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DIAGNOSTICS BASED ON EXPERT ESTIMATIONS 
 

In the field of technical diagnostics, many tasks are solved by using automated classification. For this, 
such classifiers like probabilistic neural networks fit best owing to their simplicity. To obtain a probabilistic 

neural network pattern matrix for technical diagnostics, expert estimations or measurements are commonly 

involved. The pattern matrix can be deduced straightforwardly by just averaging over those estimations. 
However, averages are not always the best way to process expert estimations. The goal is to suggest a 

method of optimally deducing the pattern matrix for technical diagnostics based on expert estimations. The 

main criterion of the optimality is maximization of the performance, in which the subcriterion of 
maximization of the operation speed is included. First of all, the maximal width of the pattern matrix is 

determined. The width does not exceed the number of experts. Then, for every state of an object, the expert 

estimations are clustered. The clustering can be done by using the k-means method or similar. The centroids 

of these clusters successively form the pattern matrix. The optimal number of clusters determines the 
probabilistic neural network optimality by its performance maximization. In general, most results of the error 

rate percentage of probabilistic neural networks appear to be near-exponentially decreasing as the number of 

clustered expert estimations is increased. Therefore, if the optimal number of clusters defines a too “wide” 
pattern matrix whose operation speed is intolerably slow, the performance maximization implies a tradeoff 

between the error rate percentage minimum and maximally tolerable slowness in the probabilistic neural 

network operation speed. The optimal number of clusters is found at an asymptotically minimal error rate 

percentage, or at an acceptable error rate percentage which corresponds to maximally tolerable slowness in 
operation speed. The optimality is practically referred to the simultaneous acceptability of error rate and 

operation speed. 
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1. Technical diagnostics based on expert estimations 
 

In the field of technical diagnostics, many tasks are solved by using automated classification [1, 2]. 

For this, such classifiers like probabilistic neural networks (PNNs) fit best owing to their simplicity [3, 4]. 

Another merit is that PNNs are relatively insensitive to outliers [5]. The PNN is so simple because it is 

constructed easily and trained fast. Indeed, to solve a classification problem, only a pattern matrix is 

required. Each column in this matrix corresponds to a class (i. e., to a state of an object which is under 

technical diagnostics or surveillance). The elements of the column are features of the object. 

To obtain a pattern matrix for technical diagnostics, expert estimations or measurements are 

commonly involved [1, 2, 6, 7]. Unlike other fields of diagnostics (e. g., in medicine, where a pattern 

matrix is obtained from images or medical tests), expert estimations are not always reliable and may 

contain severe biases. Similarly, measurements may be biased due to finite accuracy of tools and 

methodical inaccuracy. This is why every object state is estimated by at least few experts (or 

measurements are repeated). Subsequently, a final set of expert estimations is grouped and it can be 

thought of as if each expert proposes its own pattern matrix. The pattern matrix can be then deduced 

straightforwardly by just averaging over those expert estimations [8, 9]. However, averages are not 

always the best way to process expert estimations [10]. Moreover, the PNN at its input can have more 

than a single representative of a state (class), i. e. a few columns in a pattern matrix can correspond to the 

same state. Then the PNN performance may be improved by better representing the respective states. 

 

2. Problem statement 
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Due to the abovementioned reasons of the uncertainty of the PNN pattern matrix deduction, the 

goal is to suggest a method of optimally deducing the pattern matrix for technical diagnostics based on 

expert estimations. The main criterion of the optimality is maximization of the PNN performance. 

However, the subcriterion of maximization of the operation speed should be included as well because the 

pattern matrix cannot be “stretched” without a limit. Indeed, too “wide” pattern matrices will operate 

slower. For some technical fields (e. g., where diagnostics is fulfilled frequently), the operation speed is 

crucial, and thus the slowness will be unacceptable. 

 

3. A general conception of optimizing PNNs 
 

Denote a number of object features by F , and a number of states by S . Then the smallest possible 

pattern for a PNN is an F S  matrix. Nevertheless, wider matrices can also be pattern. In general, an 

 F mS  matrix  

  
 ij F mS

m p


   P ,  (1) 

where m , can be a PNN pattern matrix. In matrix (1), each state is represented with m  different 

patterns (columns), where ijp  is an assessment of feature i  of the object at state s  by  
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and function  x  returning the integer part of number  [11]. 

If there are L  experts (group measurements), then . Those m  different pattern matrices can 

be found from clustering the initial L  expert matrices. Obviously, as m  increases, the respective PNN 

operation speed may drop. So, it is necessary to determine an ultimate natural number maxm , at which 

matrix  maxmP  can be used for the pattern (the slowdown in operation speed will be hard but still 

tolerable), but matrix  max 1m P  cannot be used for the pattern due to intolerable slowdown in operation 

speed. This can be done by plotting (tabling) a performance time curve versus m . Instead of real pattern 

matrices (1) for 1, 2, 3, ...m  , it is sufficient to generate random matrices of size  F mS  and train 

PNNs, whereupon the PNNs are tested (on series of vectors of F  numbers, whether they are random or 

not). 

Once a maximally possible size of the pattern matrix is determined, the respective PNNs trained on 

pattern matrices (1) for max1,m m  are tested. Their performance are plotted (tabled) versus m . Then a 

number  *

max1,m m  at which performance is maximal is determined.  

So, a general conception of optimizing PNNs is realized via three steps as follows: 

1. To determine maxm  ( ). 

2. To find m  clusters from those L  versions of pattern matrix, for each max1,m m . 

3. To determine *m  ( ). 

Nevertheless, it is worth to additionally note that selection of maxm  can be kind of fuzzy. 

Furthermore, if the performance of a PNN trained on pattern matrix  *mP  is not satisfactory, number 

maxm  will be probably increased. This is expected to (at least) slightly affect the operation speed, though. 
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4. Experimental study 
 

To model generation of the pattern matrix, it is convenient to use normal and uniform randomizers. 

First of all, a pivot for each state is generated. Denote the pivot value of feature i  of the object at state s  

by isp . So, let 

   10 1.5is is isp       , (3) 

where is  is a random real number drawn from the standard normal distribution (with zero mean and unit 

variance) for feature i  and state s , and is  is a random real number drawn from the uniform distribution 

on interval  0;1 , 1,i F  and 1,s S .  

At the second stage, the pivots are noised by similar randomizers. The noise is equivalent to 

inaccuracies of measurements and biases in expert estimations. The l -th version of estimation of feature 

i  of the object at state s  is 

   1 1.5isl is isl islp p     P
, (4) 

where isl  and isl  are random numbers from the respective standard normal and uniform distributions, 

1,l L , and P  is a positive factor of the noise strength. Note that values (4) of expert estimations are 

integer because a scale for expert estimates is commonly integer or has just a few points. Three examples 

of generation of pattern matrix and experts’ matrices are shown in Figure 1. 

 

8 25 16  9 26 13  8 27 16  8 27 13  8 26 15  10 22 17  7 28 15 

7 8 16  6 8 18  8 9 16  6 9 13  7 8 16  7 8 14  6 10 18 

1 6 20  2 5 21  1 5 21  2 6 21  1 7 24  1 7 17  2 6 16 

3 2 26  3 2 24  4 3 28  4 2 28  3 2 22  3 2 28  3 2 26 

25 10 10  21 10 7  29 10 11  26 9 10  27 9 11  30 10 10  29 10 10 

 
 

0.1 P  

0 14 9  0 15 8  1 4 11  0 8 11  0 17 4  1 14 5  0 11 12 

28 3 10  32 3 12  17 4 10  19 3 12  25 5 9  19 2 10  24 2 10 

1 0 3  1 0 2  1 0 3  1 0 3  0 1 4  2 1 2  2 0 3 

21 7 5  21 8 5  23 7 5  24 5 4  31 7 7  25 7 6  21 7 3 

15 1 4  17 1 5  12 2 5  14 2 5  10 1 5  16 1 3  18 1 3 

 
 

0.25 P  

4 25 5  2 19 3  6 30 6  3 14 3  8 53 9  7 34 4  1 27 4 

13 30 2  15 44 4  5 21 2  4 83 2  20 32 2  33 5 4  20 42 2 

25 21 0  43 0 1  21 13 1  34 30 0  20 6 0  14 36 0  4 11 0 

15 1 9  19 1 9  23 2 11  19 2 4  20 2 6  13 2 3  13 2 5 

26 5 8  36 5 5  32 9 1  26 6 0  30 4 19  57 2 1  8 10 12 

 
 

0.5 P  

Figure 1. The three examples of generating a 5 3  pattern matrix (highlighted bold on the left) and six 

experts’ matrices ( 6L  ) by increasing the noise strength factor 

 

PNN pattern matrix (1) by (2) is determined as follows: 

1. For every state s  data 

   1
1

L
F

isl i
l

p



 (5) 

are grouped into m  clusters. The clustering is done by using the k-means method [12, 13]. Consequently, 

m  centroids of these clusters are found for every state s , 1,s S : 
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iks i
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c




. (6) 

2. Matrix (1) is successively formed from centroids (6): 

 iz iksp c   by   1z s S k      for  1,s S . (7) 

Once pattern matrix (1) is determined, the respective PNN is trained. Then the PNN is tested using 

objects whose feature i  at state s  is 

  (1) (2)1 1.5is is is sq p    P
, (8) 

where 
(1)

is  and 
(2)

s  are another random numbers from the standard normal distribution. It is worth to note 

that 
(2)

s  implies a normally distributed shift in state s  of a test object. This shift is the same for all the 

features. Thus, model (8) of the test object differs from model (4) of the expert estimation, in which every 

expert has its “own” shift distributed uniformly. Besides, unlike values (4) of expert estimations, values 

(8) are not narrowed to a scale or set because they model real-world objects whose features are not tied to 

any scale. 

An example of diagnosing objects with seven features by four states, where 80 expert estimations 

are involved, is presented in Figure 2 (the PNN testing) and Figure 3 (operation speed). Figure 2 shows 

that the error rate percentage decreases near-exponentially as the number of clustered expert estimations 

is increased. Meanwhile, Figure 3 indicates that the PNN operation speed almost linearly decreases. The 

value of 2.095 % is an asymptotically minimal error rate percentage, and it does not change by 

77, 80m  . So, * 77m   if the respective drop of the operation speed is tolerable (from nearly 87 to 94 

seconds, which is about 8 %). 
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Figure 2. The error rate percentage of PNNs by 7F  , 4S  , 80L  , 0.25 P ,  

where every object state is tested 10000 times 
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Figure 3. Time (in seconds) spent on testing the PNNs by 7F  , 4S  , 80L  , 0.25 P   

(every object state is tested 10000 times) 

 

Another example, by smaller inaccuracies of measurements and biases in expert estimations, is 

presented in Figure 4 (the PNN testing) and Figure 5 (operation speed). By the same number of states, 

having just five features, these PNNs are far faster than those for objects with seven features. The zero 

error rate percentage (100 % accuracy) is achieved even by forming a pattern matrix as a concatenation of 

five cluster centroids (for each of the four states). So, in this particular case, * 5m  . 
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Figure 4. The error rate percentage of PNNs by 5F  , 4S  , 150L  , 0.1 P   

(smaller inaccuracies of measurements and biases in expert estimations than those for Figure 2),  

where every object state is tested 10000 times 

 

In general, most results of the error rate percentage of PNNs appear to be near-exponentially  



Optimal construction of the pattern matrix for probabilistic neural networks in technical diagnostics  24 

 

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

m
 

Figure 5. Time (in seconds) spent on testing the PNNs by 5F  , 4S  , 150L  , 0.1 P   

(every object state is tested 10000 times),  

where computation speed artifacts are observed easier than in Figure 3 

 

decreasing as the number of clustered expert estimations is increased. This also holds true by modeling 

expert estimations with varying P  and other three factors in (4) by (3), and by testing PNNs with object 

features (8) varying P  and the factor at 
(2)

s  as well. Therefore, the example in Figure 2 is a typical 

performance of a set of PNNs versus the number of clusters per state. 

 

5. Discussion 
 

While the pattern matrix is determined by (5) — (7), which is the general approach, the models of 

expert estimations and real-world objects are made intentionally specific. In fact, expert estimations are 

modeled as (4) by (3), and the PNN is tested with object features (8), where only the noise strength factor 

P  is left loose. The specification allows adjusting the models faster owing to the specified factors are 

close to the best making thus the models highly sensitive (susceptible to small changes in F , S , L , P  

resulting in drastic changes in the error rate percentage). 

The optimal number of clusters is found at an asymptotically minimal error rate percentage, or at an 

acceptable error rate percentage which corresponds to maximally tolerable slowness in operation speed. 

However, the pattern matrix cannot be limitlessly “stretched”. The optimality, therefore, is practically 

referred to the simultaneous acceptability of error rate and operation speed. 

 

6. Conclusion 
 

In technical diagnostics based on expert estimations for using them in PNNs, the pattern matrix is 

optimally constructed by grouping the estimations for every state into the same number of clusters. The 

clustering can be done by using the k-means method or similar. The optimal number of clusters 

determining the PNN optimality is found by the PNN performance maximization. If the optimal number 

of clusters defines a too “wide” pattern matrix whose operation speed is intolerably slow, the performance 

maximization implies a tradeoff between the error rate percentage minimum and maximally tolerable 

slowness in the PNN operation speed. 

The suggested optimal construction of the pattern matrix for PNNs can be applied in technical 

diagnostics of complex objects like devices, buildings, bridges, machines, vessels (watercrafts and 
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airplanes), etc., based on expert estimations of the object (current) state. Apart from technical and 

industrial systems, PNNs are nonetheless applicable in other domains (general engineering, social, 

ecological and economical systems, entertainment, surveillance), where the task is to control the state of 

objects whose number of features is up to a few tens or hundreds. 
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