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MICROCONTROLLER FOR THE LOGIC TASKS 
 

A new SM16 microcontroller architecture is proposed which is intended for the logic-intensive 

applications in the field-programmable gate array (FPGA). The microcontroller has the stack architecture 

which provides the implementation of the most of instructions for a single clock cycle. The short but fast 

programs are derived due to the 16-bit instructions, which code up to three independent operations, and 

intensive use of the threaded code style. The framework is developed which compiles the program, simulates 

it, and translates to the ROM. The developed SM16 core with additional three-stack blocks, hash-table, and 

instructions that accelerate the execution of parsing operations is used for efficient XML-document 

processing and can be frequently reconfigured to the given document grammar set.  The parsing speed equals 

to one byte per 24 clock cycles. 
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1. Introduction 

 

The evolution of the central processing unit (CPU) microarchitectures during decades was 

intended for increasing the speed of the usual computations in different fields. For this purpose, the 

instruction level parallelism is exploited in the directions of pipelining, superscalar computations, 

data and instruction caching, branch prediction, dynamic scheduling, speculative calculations, etc. 

As a result, a single processor could perform averagely up to two or more instructions per clock 

cycle with the frequency of several gigahertz. These achievements are got at the costs of increasing 

the hardware volume by several decimal orders of magnitude and the power consumption up to 

dozens of Watts. But at present, the processor improvements stopped, in general, due to the 

Moore’s law and the Dennard scaling law limitations [1].  

The next microarchitecture evolution is expected in the form of the architecture 

improvements in the application specific fields. However, the RISC architecture will be likely 

prevalent one. One of the successful approaches is based on the complex application-specific 

instructions implemented in the field programmable gate array (FPGA) which stays near CPU [2].  

The logic decision-intensive algorithms are implemented in the modern microprocessors 

ineffectively. This is due to the fact of the frequent pipeline stalls when the branches are 

mispredicted [1]. One of the solutions to this problem is to go back to the non-pipelined CPUs. 

When CPU has the application-specific instruction set, it can have the minimized hardware volume. 

Hence, it has the minimized clock period, and could implement a single instruction for a single 

clock cycle including the logic branch instructions, and doing without pipelining. Such a CPU is 

considered in this work.  

I.  

2. XML-Document Parsing. A Case Study 

 

The Web service is based on the queries which are specific XML-documents. The essence 

of the XML-filtering is to detect the XML-queries which satisfy the given set of grammars, which 

number can achieve more than thousands. Parsing XML-queries results in a significant slowdown in 

the Web service performance [3]. The experience of using XML in the databases shows that XML-

parsing is a major bottleneck in the productivity gains and can increase the transaction costs up to 

ten times and more [4]. 

The grammar of a particular query type is expressed using XML-query languages such as 

XPath [5]. In general, such a grammar is presented as a tuple G = (N, T, S, P). Here, N is a finite set 
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of the non-terminal symbols, T is a finite set of the terminal symbols, S ⊆ N is a set of initial 

symbols, P is a set of rules in the form X → ar, where X ∈ N, a ∈ T, and r is a regular expression 

over N. The rule says that X originates the sub-trees with the root a, and children that satisfy the 

expression r [6]. 

A simple XML-parsing algorithm that validates the document in terms of a given regular 

tree grammar is described in [6]. The algorithm is implemented in a stack finite state machine 

(FSM), which has three stacks: P, Y, and S. Stack P stores the symbol sets from N. Stack Y stores 

the sets of rules from P. Stack S stores the lists of symbol sets from N. The algorithm traverses the 

document tree in-depth and triggers the event phrases of a document, which include the opening and 

closing tags.  

So, we can see that the XML-parsing algorithm is a set of FSMs, each of them represents a 

single grammar. Such an algorithm must contain a lot of logic and comparing operations, and is 

supported by such data structure like a stack. 

The XML text filtering is a difficult problem because it has to support the real time 

processing of wide streams of various XML-requests. Different methods and accelerators have been 

proposed to improve this task. There are software accelerators, like an XML-filter (XFilter), which 

are built as FSM implemented in software [7]. According to the LazyDFA method, weakly 

deterministic FSM is dynamically constructed for the XML filtering [8].  

FPGA is an efficient solution for the hardware filtering of XML-queries. FSM that is 

constructed for a specific set of grammars is implemented in FPGA in [9]. The systems based on 

stack FSM, which are compiled from the given grammars, are shown in [10–12]. But each exchange 

of the grammar set affords the redesign of the whole project which lasts a lot of time.  

An FSM skeleton is proposed in [13], which is capable of being reconfigured quickly 

without the FPGA project redesigning. This FSM skeleton becomes a working FSM after loading 

the transition conditions corresponding to a specific set of XML-requests. The disadvantages of 

these approaches consist of the high hardware redundancy and limitations of the processed 

document class.  

Comparing the mentioned approaches, the following conclusions are done. The hardware 

systems have the highest performance, but they are designed for a limited number of XML-

grammars and their reconfiguration is long-lasting. The reconfigurable FSM-based hardware 

filtering systems have excessive hardware costs and focus on a particular class of grammars. More 

flexible architectures that can provide both the high throughput and the ability to quickly be 

reconfigured to the arbitrary XML-grammar are required. And such architecture can be based on the 

microcontroller adapted to the logic tasks. 

 

3. Stack Processors for the Logic Algorithm Programming 

 

The conclusions of the previous chapters show that the new processor architecture for the 

implementation of the logic decision-intensive algorithms is of demand. Such architecture has to be 

capable to implement effectively FSMs which perform large algorithm sets.  

Usually, the microcontrollers do this task very well. In [14] the experience of FSM 

programming in the ARM Cortex microcontroller architecture is shown. It is proven in it that the 

best results are achieved in this RISC architecture when it has the minimized number of pipelined 

stages, which is equal to two. By this condition, the delay of the logic branch is minimized up to 

two clock cycles. Note that the number of stages in the RISC processors usually varies from three to 

five and more. 

The processors which are implemented in FPGA must be adapted to its properties. These 

properties are the implementation of the logic functions in the look-up tables (LUTs), which input 

number varies from four to eight and more, a sufficient number of available pipelining registers, 

RAM blocks with the latent delay of two clock cycles. Besides, one has to take into account that the 

wire delays in FPGA achieve the value of 40% – 90% of the critical path delay. 
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These factors decrease the working frequency of the FPGA processors in 3 – 10 times 

comparing to the ASIC implementation of the same architecture. For example, the clone MIPSfpga 

of the popular RISC architecture has the maximum clock frequency of 60 MHz, and the 

microcontroller PIC32MZ with the same architecture has 200 MHz [15]. Note, that the processor 

with the similar architecture implemented in the advanced IC technology achieves the clock 

frequency up to one or more gigahertz. The RISC microprocessor cores of the same bit width which 

are adapted to the FPGA architecture like Xilinx Microblaze, Altera Nios, have much higher 

maximum clock frequency which achieves the value of 300 MHz [16].  

For the implementation of application-specific systems in FPGA, it is important to get the 

configurable microcontrollers that have both minimized hardware volume and minimized length of 

its firmware because the amount of the embedded RAM blocks have significantly limited volume.  

The stack processor architecture is distinguished among all microprocessor architectures. 

In this architecture, the registered RAM is substituted to the stack of registers, which communicates 

both with ALU and the return stack. The essence of this architecture consists of the implicit 

addressing of the working registers, direct implementation of the algorithms in 

Polish postfix notation, wide use of very quick procedure calls. As a result, the instructions of this 

architecture have a short length and can be implemented in a single clock cycle. Since these 

instructions support algorithms that actively use the stack addressing and subroutines, the programs 

that are composed for this processor occupy very small memory volume [17]. 

Many authors have developed several projects of stack processors, which are implemented 

in FPGA and are available for reproduction [18-20]. All of them have 16-bit instructions and 

process 16-bit data. It is shown in [20], that the stack processor has approximately 2.5 times less 

program length than the program for the Xilinx MicroBlaze processor in the logic branch-intensive 

computations. In addition, all stack processors allow the designer to increase the instruction set. In 

this case, the appropriate changes should be made to the description of the processor at the register 

transfer level. 

Consequently, the architecture of the stack processor provides both firmware amount and 

hardware costs minimization. In addition, it is easy to develop compilers for such architecture, 

because, as a rule, its instruction set is a subset of the Forth language operators. It is known that this 

language is convenient both for grammatical parsing of lines and for the interpretation of high-level 

language operators. The stack processor assembly language has the same syntax as the Forth 

language [17]. Therefore, it is attractive to develop the stack processor architecture, which gives not 

only minimized hardware costs but also simplified implementation of user instructions, which are 

adapted to the logic computations. 

 

4. SM16 Stack Processor Architecture 

 

To solve the logic-intensive problems including one described in Chapter 2 the SM16 CPU 

architecture was developed. This 16-bit processor has a common dual-stack architecture [17], which 

structure is shown in Fig. 1. The eight-bit SM8 microcontroller described in [21] has been 

developed to implement the data communication protocols and it is a predecessor of SM16. Many 

instruction operations and other features were inherited from the SM8 architecture. 

CPU includes a program counter (PC), Data RAM block, Program ROM block, an 

instruction register (IR), return address stack (Rstack), data stack (Dstack), ALU. The T, N registers 

are the top registers of the DStack. Register R is the top of the RStack, which also plays the role of 

a loop counter. 

The program is loaded into the Program ROM during the FPGA configuration. It can be 

exchanged without reconfiguring FPGA using the memory programming tool. The dual-port Data 

RAM downloads the data to be processed from the external devices in the DMA mode. A and B are 

the index registers, and the peripheral register Ri serves for the interprocessor communications.  
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The HTable ROM stores the hash table for the transcoding the long tags found in the 

XML-documents into the numbers. The PStack, Ystack, and SStack stacks perform the same 

functions as the P, Y, and S stacks of the FSM described in Chapter 2.  

 

 

 

 

Fig. 1. SM16 processor structure 

 

All instructions have a 16-bit width. The instruction has one to three op-code fields F1, F2, 

F3 (see Fig. 2). The field F1 codes the call, jump, return operations, counter decrement, and jump if 

it is not equal to zero (DJNZ). The field F2 codes all ALU operations, and F3 does data read and 

store operations in different modes including the register addressing with the address in the A or B 

register with the post-increment. The variable-length field D stores a constant, or a jump address.  

The instructions are executed in a single cycle except for the data read and long constant 

loading instructions that are executed in two cycles. This feature makes the architecture friendly to 

the algorithms that are branch intensive. The processor can perform up to three operations F1, F2, 

F3 in a single clock cycle. For example, two instructions 

 
: L1  @B+ 

   !A+ DJNZ L1 
 

perform a loop, which takes only 3 clock cycles, and in which an array addressed by the B register 

is moved to another memory place addressed by the A register. Here, according to the Forth 

syntaxis, “: L1” means the label, @B+, !A+ mean reading and writing operations, respectively, 

with the address post-increment.  

The branch instruction lasts only a single clock cycle. This is achieved by the use of the 

ROM block output register as the instruction register IR and by feeding the next instruction address 

directly to the address input of this block bypassing the program counter PC (see Fig.1). 

As a result, the logic branch-intensive algorithms are implemented without stalls. Consider 

an example of some FSM fragment coding which is shown in Fig.3. This example is shown in [14] 

as a result of the effective logic coding in the Cortex-M0+ microcontroller. Below, the code, 

proposed in [14] is compared with the similar code of SM16 processor. 
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Fig. 2. SM16 instruction format 

 
 

Fig. 3. Subgraph of some FSM 

 

 
 ; Assembly code in ARM assembly syntax 
S1:  
    LDR    R0, [R4, #0x8]  ;  Read B  
    CMP    R0, #1      
    BEQ    S2              ;  Goto S2 if B = 1  
    LDR    R0, [R4, #0x4]  ;  Read A  
    CMP    R0, #0             
    BEQ    S0              ;  Goto S0 if A = 0  
    B      S1                 
 

Here, the code length is 14 bytes, the loop lasts 8 clock cycles taking into account that the 

branch operator takes 1 and 2 cycles for the undone and done branch respectively. 
 
\ Assembly code in SM16 assembly syntax 
   LIT 0    \ 0 to T for comparing 
: S1 
    INR B       \ Read B  
    LIT 1 XOR   \ comparing to 1 
    IF  S2      \ Goto S2 if B = 1  
    INR A       \ Read A 
    IF  S1 \ Goto S0 if A = 0 else Goto S1 
: S0   
 

Here, the code length is 10 bytes, the loop lasts 5 clock cycles. The instruction INR reads 

the respective peripheral register. We see that both the code length and the cycle duration are much 

less than in the effective example of the counterpart.  

The stack processor architecture programming usually uses the threaded code style, i.e., the 

call instructions are placed very frequently. This instruction is implemented very quickly because 

the parameters are passed into the procedure in a natural fashion. So, the CALL and RET 

instructions are performed in the SR16 processor for a single clock cycle. The ability to insert a 

return operation in most instructions and combine it with a conditional branch reduces both the 

subroutine length and their duration. This helps both to speed-up the algorithm computing and to 

shorten the program dramatically. This makes it possible to obtain the programs of minimal length, 

which is important for the FPGA implementation. The next code shows an example of 

programming the deep if-then-else construction using these instructions. 
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: LONGIF  
      TEST1 
      LIT 1 
      IF RET LIT 2 
      TEST2 
      IF RET LIT 3 
; 
 

This is the subroutine LONGIF which performs some logic testing, TEST1, TEST2 are 

calls of the subroutines which check some complex conditions, the character ‘;’ is the synonym of 

the RET instruction. As a result, each of the three testing outcomes returns figures 1, 2, or 3. This 

subroutine occupies only 12 bytes. 

CPU has an interrupt system as well. Because the stack processor context has minimum 

volume, the interrupt overhead is also negligible. Due to large number of memory read instructions 

in the XML-parsing applications, the average run time of a single instruction is 1.2 clock cycles. 

 

5. SM16 Processor Simulator 

 

To develop the applications which perform the logic-intensive applications an SM16 

processor simulator was designed. Its functions are: to compile the programs written in the SM16 

assembly language, to load and simulate such a program, to inform about the syntax errors, to 

generate the VHDL files describing the Program ROM and Data RAM which contain the binary 

program and initial data codes, respectively.  

This framework is able to read the document type definition (DTD) file which describes a 

set of XML-grammars and generates the SM16 program file to compute the respective parsing 

FSM. This program could both be modeled using the loaded XML-queries and be attached to the 

VHDL-model of the SM16 processor which is configured in FPGA.  

The screenshot of the simulator frame is shown in Fig. 4.  
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Fig.4. Screenshot of the SM16 processor simulator 

 

6. Experimental Results 

 

The SM16 CPU is described in VHDL and is synthesized for configuring in FPGAs of 

different series. The results of configuring are shown in Table 1. 

 

Table 1. SM16 Processor Core Parameters 

 

FPGA series LUTs, ALMs Registers Maximum clock frequency, MHz 

Xilinx Spartan-6 721 116 102 

Xilinx Artix-7 767 119 135 

Xilinx Kintex-7 773 119 190 

Intel Cyclone V 1001 1080 97 

 

When configuring in Xilinx FPGA, all the stacks are mapped into LUTs effectively 

preserving low hardware volume and high speed. Much worse results are achieved in the Intel 

Cyclone chip because these stacks are implemented in the sets of registers.  

Table 2 presents the results of the SM16 CPU configured in Xilinx Spartan-6 FPGA 

comparing to the other processor cores. The table analysis shows that the SM16 processor has 

higher performance as the b16-small [19] and J1 processor [20], which are the stack processors as 

well at the cost of higher hardware volume. It has a much higher speed than the well-known 

MSP430 processor [22] and somewhat loses to the Microblaze processor [23]. Nevertheless, it 

should be noted that the SM16 processor has a larger instruction set which is adapted to the logic 

algorithms especially to handle the XML-documents. Of course, it has much higher hardware 

volume than the 8-bit stack-based microcontroller SM8 [24]. 

 

Table 2. Comparing Different Processor Cores 

 

Processor core Bit-width Hardware costs 

(LUTs) 

Maximum clock 

frequency, MHz 

Speed, MIPS 

b16-small  16 280 100 50 MIPS 

J1  16 342 106 70 MIPS 

MSP430 16 1240 65 25 MIPS 

Microblaze  32 2046 130 174 DMIPS 

SM8 8 181 140 94 MIPS 

SM16  16 721 116 96 MIPS 

 

There are a few hardware implementations of XML parsers comparing to the software 

ones. Only hardware parsers XPA [25], SCBXP [26] provide both regular expression filtering and 

building the XML parsing tree.  

A SM16 microcontroller was developed which is programed to implement the same tasks 

that these hardware parsers do. For this purpose, the additional three stacks and hash table were 

added to the CPU core as well as the instructions which support the parsing process. Among them 

the instruction HASH performs the hash function calculating of the XML key words with the speed 

of one character per 3 clock cycles. So, the keywords are substituted to the indexes which are 

compared to ones stored in the precompiled hash table. 

The given grammar set is loaded to the simulator framework which generates both the 

program ROM model and the hash table model described in VHDL. As a result, the SM16 

microcontroller can compute the XML queries at the speed of approximately 7.5 megabytes per 
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second. Table III shows the characteristics of the mentioned hardware XML parsers and the 

proposed one. 

 

Table 3. Hardware Characteristics of different XML parsers 

 

XML-parser Hardware costs (LUTs) Clock frequency, 

MHz 
Throughput, MB/s 

XPA    9200 125    125 

SCBXP  29200   33 200-500 

SM16     880 180     7,5 

 

Thus, the SM16 parser has only one and a half worse the performance-hardware ratio than 

the XRA and SCBXP parsers. However, an SM16-based solution can simultaneously support 

almost any number of XML grammars. This qualitatively distinguishes the developed parsing 

method and SM16 microcontroller from other hardware solutions.  

 

7. Conclusion 

 

A new SM16 microcontroller architecture is proposed which is intended for the logic-

intensive applications in FPGA which is based on the stack architecture. The short but fast 

programs are derived due to the 16-bit instructions, which code up to three independent operations, 

and intensive use of the threaded code style. The framework is developed which compiles the 

program, simulates it, and translates to the ROM. The developed SM16 core with additional three 

stacks, hash-table, and instructions that accelerate the execution of parsing operations is used for 

efficient XML-document processing and can be frequently reconfigured to the given document 

grammar set. This system is not only capable of processing the XML-documents efficiently but also 

can be quickly reconfigured to process the documents of other grammars. 
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