exponentiation, namely: calculation G = R rem P = RP and D = R|2 

rem P, as well as Z = MM (A, D) =  ADR-1 rem P. It is obvious that the values of G, D depend only on 

the Galois polynomial field, so they are calculated only once and can be used to expose different numbers 

provided that the Galois polynomial field is constant.  The calculation of the number Z precedes each 

exposure in the Galois fields due to the fact that it depends on A.  

Formally, modified as above, the Galois finite field exposure procedure using Montgomery 

reduction and accelerated squaring consists of the following sequence of actions: 

1. The counter of h cycles is set in n: h = n so that it indexes the highest unit digit of the code of the 

exponent E. 

2. Using the developed method of accelerated ascent to the square, the value of the square G is 

calculated: G = KM (G). 
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3. If the current h-th bit of the code of the exponent E is equal to one eh = 1, then the multiplication 

operation with Montgomery recursion obtained in the previous step of the result G on Z: G = MM (Z, G). 

4. The value of the cycle counter h = h-1 is decremented.  If h ≥ 0, then the return is performed for 

re-execution of claim 2. 

5. The final result is obtained by multiplying in the Galois field using the Montgomery reduction of 

the obtained value of G per unit: G = MM (G, 1) 

The operation of the described modified Galois field exposure procedure using the accelerated 

squaring based on the Montgomery reduction can be illustrated by the following example.  Let it be 

necessary to calculate AE rem P, and A = 12, E = 13, and the Galois field-forming polynomial has the 

form P (x) = x4 + x + 1, ie corresponds to the number P = 19, then n = 4.  Then Montgomery technology 

involves the use of an auxiliary polynomial R(x) = x4.  Its multiplicative inversion R-1 = 14.  It is easy to 

calculate the value 1213 rem 19 = 8  by performing exponentiation by the classical algorithm without 

using Montgomery reduction. 

The values  G = R  P = 1619 = 3 and D = R|2 rem P = 5 are calculated in advance. Z = MM (A, 

D) = 12514 rem 19 = 7 is calculated immediately before the exposition.  

After setting the counter h to the initial value 4 within stage 2 of the procedure, the square of the 

constant initial value G = 3: G = KM(3) = 3. Since the current digit e4 of the code of the exponent E is 

equal to one, ie e4 = 1, the result under item 3 is multiplied by the Montgomery method by the value of Z: 

G = MM (Z, G) = MM (3,7) = 7. Then decreases by one the value of the counter h = 3 and, since it is not 

equal to one, the return for re-execution of paragraph 2. 

In this paragraph 2 is the elevation to the square of the value obtained in the previous cycle G: G = 

KM (7) = 2. Since e3 = 1, it is performed in paragraph 3, in which the result is multiplied by Z: G = 

MM(Z, G) = MM(2,7) = 11. Again subtract the unit from the counter h and return to claim 2. 

When h = 2 is raised to the square of the result: G = KM (11) = 7. Since e2 = 0, then paragraph 3 is 

skipped and decrements the value of the counter, resulting in h becomes equal to 1. Accordingly, the 

return to re-execution is realized item 2 within which the previously obtained result is squared: G = KM 

(7) = 2. Since the least significant bit of the exponent is equal to one, ie e1 = 1, the multiplication is 

performed: G = MM (Z, G) = MM(2, 7) = 11. Then decreases by one the value of h, which becomes equal 

to zero.  This means that the exposure cycles in the Galois fields are complete.  Finally, item 5 is 

performed - correction of the obtained result G = 11 by multiplying it by one: G = MM (G, 1) = MM 

(11,1) = 8. The obtained value corresponds to the true value 1213 rem 19 = 8.  

The exposition operation consists of n cycles.  In each cycle, the developed procedure of accelerated 

squaring to the square is performed, which is realized, on average, in 1.5n logical operations.  In 

addition, on average, 0.5n multiplication operations are performed on Galois fields with Montgomery 

reduction, each of which, on average, requires 2n logical operations to implement.  In general, the 

average number of logical operations required for exposition on Galois fields using the proposed method 

is 2.5n2 

Based on the fact that in the known scheme [11] of exponentiation on Galois fields with 

Montgomery reduction, the average number of logical operations is 3n2 we can conclude that the 

proposed method can speed up the process of exposure to Galois fields by 20%, due to  saving 0.5n2 

logical operations.  With a typical value of n = 2048 for practical applications, this is 254,000 operations.  

Experimental studies have shown that the real acceleration of exposure in Galois fields is in the range of 

18-22%. 

 

5. Conclusions 
 

As a result of research aimed at accelerating the execution of the basic for a wide range of 

cryptographic mechanisms of the exponentiation operation in Galois fields, a new method of accelerated 

squaring using Montgomery reduction is proposed. 

The developed method is based on the properties of a polynomial square in Galois fields and allows 

to reduce by 25% the number of logical operations in comparison with the use for calculation of the 

multiplication square in Galois fields with Montgomery reduction.  Based on the developed method, a 

modified exposition procedure on Galois fields with Montgomery reduction is proposed.  Theoretically 
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and experimentally it is shown that the use of a modified procedure can reduce by 20% the number of 

logical operations and accordingly accelerate the exposure. 

The proposed solutions not only speed up the calculations, but also provide their simplification, 

which determines their focus primarily on the hardware implementation of cryptoprocessors. 
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