

UDK 004.383

A. M. SERGIYENKO

O. A. MOLCHANOV

M. K. ORLOVA

MICROCONTROLLER FOR THE LOGIC TASKS

A new SM16 microcontroller architecture is proposed which is intended for the logic-intensive

applications in the field-programmable gate array (FPGA). The microcontroller has the stack architecture

which provides the implementation of the most of instructions for a single clock cycle. The short but fast

programs are derived due to the 16-bit instructions, which code up to three independent operations, and

intensive use of the threaded code style. The framework is developed which compiles the program, simulates

it, and translates to the ROM. The developed SM16 core with additional three-stack blocks, hash-table, and

instructions that accelerate the execution of parsing operations is used for efficient XML-document

processing and can be frequently reconfigured to the given document grammar set. The parsing speed equals

to one byte per 24 clock cycles.

Keywords: VHDL, XML, parser, FPGA, stack processor, grammar, FSM

1. Introduction

The evolution of the central processing unit (CPU) microarchitectures during decades was

intended for increasing the speed of the usual computations in different fields. For this purpose, the

instruction level parallelism is exploited in the directions of pipelining, superscalar computations,

data and instruction caching, branch prediction, dynamic scheduling, speculative calculations, etc.

As a result, a single processor could perform averagely up to two or more instructions per clock

cycle with the frequency of several gigahertz. These achievements are got at the costs of increasing

the hardware volume by several decimal orders of magnitude and the power consumption up to

dozens of Watts. But at present, the processor improvements stopped, in general, due to the

Moore’s law and the Dennard scaling law limitations [1].

The next microarchitecture evolution is expected in the form of the architecture

improvements in the application specific fields. However, the RISC architecture will be likely

prevalent one. One of the successful approaches is based on the complex application-specific

instructions implemented in the field programmable gate array (FPGA) which stays near CPU [2].

The logic decision-intensive algorithms are implemented in the modern microprocessors

ineffectively. This is due to the fact of the frequent pipeline stalls when the branches are

mispredicted [1]. One of the solutions to this problem is to go back to the non-pipelined CPUs.

When CPU has the application-specific instruction set, it can have the minimized hardware volume.

Hence, it has the minimized clock period, and could implement a single instruction for a single

clock cycle including the logic branch instructions, and doing without pipelining. Such a CPU is

considered in this work.

I.

2. XML-Document Parsing. A Case Study

The Web service is based on the queries which are specific XML-documents. The essence

of the XML-filtering is to detect the XML-queries which satisfy the given set of grammars, which

number can achieve more than thousands. Parsing XML-queries results in a significant slowdown in

the Web service performance [3]. The experience of using XML in the databases shows that XML-

parsing is a major bottleneck in the productivity gains and can increase the transaction costs up to

ten times and more [4].

The grammar of a particular query type is expressed using XML-query languages such as

XPath [5]. In general, such a grammar is presented as a tuple G = (N, T, S, P). Here, N is a finite set

Information, Computing and Intelligent systems № 2

2

of the non-terminal symbols, T is a finite set of the terminal symbols, S ⊆ N is a set of initial

symbols, P is a set of rules in the form X → ar, where X ∈ N, a ∈ T, and r is a regular expression

over N. The rule says that X originates the sub-trees with the root a, and children that satisfy the

expression r [6].

A simple XML-parsing algorithm that validates the document in terms of a given regular

tree grammar is described in [6]. The algorithm is implemented in a stack finite state machine

(FSM), which has three stacks: P, Y, and S. Stack P stores the symbol sets from N. Stack Y stores

the sets of rules from P. Stack S stores the lists of symbol sets from N. The algorithm traverses the

document tree in-depth and triggers the event phrases of a document, which include the opening and

closing tags.

So, we can see that the XML-parsing algorithm is a set of FSMs, each of them represents a

single grammar. Such an algorithm must contain a lot of logic and comparing operations, and is

supported by such data structure like a stack.

The XML text filtering is a difficult problem because it has to support the real time

processing of wide streams of various XML-requests. Different methods and accelerators have been

proposed to improve this task. There are software accelerators, like an XML-filter (XFilter), which

are built as FSM implemented in software [7]. According to the LazyDFA method, weakly

deterministic FSM is dynamically constructed for the XML filtering [8].

FPGA is an efficient solution for the hardware filtering of XML-queries. FSM that is

constructed for a specific set of grammars is implemented in FPGA in [9]. The systems based on

stack FSM, which are compiled from the given grammars, are shown in [10–12]. But each exchange

of the grammar set affords the redesign of the whole project which lasts a lot of time.

An FSM skeleton is proposed in [13], which is capable of being reconfigured quickly

without the FPGA project redesigning. This FSM skeleton becomes a working FSM after loading

the transition conditions corresponding to a specific set of XML-requests. The disadvantages of

these approaches consist of the high hardware redundancy and limitations of the processed

document class.

Comparing the mentioned approaches, the following conclusions are done. The hardware

systems have the highest performance, but they are designed for a limited number of XML-

grammars and their reconfiguration is long-lasting. The reconfigurable FSM-based hardware

filtering systems have excessive hardware costs and focus on a particular class of grammars. More

flexible architectures that can provide both the high throughput and the ability to quickly be

reconfigured to the arbitrary XML-grammar are required. And such architecture can be based on the

microcontroller adapted to the logic tasks.

3. Stack Processors for the Logic Algorithm Programming

The conclusions of the previous chapters show that the new processor architecture for the

implementation of the logic decision-intensive algorithms is of demand. Such architecture has to be

capable to implement effectively FSMs which perform large algorithm sets.

Usually, the microcontrollers do this task very well. In [14] the experience of FSM

programming in the ARM Cortex microcontroller architecture is shown. It is proven in it that the

best results are achieved in this RISC architecture when it has the minimized number of pipelined

stages, which is equal to two. By this condition, the delay of the logic branch is minimized up to

two clock cycles. Note that the number of stages in the RISC processors usually varies from three to

five and more.

The processors which are implemented in FPGA must be adapted to its properties. These

properties are the implementation of the logic functions in the look-up tables (LUTs), which input

number varies from four to eight and more, a sufficient number of available pipelining registers,

RAM blocks with the latent delay of two clock cycles. Besides, one has to take into account that the

wire delays in FPGA achieve the value of 40% – 90% of the critical path delay.

Information, Computing and Intelligent systems № 2

3

These factors decrease the working frequency of the FPGA processors in 3 – 10 times

comparing to the ASIC implementation of the same architecture. For example, the clone MIPSfpga

of the popular RISC architecture has the maximum clock frequency of 60 MHz, and the

microcontroller PIC32MZ with the same architecture has 200 MHz [15]. Note, that the processor

with the similar architecture implemented in the advanced IC technology achieves the clock

frequency up to one or more gigahertz. The RISC microprocessor cores of the same bit width which

are adapted to the FPGA architecture like Xilinx Microblaze, Altera Nios, have much higher

maximum clock frequency which achieves the value of 300 MHz [16].

For the implementation of application-specific systems in FPGA, it is important to get the

configurable microcontrollers that have both minimized hardware volume and minimized length of

its firmware because the amount of the embedded RAM blocks have significantly limited volume.

The stack processor architecture is distinguished among all microprocessor architectures.

In this architecture, the registered RAM is substituted to the stack of registers, which communicates

both with ALU and the return stack. The essence of this architecture consists of the implicit

addressing of the working registers, direct implementation of the algorithms in

Polish postfix notation, wide use of very quick procedure calls. As a result, the instructions of this

architecture have a short length and can be implemented in a single clock cycle. Since these

instructions support algorithms that actively use the stack addressing and subroutines, the programs

that are composed for this processor occupy very small memory volume [17].

Many authors have developed several projects of stack processors, which are implemented

in FPGA and are available for reproduction [18-20]. All of them have 16-bit instructions and

process 16-bit data. It is shown in [20], that the stack processor has approximately 2.5 times less

program length than the program for the Xilinx MicroBlaze processor in the logic branch-intensive

computations. In addition, all stack processors allow the designer to increase the instruction set. In

this case, the appropriate changes should be made to the description of the processor at the register

transfer level.

Consequently, the architecture of the stack processor provides both firmware amount and

hardware costs minimization. In addition, it is easy to develop compilers for such architecture,

because, as a rule, its instruction set is a subset of the Forth language operators. It is known that this

language is convenient both for grammatical parsing of lines and for the interpretation of high-level

language operators. The stack processor assembly language has the same syntax as the Forth

language [17]. Therefore, it is attractive to develop the stack processor architecture, which gives not

only minimized hardware costs but also simplified implementation of user instructions, which are

adapted to the logic computations.

4. SM16 Stack Processor Architecture

To solve the logic-intensive problems including one described in Chapter 2 the SM16 CPU

architecture was developed. This 16-bit processor has a common dual-stack architecture [17], which

structure is shown in Fig. 1. The eight-bit SM8 microcontroller described in [21] has been

developed to implement the data communication protocols and it is a predecessor of SM16. Many

instruction operations and other features were inherited from the SM8 architecture.

CPU includes a program counter (PC), Data RAM block, Program ROM block, an

instruction register (IR), return address stack (Rstack), data stack (Dstack), ALU. The T, N registers

are the top registers of the DStack. Register R is the top of the RStack, which also plays the role of

a loop counter.

The program is loaded into the Program ROM during the FPGA configuration. It can be

exchanged without reconfiguring FPGA using the memory programming tool. The dual-port Data

RAM downloads the data to be processed from the external devices in the DMA mode. A and B are

the index registers, and the peripheral register Ri serves for the interprocessor communications.

Information, Computing and Intelligent systems № 2

4

The HTable ROM stores the hash table for the transcoding the long tags found in the

XML-documents into the numbers. The PStack, Ystack, and SStack stacks perform the same

functions as the P, Y, and S stacks of the FSM described in Chapter 2.

Fig. 1. SM16 processor structure

All instructions have a 16-bit width. The instruction has one to three op-code fields F1, F2,

F3 (see Fig. 2). The field F1 codes the call, jump, return operations, counter decrement, and jump if

it is not equal to zero (DJNZ). The field F2 codes all ALU operations, and F3 does data read and

store operations in different modes including the register addressing with the address in the A or B

register with the post-increment. The variable-length field D stores a constant, or a jump address.

The instructions are executed in a single cycle except for the data read and long constant

loading instructions that are executed in two cycles. This feature makes the architecture friendly to

the algorithms that are branch intensive. The processor can perform up to three operations F1, F2,

F3 in a single clock cycle. For example, two instructions

: L1 @B+

 !A+ DJNZ L1

perform a loop, which takes only 3 clock cycles, and in which an array addressed by the B register

is moved to another memory place addressed by the A register. Here, according to the Forth

syntaxis, “: L1” means the label, @B+, !A+ mean reading and writing operations, respectively,

with the address post-increment.

The branch instruction lasts only a single clock cycle. This is achieved by the use of the

ROM block output register as the instruction register IR and by feeding the next instruction address

directly to the address input of this block bypassing the program counter PC (see Fig.1).

As a result, the logic branch-intensive algorithms are implemented without stalls. Consider

an example of some FSM fragment coding which is shown in Fig.3. This example is shown in [14]

as a result of the effective logic coding in the Cortex-M0+ microcontroller. Below, the code,

proposed in [14] is compared with the similar code of SM16 processor.

Information, Computing and Intelligent systems № 2

5

Fig. 2. SM16 instruction format

Fig. 3. Subgraph of some FSM

 ; Assembly code in ARM assembly syntax
S1:
 LDR R0, [R4, #0x8] ; Read B
 CMP R0, #1
 BEQ S2 ; Goto S2 if B = 1
 LDR R0, [R4, #0x4] ; Read A
 CMP R0, #0
 BEQ S0 ; Goto S0 if A = 0
 B S1

Here, the code length is 14 bytes, the loop lasts 8 clock cycles taking into account that the

branch operator takes 1 and 2 cycles for the undone and done branch respectively.

\ Assembly code in SM16 assembly syntax
 LIT 0 \ 0 to T for comparing
: S1
 INR B \ Read B
 LIT 1 XOR \ comparing to 1
 IF S2 \ Goto S2 if B = 1
 INR A \ Read A
 IF S1 \ Goto S0 if A = 0 else Goto S1
: S0

Here, the code length is 10 bytes, the loop lasts 5 clock cycles. The instruction INR reads

the respective peripheral register. We see that both the code length and the cycle duration are much

less than in the effective example of the counterpart.

The stack processor architecture programming usually uses the threaded code style, i.e., the

call instructions are placed very frequently. This instruction is implemented very quickly because

the parameters are passed into the procedure in a natural fashion. So, the CALL and RET

instructions are performed in the SR16 processor for a single clock cycle. The ability to insert a

return operation in most instructions and combine it with a conditional branch reduces both the

subroutine length and their duration. This helps both to speed-up the algorithm computing and to

shorten the program dramatically. This makes it possible to obtain the programs of minimal length,

which is important for the FPGA implementation. The next code shows an example of

programming the deep if-then-else construction using these instructions.

Information, Computing and Intelligent systems № 2

6

: LONGIF
 TEST1
 LIT 1
 IF RET LIT 2
 TEST2
 IF RET LIT 3
;

This is the subroutine LONGIF which performs some logic testing, TEST1, TEST2 are

calls of the subroutines which check some complex conditions, the character ‘;’ is the synonym of

the RET instruction. As a result, each of the three testing outcomes returns figures 1, 2, or 3. This

subroutine occupies only 12 bytes.

CPU has an interrupt system as well. Because the stack processor context has minimum

volume, the interrupt overhead is also negligible. Due to large number of memory read instructions

in the XML-parsing applications, the average run time of a single instruction is 1.2 clock cycles.

5. SM16 Processor Simulator

To develop the applications which perform the logic-intensive applications an SM16

processor simulator was designed. Its functions are: to compile the programs written in the SM16

assembly language, to load and simulate such a program, to inform about the syntax errors, to

generate the VHDL files describing the Program ROM and Data RAM which contain the binary

program and initial data codes, respectively.

This framework is able to read the document type definition (DTD) file which describes a

set of XML-grammars and generates the SM16 program file to compute the respective parsing

FSM. This program could both be modeled using the loaded XML-queries and be attached to the

VHDL-model of the SM16 processor which is configured in FPGA.

The screenshot of the simulator frame is shown in Fig. 4.

Information, Computing and Intelligent systems № 2

7

Fig.4. Screenshot of the SM16 processor simulator

6. Experimental Results

The SM16 CPU is described in VHDL and is synthesized for configuring in FPGAs of

different series. The results of configuring are shown in Table 1.

Table 1. SM16 Processor Core Parameters

FPGA series LUTs, ALMs Registers Maximum clock frequency, MHz

Xilinx Spartan-6 721 116 102

Xilinx Artix-7 767 119 135

Xilinx Kintex-7 773 119 190

Intel Cyclone V 1001 1080 97

When configuring in Xilinx FPGA, all the stacks are mapped into LUTs effectively

preserving low hardware volume and high speed. Much worse results are achieved in the Intel

Cyclone chip because these stacks are implemented in the sets of registers.

Table 2 presents the results of the SM16 CPU configured in Xilinx Spartan-6 FPGA

comparing to the other processor cores. The table analysis shows that the SM16 processor has

higher performance as the b16-small [19] and J1 processor [20], which are the stack processors as

well at the cost of higher hardware volume. It has a much higher speed than the well-known

MSP430 processor [22] and somewhat loses to the Microblaze processor [23]. Nevertheless, it

should be noted that the SM16 processor has a larger instruction set which is adapted to the logic

algorithms especially to handle the XML-documents. Of course, it has much higher hardware

volume than the 8-bit stack-based microcontroller SM8 [24].

Table 2. Comparing Different Processor Cores

Processor core Bit-width Hardware costs

(LUTs)

Maximum clock

frequency, MHz

Speed, MIPS

b16-small 16 280 100 50 MIPS

J1 16 342 106 70 MIPS

MSP430 16 1240 65 25 MIPS

Microblaze 32 2046 130 174 DMIPS

SM8 8 181 140 94 MIPS

SM16 16 721 116 96 MIPS

There are a few hardware implementations of XML parsers comparing to the software

ones. Only hardware parsers XPA [25], SCBXP [26] provide both regular expression filtering and

building the XML parsing tree.

A SM16 microcontroller was developed which is programed to implement the same tasks

that these hardware parsers do. For this purpose, the additional three stacks and hash table were

added to the CPU core as well as the instructions which support the parsing process. Among them

the instruction HASH performs the hash function calculating of the XML key words with the speed

of one character per 3 clock cycles. So, the keywords are substituted to the indexes which are

compared to ones stored in the precompiled hash table.

The given grammar set is loaded to the simulator framework which generates both the

program ROM model and the hash table model described in VHDL. As a result, the SM16

microcontroller can compute the XML queries at the speed of approximately 7.5 megabytes per

Information, Computing and Intelligent systems № 2

8

second. Table III shows the characteristics of the mentioned hardware XML parsers and the

proposed one.

Table 3. Hardware Characteristics of different XML parsers

XML-parser Hardware costs (LUTs) Clock frequency,

MHz
Throughput, MB/s

XPA 9200 125 125

SCBXP 29200 33 200-500

SM16 880 180 7,5

Thus, the SM16 parser has only one and a half worse the performance-hardware ratio than

the XRA and SCBXP parsers. However, an SM16-based solution can simultaneously support

almost any number of XML grammars. This qualitatively distinguishes the developed parsing

method and SM16 microcontroller from other hardware solutions.

7. Conclusion

A new SM16 microcontroller architecture is proposed which is intended for the logic-

intensive applications in FPGA which is based on the stack architecture. The short but fast

programs are derived due to the 16-bit instructions, which code up to three independent operations,

and intensive use of the threaded code style. The framework is developed which compiles the

program, simulates it, and translates to the ROM. The developed SM16 core with additional three

stacks, hash-table, and instructions that accelerate the execution of parsing operations is used for

efficient XML-document processing and can be frequently reconfigured to the given document

grammar set. This system is not only capable of processing the XML-documents efficiently but also

can be quickly reconfigured to process the documents of other grammars.

References

1. J. L. Hennessy, D. A. Patterson, “Computer Architecture. A Quantitative Approach” 6-th

Ed. Morgan Kaufman Pub. 2019.

2. J. L. Hennessy, D. A. Patterson, “A New Golden Age for Computer Architecture”,

Communications of the ACM. Vol. 62, 2019, pp. 48 –60.

3. M. R. Head, M. Govindaraju, R. van Engelen and W. Zhang, "Benchmarking XML

Processors for Applications in Grid Web Services," SC '06: Proceedings of the 2006

ACM/IEEE Conference on Supercomputing, Tampa, FL, 2006, pp. 30–39.

4. N. Mattias, J. Jasmi, “XML Parsing: A Threat to Database Performance,” CIKM '03:

Proc. of the 20th Int. Conf. on Information and Knowledge Management, 2003, pp. 175–

178.

5. XML Path Language Version 1.0. Available at: http://www.w3.org/TR/xpath. Accessed

11 November 2019.

6. M. Murata, D. Lee, M. Mani, K. Kawaguchi, “Taxonomy of XML schema languages

using formal language theory.” ACM Trans. on Internet Technology, Vol. 5, 2005, Iss. 4,

pp. 660–704.

7. M. Altinel, M. J. Franklin, “Efficient Filtering of XML Documents for Selective Dis-

semination of Information,” VLDB’00: Proc. of the 26-th International Conference on

Very Large Data Bases, 2000, pp. 53–64.

8. T. J. Green, A. Gupta, G. Miklau, M. Onizuka, D. Suciu, “Processing XML streams with

deterministic automata and stream indexes, “TODS: ACM Trans.on Database Systems,

2004, pp. 752–788.

Information, Computing and Intelligent systems № 2

9

9. J. V. Lunteren, T. Engbersen, J. Bostian, B. Carey, C. Larsson, “XML accelerator

engine.” 1st International Workshop on High Performance XML Processing, 2004, pp. 1–

4.

10. R. Müller, J. Teubner, G. Alonso, “Streams on wires — a query compiler for FPGAs,”

VLDB Endowment'09: Proc. of the Very Large Data Base Endowment, 2009, Vol. 1,

Issue 2, pp. 229–240.

11. R. Moussalli, M. Salloum, W. Najjar, V. Tsotras, “Massively Parallel XML Twig

Filtering Using Dynamic Programming on FPGAs.” ICDE’11: Proc. of the IEEE 27th

International Conference on Data Engineering, 2011, pp. 948-959.

12. A. Mitra, M. Vieira, P. Bakalov, W. Najjar, V. Tsotras, “Boosting XML Filtering with a

Scalable FPGA-based Architecture.” CIDR–2009: Proc. of the 4th Biennal Conference on

Innovative Data Systems Research, 2009, pp. 1–10.

13. J. Teubner, L. Woods, C. Nie, “XLynx — an FPGA-based XML filter for hybrid XQuery

processing.” ACM TODS: ACM Transactions on Database Systems, 2013, Vol. 38, Issue

4, Article No. 23, pp 1–39.

14. J. Yiu, “Software based Finite State Machine (FSM) with general purpose processors. “

ARM: White paper, January 2013, 17 p.

15. S. L. Harris, D. M. Harris, D. Chaver, R. Owen, et al., "MIPSfpga: using a commercial

MIPS soft-core in computer architecture education," in IET Circuits, Devices & Systems,

Vol. 11, 2017, No. 4, pp. 283-291.

16. Processor Design. System-on-Chip Computing for ASICs and FPGAs. J. Nurmi (ed.),

Springer, 2007.

17. P. Koopman, “Stack computers: the new wave”, Ellis Horwood, Mountain View Press,

CA., 1989.

18. P. H. W. Leong, P. K. Tsang and T. K. Lee, "A FPGA based Forth microprocessor," Proc.

IEEE Symposium on FPGAs for Custom Computing Machines, Napa Valley, CA, USA,

1998, pp. 254-255.

19. B. Paysan, “b16 — small — Less is More”, Proc. EuroForth 2004, Jul. 9, 2006.

20. J. Bowman, W. Garage, “J1: a small Forth CPU Core for FPGAs”, Proc. EuroForth’2010,

pp. 1-4, January, 2010.

21. Sergiyenko A., Molchanov O., Orlova M.: Nano-Processor for the Small Tasks. 2019

IEEE 39th Int. Conf. on Electronics and Nanotechnology (ELNANO), pp. 674-677. IEEE

(2019).

22. O. Girard, “OpenMSP430.” OpenCores, Rev. 1.13. 2013. http://opencores.org. Accessed

11 November 2019.

23. V. Kale, “Using the MicroBlaze Processor to Accelerate Cost-Sensitive Embedded

System Development.” Xilinx, WP469, V.1.0.1, 2016.

https://www.xilinx.com/products/design-tools/microblaze.html #documentation.

Accessed 11 November 2019.

24. O. Molchanov, M. Orlova, A.Sergiyenko, “Software/Hardware Co-design of the

Microprocessor for the Serial Port Communications,” Advances in Computer Science for

Engineering and Education II, Hu Z., Petoukhov S., Dychka I., He M. -Eds., Springer,

2020, pp. 238–246.

25. Z. Dai, N. Ni, J. Zhu, “A 1 Cycle-Per-Byte XML Parsing Accelerator.” FPGA '10: Proc.

of the 18th ann. ACM/SIGDA int. symp. on Field programmable gate arrays. Feb., 2010,

pp. 199–208.

26. F. El-Hassan and D. Ionescu, "SCBXP: An Efficient CAM-Based XML Parsing

Technique in Hardware Environments" in IEEE Transactions on Parallel & Distributed

Systems. Vol. 22, 2011. No. 11, pp. 1879-1887.

https://dl.acm.org/doi/proceedings/10.1145/1723112
https://dl.acm.org/doi/proceedings/10.1145/1723112

