

UDC: 004.02, 004.2

METHODS OF EFFECTIVIZATION OF SCALABLE SYSTEMS: REWIEW

O.O. Honcharenko, H.M. Loutskii

The article discusses the problem of inefficiency of modern systems and horizontal scaling as a
method of increasing productivity. The main issues that make up the mentioned problem are
highlighted. A classification for possible solutions was proposed, according to which they were
divided into architectural and network, and an overview was carried out. As part of the architectural
class, such approaches as quantum computing and the dataflow paradigm were reviewed, the most
promising solutions were analyzed. The comparative analysis shows that by their nature dataflow
and quantum computing do not contradict each other, moreover, they complement each other in the
context of the problem. At the same time, both types of processors require a certain network for
communication, which makes the issue of topology relevant. At the network level, 2 topologies - Fat
Tree and Dragonfly - were considered, and their main properties were highlighted. The analysis
showed that in the context of the problem Dragonfly is slightly better due to decentralization and
smaller diameter. In the conclusions, the main aspects of problem formulation and review are
indicated, further prospects and possible methods are considered.

Keywords: effectivization, scalable systems, high performant computing, architecture,
topology

Introduction
There are 2 main methods of scaling - horizontal and vertical. Vertical scaling is associated with

increased performance of individual nodes, but this method has several disadvantages. First, it
requires updating all nodes of the system, which is impractical from the point of view of finances.
Secondly, the performance of individual processors is based on the clock frequency, the effective
maximum of which is limited due to the complexity of the internal structure of the processor itself.

Another approach, horizontal scaling allows you to increase the peak speed linearly. However,
there are problems here too. First, Amdahl's law says that dependencies between parallel parts of the
task limit its parallelism. Thus, the dependence between the scope of the task, the scope of the system
and the acceleration is established. Secondly, the properties of the system itself and the delays that
occur in the execution process limit the real user acceleration. So, when the processor cannot continue
execution, it must block the task, resulting in idle time. The solution to this problem is to switch to
another task, but context switching requires significant time costs. As a result, a significant part of
the calculations is occupied by idle time and interruptions. At the same time, energy consumption is
proportional to the number of nodes, which raises the question of the feasibility of scaling in each
specific case. The only way out of this situation is the modernization of the architecture and
computing model: the search for such solutions that would allow either to gain in speed or to reduce
costs. This makes the issue of efficiency urgent.

Reasons for limitation
The problem of efficiency is complex. This is not a single issue - it is a complex of issues that

need consideration, analysis and resolution. Of course, their complete analysis is a separate topic for
research, but even superficially analyzing the situation, one can highlight the key limitations of
modern parallel supercomputer solutions.

1. Problem of parallelism. As mentioned earlier, this problem is that the classical model of
computing has certain disadvantages that arise from the architecture of the processor.

2. Problem of parallel programming. The fact is that each parallel system is unique and has
its own architectural features. At the same time, the task of parallelizing the algorithm is the
prerogative of the programmer, which makes the development of each program difficult, and the
program itself is architecturally tied to the system (or series of systems) under which it was written.

3. The problem of inconsistency between the algorithm and the system. This problem is related
to specialized algorithms (for example, AI problems or genetic algorithms). These tasks have a high

Methods of effectivization of scalable systems: rewiew 64
degree of internal parallelism, but often during their execution there are restrictions dictated by the
system architecture, which limits this internal parallelism. This raises the question of adapting not
only the task to the system, but also the system to the task being performed.

4. The problem of the balance of speed and costs. A large number of computing facilities
allows for acceleration, but the hardware comes at a price and consumes energy. A small amount of
equipment limits consumption, but reduces performance. The question arises - how to achieve a
balance of resources for each specific task within the framework of the system.

5. The problem of node interaction. A large number of nodes in the system leads to the fact
that the only way to connect them is the internal network. But at the same time, a number of issues
arise, such as the issue of fault tolerance, the issue of bandwidth, the issue of load balancing and the
issue of the topological structure of the network as such. Both real performance and the possibility of
practical application of the system as such depend on the effectiveness of their solution.

Analysis of the subject area
To find potential solutions, it makes sense to conduct a brief analysis of the subject area. This

will allow you to highlight areas that need to be reviewed. Since the subject area is not monolithic,
but consists of parts, the considered solutions cannot be called directly focused on it - they are directed
only at specific aspects of it, but collectively they can give the key to a general solution. What aspects
of the area can be highlighted and what exactly should be included in the review? In order to answer
this question, it is necessary to clearly define which parts of the system the action of this or that
method is aimed at. In general, the following classes of possible solutions can be distinguished:

1. A change in architecture or computing paradigm. Within the framework of this class, it is
assumed that the Von Neumann architecture will be abandoned and a transition to other hardware and
a different model of calculations will be made. At the same time, both hardware and software of the
system are completely changed.

2. Changing the principles of communication. Within the framework of this class, the
structure of individual computing elements (processors, nodes) is not considered - instead, the object
of influence is the means of communication (communication lines, switches), communication
protocols, the general structure of the system.

3. Changing the approach to planning or task allocation. Within the framework of this class,
the methods of dividing a task into subtasks, scheduling calculations and assigning resources are the
object of research. In general, this class makes sense to explore when it comes to automatic
parallelization.

Within the framework of this review, it is proposed to pay key attention to the first class, since
it is the most difficult to implement, but also the most promising. What is mentioned in modern
discourse as an alternative to classical systems? As a rule, the most mentioned areas are the following:

1. Quantum computing
2. Dataflow computing
Analyzing the second class, it can be divided into two subclasses that partially overlap, but at

the same time are relatively independent. These subclasses address the following issues:
1. Network hardware and software. This includes types of network equipment such as

switches or routers, existing network protocols (Gigabit Ethernet, InfiniBand) and architectures
(SDN).

2. Structural composition. This includes how the elements are connected in the network - that
is, its topology. This includes 3D-Tor, Dragonfly, fat trees and other solutions.

As for the third class, it deals with scheduling and how a task can be automatically divided into
subtasks. Often, this issue depends on the programmer or the OS, but in planning, 2 key approaches
can be distinguished: static and dynamic. Since this question depends, not least, on the architecture,
it makes sense to postpone its review until the review of the key decisions of the previous classes.

Quantum computing
Quantum computing is a very promising field of computer science, to which a large number of

works are devoted. Although the practical use of modern quantum computers is limited by their high

65 Information, Computing and Intelligent systems № 3
cost and small number of qubits, a number of areas have been highlighted in which they can be
effectively applied, such as cryptography [1], financial analytics [2], scientific computing [3]

There are a number of approaches to implementing quantum computers, but the most popular
one is based on the idea of a quantum circuit and the concept of a qubit. A qubit is a quantum unit of
information that can enter a state of superposition between two binary states 0 and 1. As a result, at
the time of calculations, the quantum register is simultaneously in all possible states, but with different
probabilities. The quantum algorithm changes this probability to bring the quantum register closer to
the response state, after which a readout is performed and decoherence occurs into one of the possible
states [4].

This approach allows you to perform calculations not on one, but on all possible values of a
variable, which makes it possible to get acceleration in a number of problems, thereby solving
computational problems that cannot be solved on classical systems in a reasonable time. This property
is called quantum advantage. It has been proven that certain minimum hardware characteristics of the
system must be ensured in order to demonstrate quantum superiority, namely: a dimension of 49
qubits, a circuit depth of 40 and a two-qubit error of no more than 0.5% [5]. At the moment, there are
a number of systems that meet these requirements. For example, Google's 54-qubit Sycamore
processor, which can complete a task in 200 seconds that would take a classic supercomputer 10,000
years [6]. Or the Chinese quantum photonic computer Jiuzhang, which is the second in the world to
achieve quantum supremacy [7].

The described systems are full-fledged quantum computers of general purpose, but in the
context of the mentioned problems, they have a lot of shortcomings. Their key limitation is the price:
they are too expensive. In addition, this is not a mass-produced product that can be purchased just
like that: each of these systems is a separate artificial product under the control of the developing
organization/country, and therefore it is still too early to talk about the prospects for their commercial
use. However, it is worth considering that the development of quantum computers does not stand still.
For example, research is being conducted to speed up the development of new quantum systems. For
example, Fig. 1 shows a diagram of such a full-stack development of a quantum computer based on
transmons.

Fig. 1. Scheme of full-stack development of a quantum computer
based on transmons [8]

This allows us to say that although modern quantum systems are not a potential solution to the

problem of efficiency, the emergence of new, more advanced systems can fundamentally change this
situation. Thus, it is necessary to take this fact into account and, considering other architectural
solutions, leave room for heterogeneity and quantum integration.

Methods of effectivization of scalable systems: rewiew 66
However, such quantum systems are not the only solution. An alternative implementation is

presented by the D-Wave company, whose processors have reached a size of 1000 qubits and continue
to grow. This became possible thanks to the use of quantum annealing [9]. This method, focused on
finding the global minimum of the function, is based on the fact that at the beginning of the
calculation, all states of the register have equal probability, but in the process of quantum evolution,
there is an ascent to a state in which the energy is minimal. This allows the processor to effectively
solve optimization problems and significantly reduces the complexity of scaling, but makes it
unsuitable for the execution of ordinary quantum algorithms. On the other hand, within the proposed
class of tasks, this type of processor demonstrates extremely high efficiency, besides, D-Wave
processors, although they have a considerable price, are available for commercial use. Therefore, it
makes sense to consider their architecture in more detail.

In fig. 2 presents the architecture of one of the latest D-Wave Advantage quantum computers,
which consists of several layers: an application layer, an Ocean software layer that deals with
compilation and assignment of tasks, and a computer resource layer that contains 2 types of
processors: classical CPUs and quantum QPUs.

Fig. 2. D-Wave Advantage architecture [10]

Thus, D-Wave's approach allows you to make the system heterogeneous from the very

beginning, combining fast, but task-limited QPUs with general-purpose CPUs. This makes it possible
to almost completely eliminate any problems related to specialization, as well as to ensure efficient
parallelization of calculations.

However, the question arises: how are the QPUs themselves arranged? Just as a classical
system consists of nodes connected by a network, a quantum system consists of qubits connected by
a graph of possible quantum entangled pairs. In the process of executing a quantum algorithm, the
program connects qubits into a general quantum system, using certain connections from those
available on the graph, and then performs certain transformations on the system. Thus, the
characteristics of a graph are extremely important for a quantum system, because it depends on them
which quantum algorithms it can perform and how quickly.

As an example, it makes sense to consider the Chimera graph presented in Fig. 3. This graph
includes qubits represented in the form of horizontal and vertical loops that form a lattice. The
intersection points of these loops inside each lattice implement internal connections, external
connectors connect qubits in a single row or column.

67 Information, Computing and Intelligent systems № 3
However, newer systems such as the D-Wave Advantage use a slightly different graph called

Pegasus (Fig. 4). It differs in that the lattice in it has an offset, which allows to expand the system of
connections. It is assumed that the new D-Wave processors will use it (as well as the Zephyr graph)
and not the classic Chimera graph. This graph has 3 types of connections: internal (green vertical
line) connecting pairs of orthogonal horizontally oriented qubits; external (blue line) that connect
adjacent vertical qubits; odd (red line) connecting equally aligned pairs of qubits.

Fig. 3. Chimera graph [11] Fig. 4. Pegasus graph [11]

If you bring it to a more familiar form, with nodes and communication lines, you can get the
system shown in Fig. 5. In it, green dots represent elements, green lines - connections, gray lines -
splitters.

However, it is assumed that the company's future processors may switch to other topological
organizations - for example, the Zephyr graph, which is presented in Fig. 6. The feature of this graph
is the degree of 20 and the nominal length of 16, which potentially makes it possible to implement
more qubits on a chip, as well as connect them more efficiently.

Fig. 5. Pegasus graph – topo representation
[11]

Fig. 6. Zephyr graph [11]

In the context of the problems of the subject area, quantum computing is interesting for the
reason that quantum parallelism is an almost ideal form of parallelism as such. The calculation is
always performed simultaneously over the entire field of solutions, independently processing each
of them, and the subject of processing is not only the values themselves, but the probabilities of
obtaining them when reading. This makes it possible to almost completely eliminate data
dependencies from the problem, which is one of the key factors of slowdown. Also, quantum
problems do not know the inconsistency of the algorithm and the task or balance problems: yes, for
each task, the amount of "quantum flows" that it needs is allocated, and it is usually simply
impossible to perform the task with a smaller number of qubits than it needs. The key limitations of
quantum computing are its cost and the need to develop special quantum software to gain real
benefits.

Methods of effectivization of scalable systems: rewiew 68

Dataflow as alternative paradigm.
In terms of computing management, 2 key paradigms are distinguished: contolflow and

dataflow. The first approach is classic: the system has a command counter, and the program is
presented in the form of a strict sequence of instructions. Accordingly, the parallel contolflow system
contains a number of devices that have their own counters, and the control relies on processes and
flows - a sequence of commands that is the result of breaking down the original task. However, from
the point of view of parallelism, this model is not convenient: it loses internal parallelism, additional
dependencies and idles appear, and when multitasking - context switching.

An alternative is the dataflow approach, in which the task is presented in the form of
computational tasks connected by data. Execution occurs when ready: ready-made tasks can be
executed when a free resource is available, regardless of the sequence in which they are described in
the program.

Historically, the first dataflow machines implemented parallelism at the command level.
However, this approach turned out to be ineffective due to high overhead costs. Therefore, a number
of concepts were formed, which can be conventionally divided into 3 ways. The first path, which can
be conventionally called hybridization, gave rise to modern RISC processors and superscalar
architecture [12]. The idea of this approach is to hide the dataflow component inside another
architecture, thereby using common tools at the programming level, and performing dependency
detection at the command level, thereby speeding up the execution of independent parts.

The second way, emulation, is based on describing the tasks and data relationships at the
programming level and implementing a parallel algorithm so that its parallel parts run when ready,
regardless of how they are actually written in the program. Hardware-wise, the system remains pure
contolflow. This includes the dataflow approach to programming and modern parallelizing compilers
that simulate execution in a dataflow system, and then form a parallel algorithm from a sequential
one based on the model [13, 14].

The third way to solve the problem is the development of the architecture itself: streaming,
coarse-grained, vector dataflow machines, dataflow networks, and FPGA-based devices oriented to
specific tasks. Within the framework of the described problems, it makes sense to focus on them and
their hardware components.

Threaded dataflow and coarse-grain solutions extend the classic fine-grained parallelism of
dataflow with the possibility of parallelism at the level of threads and subtasks - that is, medium and
coarse-grained. This approach allows to reduce dynamics overhead due to the fact that the execution
time of each specific task becomes much greater than the time of hardware planning of calculations,
which eliminates delays in the execution of individual commands and reduces the need for associative
memory. Sometimes dataflow modules in such systems are offered as an add-on to conventional von
Neumann processors used as processing elements, but this approach is criticized for the fact that such
a system by definition cannot work faster than classic controlflow. An alternative here is the use of
simpler elements.

The approach of vector dataflows is similar, but slightly different: instead of increasing a single
grain (and increasing the number of operations at the same time as the processing time increases),
they propose to increase the volume of the same type of calculations performed simultaneously, due
to vectorization. So, in this type of system, the commands are not scalar, but vector, which allows
you to ignore the planning time due to the general acceleration of calculations from vectorization.

The third hardware approach, which is extremely popular today, is the use of FPGAs as the
hardware base for the system [15, 16]. This approach is based on several things: firstly, the dataflow
system is developed here for a certain task, which allows you to optimize it and, if necessary, include
additional architectural elements - pipeline, vectorization, matrix or coarse-grained approach.
Secondly, due to the manipulation of the number of devices, a certain balance between energy
consumption and speed is achieved, which is especially relevant for embedded devices [15].

In the context of modern high-performance dataflow computing, the best known is the dataflow
concept of the Maxeler company, which uses FPGA-based accelerators and the parallelizing compiler
MaxCompiler, which turns a sequential controlflow program into a parallel dataflow application. This
approach solves a number of applied issues at once: on the one hand, it harmonizes new solutions

69 Information, Computing and Intelligent systems № 3
with previously created hardware and software, and on the other hand, it allows you to get a real
acceleration and make the system more efficient. Therefore, it makes sense to pay attention to him.

How does this system work? Fig. 7 shows the main stages of its work. First, the Java program
is compiled into a .max file of parallel tasks. It then passes through Maxeler's operating system and
system software, where some of the computing scheduling tasks are performed. In the next step, the
scheduled computing tasks are submitted to the hardware dataflow accelerator (DFE).

Fig. 7. Maxeler MPCarchitecture [17]

However, this is a general MPC architecture. To better understand how this should work in

high-performance computing, it is worth diving deeper into the solutions offered by the company. At
the moment, 4 architectures are offered for cluster and network computing (MPC-X, MPC-C, MPC-
N, JDFE), the MaxCloud infrastructure, which provides dataflow computing services in the cloud, as
well as the Desktop version of the accelerator.

You should start with the MPC-X series. It is focused on the maximum use of dataflow
calculations and in the latest MPC-X2000 implementation contains 8 MAX4 (Maia) processors in
each node, connected inside the node using MaxRing and the InfiniBand network at the general level.
Thus, individual MPC-X2000 nodes contain up to 768 GB of memory and provide more than ten
times the acceleration compared to classic x86 servers [18].

A different approach is offered in the MPC-C series. Unlike MPC-X, it is a hybrid, combining
CPU and DFE. Each MPC-C500 node contains 4 Vectis DFEs and 12 Intel Xeon CPUs, and provides
a total of up to 192 GB of internal memory per CPU and per DFE (up to 384 GB of memory per
node). InfiniBand or Ethernet can act as a common network here [19].

The MPC-N series is focused on minimizing delays and fast processing of data streams with a
transmission speed of up to 10 Gb/s. In addition to 2 DFE Vectis and 12 Intel Xeon, its nodes contain
4 SPF/SPF+ ports, 2 CX4 ports, and also provide additional synchronization capabilities and network
protocol support [20].

The latest series, JDFE aims to combine software-defined networking (SDN) technology and
dataflow computing, separating the control plane and the data plane and enabling data plane
programming via Maxeler Dataflow. Such a system contains thousands of small dataflow cores, using

Methods of effectivization of scalable systems: rewiew 70
massive parallelism of calculations and providing almost a 100-fold advantage in speed while
maintaining the size and power consumption at the level of a classical system [21].

In fig. 8 shows the architecture of the main 4 series of the Maxeler company, a brief overview
of which is given above.

(а) (b)

(c) (d)

Fig. 8. Maxeler's main architectural solutions are: (a) MPC-X series architecture, (b) MPC-C series
architecture, (c) MPC-N series architecture, (d) JDFE series architecture

In the context of the described issues, dataflow as a paradigm has 2 main advantages. First, it

provides a much higher speed of operation with the same dimensions and the amount of energy
consumption of the system. Secondly, the implementation of the dataflow system does not require a
non-classical element base (such as qubits), and the presence of programmable FPGA logic circuits
allows you to avoid problems associated with the deployment of mass production. A partial drawback
is the specificity of dataflow programming, but as Maxeler's experience shows, this problem is not
insurmountable.

Network level and its specifics

There are a significant number of aspects in this subject area. Conventionally, they can be
divided into hardware and topological, but such a division will not be completely accurate, since the
hardware is strongly connected with the protocols, and the protocols - with the topology. Thus, some
solutions are complex, while others involve a certain degree of freedom. Therefore, it makes sense to
expand the classification:

1. Hardware level solution. This includes hardware software or hardware software
complexes that offer only hardware tools and common communication protocols, but do
not determine the topological level of the network. For example, InfiniBand or SDN.

2. Structural level solutions. This includes structural compositions that determine the
relationship of elements and the specifics of routing, but do not determine the equipment
that the network should consist of. This includes topologies such as 3D-Tor, hypercube or
fat tree.

3. Communication protocols. This includes protocol solutions and algorithms that do not
determine either the hardware or the topological organization of the network. For example,
tabular routing protocols.

4. Combined solutions. This includes solutions in which hardware, protocol and topology are
an integral whole. This includes, for example, the TokenRing protocol, which imposes
certain requirements on the equipment and is oriented towards the ring topology.

71 Information, Computing and Intelligent systems № 3
Analyzing the given classification, one can see some specifics. Yes, hardware-level analysis is

key, but it depends on the architecture-level decision, so it must be analyzed separately. Similarly,
this applies to the combined approach. Protocol decisions are by definition quite abstract, but they
should be chosen based on the needs of the system, which makes general analysis meaningless and
even harmful. Thus, the question arises about the expediency of structural level analysis. This level
is also abstract, but any network needs a topology, and the issue of routing and data transmission is
relevant regardless of the specific architectural approach implemented at the node level. Thus, the
current analysis of network solutions should be considered precisely in the context of topology.

As a result, the question arises: what topologies are used in modern systems? At the moment,
Fat trees and Dragonfly are quite popular for high-performance systems and network data centers
[22].

The idea of a fat tree is as follows: there are elements located in the leaves of the tree, and there
are switches that make up the main part of the tree. The closer the switch is to the root, the better the
bandwidth parameters it has. In fig. 9 presents the structure of this topological organization, which
consists of 4 levels.

Fig. 9. Fat Tree topology [23]

What does it do in terms of performance? First, since the topology has redundant (compared to

a regular tree) connections, it allows you to speed up routing and make it more reliable. Moreover,
thanks to the use of multipath routing methods, it becomes possible to simultaneously transmit
information through parallel channels, which are quite numerous in this topology. An equally
important property of a fatty tree is its variability. Yes, there are a large number of ways to configure
the topology depending on the needs and available hardware. Thus, this structural organization allows
solving the main problems of supercomputers and data centers, which makes it popular. Yes, it is
used in Summit, Sierra supercomputers, as well as other high-performance systems [24].

Another solution is offered by the Dragonfly topology. Its idea is fractality: yes, the system is
divided into groups connected by a common network, while the groups consist of routers to which
the nodes are connected. As a result, at each of the levels, the diameter of the topology is equal to (or
close to) 1, and the number of nodes with scaling grows quite quickly. In fig. 10 presents the structure
of the topology.

Like a fat tree, Dragonfly is a variable topology whose structure is defined by four parameters
(p, a, g, h). At the same time, p is the number of terminal connections of nodes to the router, a is the
number of routers in each group, g is the number of groups, and h is the number of external
connections between groups. Varying these parameters allows you to change the characteristics of
the network, and therefore - to select such configurations that would satisfy the purpose. In fig. 11
shows some variants of the Dragonfly topology depending on different parameters a, g and h.

Methods of effectivization of scalable systems: rewiew 72

Fig. 10. Dragonfly topology – structure [25]

Fig. 11. Dragonfly topology – variants [26].

Comparative analysis

Summarizing the review, it makes sense to analyze the solutions one by one. First, specific
decisions within each direction. Then - the best decisions of directions within the class among
themselves. Table 1 shows a comparison of classical quantum computers with specialized systems of
the D-Wave company. The optimal parameters are highlighted in green.

As can be seen from the comparison, D-Wave computers (e.g., D-Wave Advantage), although
limited in the class of tasks, provide approximately 16-50 times more resources (qubits) at a price
that is 200 times lower. Also, it's worth noting that D-Wave processors are available for purchase,
while general-purpose quantum systems are typically only available through a QC-as-a-service
model. In the context of high-performance computing, where every clock counts, the lack of physical
access to the chip is critical. This makes the choice unequivocal in favor of D-Wave systems.

73 Information, Computing and Intelligent systems № 3
Table 1.

Comparative analysis of quantum systems

Characteristic Universal QS (quantum circuit D-Wave QS (quantum annealing)

Types of tasks
solved

All quantum algorithms with
acceleration, classical algorithms with
CPU speed.

Optimization problem with
acceleration

Number of
qubits

53 (Google Sycamore), 127 (IBM
Eagle)

2048 (q2000), 5640 (Advantage)

Cost $ 3.000.000.000 (IBM Eagle) $ 15.000.000 (q2000)

As can be seen from the comparison, D-Wave computers (e.g., D-Wave Advantage), although
limited in the class of tasks, provide approximately 16-50 times more resources (qubits) at a price
that is 200 times lower. Also, it's worth noting that D-Wave processors are available for purchase,
while general-purpose quantum systems are typically only available through a QC-as-a-service
model. In the context of high-performance computing, where every clock counts, the lack of physical
access to the chip is critical. This makes the choice unequivocal in favor of D-Wave systems.

Table 2 presents a comparison of solutions offered by Maxeler for dataflow computing. Since
each of them has its own specific orientation, it is almost impossible to single out the best among
them.

Table 2.

Comparative analysis Maxeler MPC Dataflow [18-20]

Characteristic MPC-X2000 MPC-C500 MPC-N40 MPC-N42

CPU - 12 Intel Xeon 12 Intel Xeon
DFE 8 Maia 4 Vectis 2 Vectis
CPU RAM - Up to 192 GB
DFE RAM 96 GB per DFE 48 GB per DFE 24 GB per DFE
Inner network MaxRing MaxRing (DFE),

PCI Express
(DFE-CPU)

PCI Express 8х2

Global network InfiniBand Ethernet,
InfiniBand

100GigE

Диски - 3 x 3.5”, 5 x 2.5” 3 x 3.5” 16 x 2.5”
Additional I/O
ports

- - 4 SFP/SFP+, 2 CX4

Purpose Computing Computing,
CPU-DFE
hybridization

Data stream processing (10 Gbit/s)
with minimal latency

In the context of high-performance computing, the MPC-X series is the most interesting, but
other types of nodes could also be useful depending on the specifics of the task and the overall
network architecture.

After completing the analysis within each of the directions, it is useful to perform the same
analysis between the directions within each of the classes. Table 3 compares the considered
architectural directions, analyzing their suitability for solving the research problem.

As can be seen from the analysis, D-Wave quantum computers solve some problems almost
perfectly, but their specialization makes them unsuitable for use instead of CPUs. Another solution
is dataflow processors (DFE), which, as Maxeler's experience shows, can both replace classic CPUs
and be used in cooperation. But their acceleration is limited.

Methods of effectivization of scalable systems: rewiew 74

Table 3.
Comparison of architectural level solutions

Problem D-Wave quantum
computing

Dataflow

The problem
of parallelism

It is solved automatically
in an ideal way

It is resolved automatically due to dynamics,
there are overheads

Programming
problem

Not solved: the system
needs a special approach

There is potential for automation, there are
automated means of detecting dependencies

The problem
of matching
the task and
the system

It is partially solved, but
not for all problems

Solved at the destination automation level
(parallelism is exposed as fully as possible)

The problem
of balancing
productivity
and costs

Does not occur: the
problem can either be
solved or not

Can be resolved through OS level or FPGA
properties

Interaction
problem

There is an interaction of
qubits due to quantum
entanglement

Available node interaction through classic data
transfer

The following analysis, presented in Table 4, deals with networks, and more precisely, with

network topologies. However, if architectural solutions need to be analyzed according to the problem,
network solutions cannot be analyzed in a similar way, but topological characteristics of networks
and their more general properties can be evaluated: for example, the availability of alternative routes,
which is important in the context of multipath routing and fault tolerance.

Table 4.
Topological solutions

Characteristic Fat tree Dragonfly

Topological characteristics
Degree Depends on connectivity, but

no more than 4-6.
p + a-1 + h [26]

Diameter No more than a binary tree Minimum, with full
connectivity within each level
– 5 (between terminal nodes)

Possibility to solution of the problem
Alternative routes Yes, due to additional inter-

level connections
Yes, due to local full
connectivity

Structure-oriented routing Topology-based depth-first
search

Based on the properties of
connections

Bandwidth problem Topology is focused on
solving this problem

There are methods of
topological routing that solve
the problem

Optimal types of routing Centralized From the source or
decentralized

Analyzing the topologies, one can notice certain similarities: both of them are polymorphic,

have good characteristics and implement multipath routing. On the other hand, a fat tree relies heavily
on centralized routing, where route discovery is performed by a shared controller, allowing for
consideration of all nuances with increased bandwidth near the roots. On the other hand, the

75 Information, Computing and Intelligent systems № 3
Dragonfly offers greater decentralization and a potentially better diameter, making it more promising
in terms of efficiency.

Discussions
Analyzing the given solutions, it is possible to draw a conclusion about the possibility of their

combination. From the point of view of the dataflow network, the system is not much different from
the classic controlflow, which allows you to use a network of any hardware type (InfiniBand,
Ethernet, SDN) and any topology. At the same time, quantum systems are specific in this aspect.
Combining qubits requires special graphs, as the overview of D-Wave graphs demonstrates, but
hypothetically the network between QPUs operates on classical data and therefore can have any
structure.

However, a much more interesting combination is the combination of two architectures:
dataflow and quantum processors. The first architecture significantly increases the efficiency of
calculations, but its acceleration is limited. The second - makes it possible to significantly simplify a
number of problems due to quantum advantage, but is specialized. Although at the moment quantum
chips are too expensive, there is a significant possibility that with the development of technologies,
their price will decrease further, and therefore, at a certain point, it will be possible to use them in
part of the nodes of the system as accelerators. As a result, the only question is in which specific parts
of the system these nodes should be located. The topology comes in handy here, the right choice of
which will allow for effective access to the quantum resource.

Conclusions

Summarizing the review, the following aspects should be noted. The first is that the problem
of limited efficiency is complex and consists of a number of smaller problems. There is a large number
of possible solutions for each of them, which makes their classification relevant. This article proposes
to divide them into those related to the immediate structure of the node (architectural level) and those
related to the interaction of nodes and abstracted from their architecture (network level), however,
this classification is not final and can be expanded.

The second aspect is that there are a large number of possible solutions for each problem, both
mentioned and not mentioned in this review. All of them have their own specifics and can be both
compatible with each other and contradict each other. However, since each of the proposed
approaches affects only part of the problem and does not solve the problem in general, there is a need
to find methods that would allow combining partial solutions into a general one.

Returning to the material of the article, the reviewed solutions allow solving certain tasks:
solving the problem of parallelism, partially - simplifying programming, adapting the task to the
system and the system to the task, as well as solving interaction problems. Benchmarking shows that
key solutions such as the dataflow paradigm and quantum computing complement each other and can
therefore be combined for better results.

However, there are a number of unsolved tasks, such as the simultaneous use of QPU and
DFE, the combination of quantum and classical algorithms within the program, the planning of
calculations at the network and system-wide levels. Also, the question of the relationship between
architecture and structure, as well as the search for optimal hardware and topological solutions at the
network level, remains unresolved. Similarly, it makes sense to expand and deepen the review,
including new modern architectures and paradigms and considering the issue of hybridization as a
method of solving the given problem.

References.

1. Mavroeidis V. et al. The impact of quantum computing on present cryptography //arXiv
preprint arXiv:1804.00200. – 2018.

2. Orús R., Mugel S., Lizaso E. Quantum computing for finance: Overview and prospects
//Reviews in Physics. – 2019. – Т. 4. – С. 100028.

3. Cao Y. et al. Quantum chemistry in the age of quantum computing //Chemical reviews. –
2019. – Т. 119. – №. 19. – С. 10856-10915.

Methods of effectivization of scalable systems: rewiew 76
4. Nielsen M. A., Chuang I. L. Quantum computation and quantum information //Phys.

Today. – 2001. – Т. 54. – №. 2. – С. 60.
5. Kelly J. A preview of Bristlecone, Google’s new quantum processor //Google Research

Blog. – 2018. – Т. 5.
6. Arute F. et al. Quantum supremacy using a programmable superconducting processor

//Nature. – 2019. – Т. 574. – №. 7779. – С. 505-510.
7. Ball P. Physicists in China challenge Google's' quantum advantage' //Nature. – 2020. – Т.

588. – №. 7838. – С. 380-381.
8. Alberts G. J. N. et al. Accelerating quantum computer developments //EPJ Quantum

Technology. – 2021. – Т. 8. – №. 1. – С. 18.
9. McGeoch C. C. Adiabatic quantum computation and quantum annealing: Theory and

practice //Synthesis Lectures on Quantum Computing. – 2014. – Т. 5. – №. 2. – С. 1-93.
10. Quantum Computing [Електронний ресурс] // D-Wave Government – Режим доступу

до ресурсу: https://dwavefederal.com/system/.
11. D-Wave QPU Architecture: Topologies [Електронний ресурс] // D-Wave System

Documentation – Режим доступу до ресурсу:
https://docs.dwavesys.com/docs/latest/c_gs_4.html.

12. Arvind, Brobst S. The evolution of dataflow architectures: from static dataflow to P-RISC
//International Journal of High Speed Computing. – 1993. – Т. 5. – №. 02. – С. 125-153.

13. Carkci M. Dataflow and reactive programming systems //Create Space Independent
Publishing Platform. – 2014.

14. Pochayevets O. BMDFM: a hybrid dataflow runtime parallelization environment for
shared memory multiprocessors : дис. – Technische Universität München, 2006.

15. Gobieski G. et al. Manic: A vector-dataflow architecture for ultra-low-power embedded
systems //Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture. – 2019. – С. 670-684.

16. Milutinovic V. et al. DataFlow Supercomputing Essentials. – Cham : Springer, 2017.
17. Kos A. et al. New benchmarking methodology and programming model for big data

processing //International Journal of Distributed Sensor Networks. – 2015. – Т. 11. – №.
8. – С. 271752.

18. MPC-X Series [Electronic resource] // Maxeler Technologies. Government – Resource
access mode: https://www.maxeler.com/products/mpc-xseries/

19. MPC-C Series [Electronic resource] // Maxeler Technologies Government – Resource
access mode: https://www.maxeler.com/products/mpc-cseries/

20. MPC-N Series [Electronic resource] // Maxeler Technologies. Government – Resource
access mode: https://www.maxeler.com/products/mpc-nseries/

21. JDFE [Electronic resource] // Maxeler Technologies. Government – Resource access
mode: https://www.maxeler.com/products/jdfe/

22. Диброва М. А., Коган А. В., Воробьева А. Л. Способ формирования множества
путей в сетевых центрах данных //Вісник НТУУ" КПІ". Інформатика, управління та
обчислювальна техніка. – 2015. – №. 63.

23. Wang T. et al. Rethinking the data center networking: Architecture, network protocols,
and resource sharing //IEEE access. – 2014. – Т. 2. – С. 1481-1496.

24. Jain N. et al. Predicting the performance impact of different fat-tree configurations
//Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. – 2017. – С. 1-13.

25. Kim J. et al. Cost-efficient dragonfly topology for large-scale systems //IEEE micro. –
2009. – Т. 29. – №. 1. – С. 33-40.

26. Teh M. Y. et al. Design space exploration of the dragonfly topology //International
Conference on High Performance Computing. – Springer, Cham, 2017. – С. 57-74.

	DESIGN OF DATA BUFFERS IN FIELD PROGRAMMABLR GATE ARRAYS
	Introduction
	Methods for the buffer design
	Goals of the investigation
	FPGA resources for the buffer design
	Spatial SDF method
	Method for the buffer design
	Experimental results
	Synthesis framework
	Conclusions
	References

	ORGANIZATION OF FAST EXPONENTIATION ON GALOIS FIELDS FOR CRYPTOGRAPHIC DATA PROTECTION SYSTEMS
	Introduction
	Problem statement and review of methods for its solution
	Purpose and objectives of research
	Accelerated squaring method on Galois fields with Montgomery group reduction.
	Analysis of the obtained results
	Conclusion
	References

	ORGANIZATION OF PARALLEL EXECUTION OF MODULAR MULTIPLICATION TO SPEED UP THE COMPUTATIONAL IMPLEMENTATION OF PUBLIC-KEY CRYPTOGRAPHY
	Introduction
	Problem statement and review of methods for its solution
	Purpose and objectives of research
	The method of parallel calculation of the modular product on multicore processors
	Evaluation of the effectiveness of the method of parallel modular multiplication
	Conclusion
	References

	SIMULATION OF FLUID MOTION IN COMPLEX CLOSED SURFACES USING A LATTICE BOLTZMANN MODEL
	Introduction
	Literature review
	Methodology
	Experiments
	Results
	Conclusions
	References

	ZERO-KNOWLEDGE IDENTIFICATION OF REMOTE USERS BY UTILIZATION OF PSEUDORANDOM SEQUENCES
	Introduction
	Problem statement and review of methods for its solution
	Purpose and objectives of research
	The method of implementing the concept of "zero knowledge" using pseudo-random sequences for subscriber identification
	Effectiveness evaluation of the method
	Conclusion
	References

	ORGANIZATION OF PROTECTED FILTERING OF IMAGES IN CLOUDS
	Introduction
	Problem statement and review of methods for its solution
	Purpose and objectives of research
	Method of homomorphic encryption of image upon arithmetic mean filtration
	Evaluation of the developed method effectiveness
	Conclusion
	References

	FAST SECURE CALCULATION OF THE OPEN KEY CRYPTOGRAPHY PROCEDURES FOR IOT IN CLOUDS
	Introduction
	Problem statement and review of methods for its solution
	Purpose and objectives of research
	The method of protected modular exponentiation in the cloud based on multiplicative-additive exponential decomposition
	Evaluation of the developed method effectiveness
	6.Conclusion
	References

	METHODS OF EFFECTIVIZATION OF SCALABLE SYSTEMS: REWIEW
	Introduction
	Reasons for limitation
	Analysis of the subject area
	Quantum computing
	Dataflow as alternative paradigm.
	Network level and its specifics

	Comparative analysis
	Discussions
	Conclusions
	References.

	MODERN INFORMATION SYSTEMS SECURITY MEANS
	Introduction
	Information security threats: categories and specifics
	Threat analysis techniques
	Malicious threat detection techniques
	Conclusions
	References

	OVERVIEW OF OCR TOOLS FOR THE TASK OF RECOGNIZING TABLES AND GRAPHS IN DOCUMENTS
	Introduction
	OCR systems development
	The modern state of OCR processing for technical documents
	Conclusion
	Directions for future research
	References

	ABSTRACTS
	DESIGN OF DATA BUFFERS IN FIELD PROGRAMMABLR GATE ARRAYS (р. 4-17)
	ORGANIZATION OF FAST EXPONENTIATION ON GALOIS FIELDS FOR CRYPTOGRAPHIC DATA PROTECTION SYSTEMS (p. 18-26)
	ORGANIZATION OF PARALLEL EXECUTION OF MODULAR MULTIPLICATION TO SPEED UP THE COMPUTATIONAL IMPLEMENTATION OF PUBLIC-KEY CRYPTOGRAPHY (p. 27-33)
	SIMULATION OF FLUID MOTION IN COMPLEX CLOSED SURFACES USING A LATTICE BOLTZMANN MODEL (p. 34-42)
	ZERO-KNOWLEDGE IDENTIFICATION OF REMOTE USERS BY UTILIZATION OF PSEUDORANDOM SEQUENCES (p. 43-50)
	ORGANIZATION OF PROTECTED FILTERING OF IMAGES IN CLOUDS (p. 51-57)
	FAST SECURE CALCULATION OF THE OPEN KEY CRYPTOGRAPHY PROCEDURES FOR IOT IN CLOUDS (p. 58-64)
	METHODS OF EFFECTIVIZATION OF SCALABLE SYSTEMS: REWIEW (p. 65-79)
	MODERN INFORMATION SYSTEMS SECURITY MEANS (p. 80-89)
	OVERVIEW OF OCR TOOLS FOR THE TASK OF RECOGNIZING TABLES AND GRAPHS IN DOCUMENTS (p. 90-97)

	АНОТАЦІЇ
	РОЗРОБКА БУФЕРІВ ДАНИХ НА ПРОГРАМОВАНИХ ЛОГІЧНИХ ІНТЕГРАЛЬНИХ СХЕМАХ
	ОРГАНІЗАЦІЯ ШВИДКОГО ЕКСПОНЕНЦІЮВАННЯ НА ПОЛЯХ ГАЛУА ДЛЯ СИСТЕМ КРИПТОГРАФІЧНОГО ЗАХИСТУ ДАНИХ
	ОРГАНІЗАЦІЯ ПАРАЛЕЛЬНОГО ВИКОНАННЯ МОДУЛЯРНОГО МНОЖЕННЯ ДЛЯ ПРИСКОРЕННЯ ОБЧИСЛЮВАЛЬНОЇ РЕАЛІЗАЦІЇ КРИПТОГРАФІЇ З ВІДКРИТИМ КЛЮЧЕМ
	SIMULATION OF FLUID MOTION IN COMPLEX CLOSED SURFACES USING A LATTICE BOLTZMANN MODEL
	ІДЕНТИФІКАЦІЯ ВІДДАЛЕНИХ КОРИСТУВАЧІВ З НУЛЬОВИМ РОЗГОЛОШЕННЯМ З ВИКОРИСТАННЯМ ПСЕВДОВИПАДКОВИХ ПОСЛІДОВНОСТЕЙ
	ОРГАНІЗАЦІЯ ЗАХИЩЕНОЇ ФІЛЬТРАЦІЇ ЗОБРАЖЕНЬ В ХМАРАХ
	ШВИДКЕ ЗАХИЩЕНЕ ОБЧИСЛЕННЯ В ХМАРІ ПРОЦЕДУР КРИПТОГРАФІЇ З ВІДКРИТИМ КЛЮЧЕМ ДЛЯ IoT
	МЕТОДИ ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ МАСШТАБОВАНИХ СИСТЕМ: ОГЛЯД
	СУЧАСНІ ЗАСОБИ БЕЗПЕКИ ІНФОРМАЦІЙНИХ СИСТЕМ
	ОГЛЯД ІНСТРУМЕНТІВ OCR ДЛЯ ЗАВДАННЯ РОЗПІЗНАВАННЯ ТАБЛИЦЬ І ГРАФІКІВ У ДОКУМЕНТАХ

