

UDC 004. 004.4 (043.2)

ORGANIZATION OF PARALLEL EXECUTION OF MODULAR

MULTIPLICATION TO SPEED UP THE COMPUTATIONAL
IMPLEMENTATION OF PUBLIC-KEY CRYPTOGRAPHY

I. Boiarshyn, O. Markovskyi, B. Ostrovska

The article theoretically substantiates, investigates and develops a method for parallel

execution of the basic operation of public key cryptography - modular multiplication of numbers with
high bit count. It is based on a special organization of the division of the components of modular
multiplication into independent computational processes. To implement this, it is proposed to use the
Montgomery modular reduction. The described solution is illustrated with numerical examples. It has
been theoretically and experimentally proven that the proposed approach to parallelization of the
arithmetical process of modular multiplication makes it possible to speed up this important for
cryptographic tasks operation by 5-6 times.

Key words: modular multiplication, Montgomary modular reductions, open key cryptography,
parallel computation, multiplicative operations of modular arithmetic.

Introduction

The process of modular exponentiation, which is executed on numbers whose bit count
significantly exceeds the bit count of the processor, is the fundamental operation for a wide range of
cryptographic algorithms which are based on irreversible problems of number theory. In particular,
this operation is the basis of computational implementation of RSA, El-Gamal, digital signature
standard, FESIS scheme of strict identification of remote users [1].

The protection level of cryptographic security mechanisms, which are based on the operation
of modular multiplication, is fully determined by the bit count of the module [2]. To date, 2048 bits
have been enough for most practical tasks.

At the same time, an analysis of the dynamics of the improvement of applied problems in which
public key data protection mechanisms are practically used shows that a significant part of them is
performed in real time and requires fast implementation of the corresponding calculations. Another
vital feature of the use of modular arithmetic at the present stage of development of public key
cryptography is the increase in the number bit count used. The dynamics of the improvement of cloud
technologies potentially provides attackers with the ability to remotely access large computing power,
which can be used to break cryptographic protection mechanisms. This catalyzed the need for an
adequate increase in the level of security, which for cryptographic mechanisms with a public key can
be achieved by increasing the bit count. This leads to a noticeable increase in the time of
computational implementation of cryptographic data security mechanisms.

Therefore, the task of scientific research is to speed up calculations that implement public key
cryptographic mechanisms by using the multiprocessor capabilities of modern computer systems. The
main way of solving this problem is the parallelization of the basic operation - the modular
multiplication.

The scientific problem of speeding up modular multiplication for cryptographic information
security systems is relevant for the present stage of development of information and computer
technologies.

Problem statement and review of methods for its solution

Modern public key cryptography was founded at the operation of modular exponentiation. The
problem of rapid implementation of this operation is of key importance for the development of
information protection complexes and information security.

For personal computers and powerful systems, this problem can be solved by including crypto
processors in the hardware. To date, a significant range of cryptoprocessors [4] is commercially
produced, almost all of which implement the modular exponentiation operation at the hardware level.

27 Information, Computing and Intelligent systems № 3
But for a wide class of mobile computer devices, terminal microcontrollers of systems for remote
control of real-world objects, in which the Internet is used as a data exchange medium, the problem
of fast implementation of the modular exponentiation operation is very acute. For many critical
applications, the use of crypto processors is unacceptable for information security reasons.

It is a widespread knowledge that the classical scheme of modular exponentiation is strictly
sequential and practically cannot be parallelized [5]. Therefore, the main point for increasing the
speed of calculating the modular exponent is the parallelization of its fundamental operation -
modular multiplication.

The operation of modular multiplication of numbers of large bit count A⋅B mod X consists of
two parts: multiplication of the components Y=A⋅B and finding the residue after dividing the product
A⋅B by the module X. In public key cryptography, the module X is part of the public key, so it can be
considered constant [6].

Algorithms for modular multiplication are divided into two groups: gradual, in which the
multiplication A⋅B and the gradual calculation of the residue from division by the module are execute
sequentially in time and alternating, in which the operations of multiplication and finding the
remainder of the division are combined in time [7].

For modular multiplication algorithms of the first group, there are special possibilities to use
the processor's built-in multiplication instructions. To do this, N numbers that take part in the modular
multiplication operation are divided into K fragments, the length S of which is equal to the processor
bit count. Accordingly, the procedure of modular multiplication is reduced to pairwise multiplication
of fragments with gradual summation of the results obtained. This method makes it possible to use
the hardware of modern processors with high efficiency, and, in particular, the built-in circuits for
multiplication acceleration [8].

In the basic algorithm, modular reduction is executed using the operation of integer division of
a 2⋅s-bit dividend by a s-bit divisor to obtain a quotient and a remainder [9]. Since the division of N-
bit numbers on a s-bit processor (N>>s) is very inefficient, the reduction in the basic algorithm
requires k⋅(k+2.5) multiplication operations and k integer division operations [10]. To date, a number
of algorithms [11, 12] have been declared to improve the performance of the software implementation
of the modular multiplication operation. Most of them implement an increase in the performance of
modular multiplication due to the acceleration of modular reduction by eliminating the operation of
integer division, which is used in the basic algorithm [9].

Two technologies for finding the modulo modulo remainder have received the widest practical
use: Barrett's algorithm [9] and Montgomery algorithm [13]. The first one is funded in calculating the
minimum value of m for which A⋅B - m⋅X < X. Accordingly, the remainder of the division is calculated
as R = A⋅B-m⋅X. Thus, Barrett's algorithm is implemented with two s-bit multiplications, while
modular multiplication A⋅B mod X using Barrett's algorithm is implemented with three.

Another technology for calculating the modulo product residue, the Montgomery algorithm, is
well adapted to the universal processor architecture. The algorithm replaces the operation of division
by a random modulus X with divisions by a power of 2, which are effectively implemented by shifts.
The modular reduction operation in Montgomery's algorithm requires k⋅(k+1) multiplication
operations.

The total computational complexity of the implementation of the algorithm for modular
multiplication of N-bit numbers using the Montgomery algorithm on a s-bit processor is determined
by 2⋅k2 + s processor multiplication operations and 4⋅k2+4⋅k+2 processor addition operations. A
significant advantage of the Montgomery algorithm is that it is relatively easy to combine in time
with the multiplication process. This allows, in the process of modular multiplication, to limit the
length of intermediate results to N + 1 and thereby reduce the amount of calculations compared to the
sequential scheme that works with 2⋅N -bit intermediate results [14].

Two approaches are most often used [15] to speed up modular multiplication:
- precalculations depending only on the value of the module, which are stored in a special table

memory;
- simultaneous processing of several digits of the multiplier;
- parallelization of operations of summation of fragments of a modular product.

Organization of parallel execution of modular multiplication to speed up the computational
implementation of public-key cryptography 28

In practice, these three approaches are often used in combination.
The analysis of existing methods to speed up the execution of modular multiplication showed

that with limits of computational processes that run on a single processor, the possibilities of obtaining
new results are practically exhausted. This means that a further increase in the speed of the
computational implementation of the modular multiplication operation, necessary for practical
problems, can be achieved only by using the capabilities of multi-core processor architectures.

Purpose and objectives of research
The target of the research is to speed up the execution of the modular multiplication operation

on numbers, which is important for cryptographic tasks, the bit count of which significantly exceeds
the bit count of the processor, due to the organization of parallel calculation of fragments of the
modular product on multi-core computers.
The following set of tasks is solved in the work to achieve the target goal:

- analysis of the computing process of modular multiplication due the point of view of its
parallelization possibilities; description for choosing a scheme of modular reduction, which
combining in time with the multiplication process;

- creating of a method of parallel modular multiplication using a multi-core architecture, which,
due to the division of the computing process into loosely connected fragments, allows to organize
their parallel processing, due to which acceleration of the computational implementation of modular
multiplication is achieved;

- optimization of the structure of the parallel computation of the Modular multiplication
according to the criterion of maximum exploitation of processor elements;

- theoretical evaluation of the effectiveness of the developed method of accelerated modular
multiplication;

- software development and experimental evaluation of the effectiveness of the proposed
method of parallel modular multiplication of numbers, the bit count of which significantly exceeds
the bit count of the processor.

The object of research to which the article is devoted are the processes of calculating
multiplicative operations of modular arithmetic, which are performed on numbers, the length of which
is orders of magnitude greater than the bit capacity of processors.

The method of parallel calculation of the modular product on multicore processors
To achieve this target, is declared the following organization of parallel computation of the

modular product A⋅B mod X in the form of s independent computational processes. Accordingly, these
computational processes are performed on s cores. For this, the N-bit factor
A=a1+a1⋅21+a2⋅22+…+aN⋅2N, ∀j∈{1, 2, …, N}: aj∈{0,1}, is decomposed into s partial factors A1,
A2, …, As with N bits. Each i-th, i ∈{1,2, …, s}, N-bit partial multiplier Ai includes those r=N/s
digits of the multiplier A, the residue of dividing by s numbers of which is equal to i, the remaining
digits of the N-bit partial multiplier multipliers are zero. In other words, each i–th partial factor Ai
can be represented as:

∑

⋅−

=

⋅=
sr

ij

j
ji aA

)1(

2

(1)

The above can be illustrated by the following example: if the bit depth is N=12 and the number
of independent computing processes is s=3, then the factor A = 0011 1001 11002 = 92410, is divided
into 3 partial factors, each of which contains r=N/s=4 significant binary bits of the full multiplier A.
The partial multiplier A0 includes every fourth, starting from the least significant, that is, the 1st, 4th
and 7th bits of the full multiplier A: A1=0010 0000 10002. The second partial multiplier A1 contains
the 2-nd, 5-th and 8-th digits of the full factor A: A2=0000 1001 00002.The last, third partial factor is:
A3 = 0001 0100 01002.

It is quite obvious that the disjunction of all partial factors is equal to the factor A of the modular
product: A1∪A2 ∪… ∪As = A, and the conjunction of partial products is equal to zero: A1∩ A2 ∩…

29 Information, Computing and Intelligent systems № 3

∩As = 0. This means that the modular product A⋅B mod X is equal to the sum of modular products of
partial factors and multiplier B:

mmBAmBA

s

i
i mod)mod(mod

1
∑
=

⋅=⋅ (2)

Therefore, the separation of the significant digits of the factor A by partial factors A1, A2, …, As,
which are independently modularly multiplied by the multiplier B, provides an increase in the speed
of calculating the modular product due to the parallelization of the process of modular multiplication.
In addition, the predominance of zeros in each of the partial factors, which are independently
multiplied by the multiplicand, creates conditions for the effective use of precalculations in the
process of calculating modulo modulus residues using the Montgomery technology [2].

Montgomery's algorithm is funded on the idea of replacing the calculation of modular reduction
modulo X with the calculation of reduction modulo M, which is a power of 2, so that division
operations are reduced to shifts.

Montgomery's technology allows instead of calculating Y mod X to calculate R=Y⋅M-1 mod X
without the division operation, where M-1 is the modular inversion of M. After that, to obtain Y mod
X the calculated value of R is multiplied by M mod X: Y mod X = (Y⋅M-1 mod X⋅ M mod X) mod X =
(Y⋅M⋅M-1) mod X = (Y⋅1) mod X. Thus, to compute Y mod X one must compute M mod X. However,
in practice, applying the Montgomery reduction X < M < 2⋅X, so that M mod X = M-X. That is, the
calculation of M mod X is reduced to one operation of subtracting N-bit numbers. Usually M=2N, and
the module X is a number of length N binary digits, and the most significant bit of the binary
representation of X equal to one: XN-1=2N-1.

When calculating A⋅B mod X, the complexity of pre-computation and post-computation must be
taken into account. If we take into account the complexity of calculating the modular product, taking
into account the correction, which again requires the operation of modular multiplication by the
modular inversion of 2N modulo X, and multiplying it by the result using the Montgomery algorithm,
then it turns out that the complexity will be 4⋅X⋅(X+1). This means that when performing a single
operation of modular multiplication, the Montgomery algorithm has no obvious advantages over the
basic algorithm.

An analysis of these features allows us to formulate requirements for the organization scheme
of partial calculations. The implementation of this computation, together with the preservation of the
general principles on which the Montgomery algorithm is based (for example, minimization of all
intermediate results by replacing them with smaller numbers congruent in a given modulo), allows
us to obtain a working algorithm of parallel multiplication, which is more efficient. In this case, the
organization of calculations must be single-pass: to obtain the result of modular multiplication, the
calculation cycle must be performed only once. The classical Montgomery algorithm does not satisfy
this requirement, because it is two-way. To form a general result based on the results of partial
multiplications, the maximum load of processor cores is required.

As pointed, a characteristic feature of the declared variant of dividing the factor A into partial
factors is the presence of local groups of zeros, the number of which is not less than s. This allows us
to solve the problem of accelerating the calculation of the modular product by adding to the
intermediate result not a module, but a linear combination of the module P(X) chosen in such a way
that the lower s digits of the sum of the intermediate result and this linear combination Y+P(X) are
equal to zero. Accordingly, after that, the resulting sum is shifted to the right by s bits at once without
loss of significant bits. It is quite obvious that such a solution makes it possible to speed up the
reduction of the intermediate result by a factor of s at once. For the practical implementation of the
proposed technology of accelerated calculation of the remainder of the division of the intermediate
result by the module X it seems necessary to calculate in advance for each of the 2s options for possible
values of the lower s digits of the intermediate result Y the value of the linear combination of the
module P(X), the lower s digits of which are the algebraic complement of s lower digits of the
intermediate result. The results obtained from such pre-calculations are stored in the form of a table
T of pre-calculations. An example of the table Т precomputation P(X) is given below in Table 1 for
s=3 and the value of the module X= 23⊕29 = 667.

Organization of parallel execution of modular multiplication to speed up the computational
implementation of public-key cryptography 30

The full capacity of table memory for storing the results of precomputations P(X) is N⊕2s bits.
he way of storing P(X) in one table presented above can be considered as a special case of partitioned
organization of tables of precomputation results. The use of multi-section tables can significantly
reduce the amount of memory for their storage.

For example, under the conditions of the above example of the implementation of accelerated
multiplication of 2048-bit numbers on an 8-bit microcontroller with two-section memory, the amount
of memory required will be 8.57 times less than with a single-section organization of table memory.
On the other hand, the use of a multi-section organization of table memory is associated with an
increase in the execution time of modular reduction.

Table 1.
Linear Combination Precomputation Example P(m)

for module X= 23⋅29 = 667 and S=3

low-order Y P(X) low-order P(X)
y3 y2 y1 p3 p2 p1

0 0 1 3335 = 4⊕X + X 1 1 1
0 1 0 1334 = 2⊕X 1 1 0
0 1 1 4669 = 4⊕X + 2⊕X + X 1 0 1
1 0 0 2668 = 4⊕X 1 0 0
1 0 1 667 = X 0 1 1
1 1 0 4002 = 4⊕X + 2⊕X 0 1 0
1 1 1 2001 = 2⊕X + X 0 0 1

The presented method of modular multiplication with parallelization of calculations on s

processor cores involves the simultaneous execution of procedures for calculating partial products on
all processor cores, followed by their cascaded modular summation to reduce the time of generating
the result of modular multiplication.

In this case, the procedure for calculating a partial modular partial product consists in
performing the following sequence of actions:

1. The counter h of cycles is set to zero, as well as the Y code of the current result h=0; Y =0.
2. The partial factor Ar with the number r is shifted to the right by r-1 binary digits: Ar=Ar>>(r-

1) with the high digits filled with zeros.
3. If the least significant digit of the partial product Y is equal to one: y1 =1, then the multiplier

B is added to the result code: Y += B.
4. If the value of the counter h of cycles is a multiple of the value s, then go to step 6.
5. To the code of the partial product Y the tabular code T[l], is added, addressed by s least

significant digits of the result code l = y1 + 2⊕y2 + … + 2s-1⊕ys: Y += T[l].
6. Result code Y and multiplier B are shifted s bits to the right: Y= Y>>s; B = B>>s. The cycle

counter h of the algorithm is increased by one: h++, the transition to the repeated execution of
paragraph 3 of the algorithm is performed.

7. To the code of the partial product Y, the tabular code T[l] is added, addressed by s-r lower
significant digits of the result codel = y1 + 2⊕y2 + … + 2s-r-1⊕ys-r+1: Y += T[l].

8. The Y result code is shifted s-r bits to the right: Y = Y >>s-r.
9. End.

 After performing the described procedure, Y has generated a modular product code containing A⋅B⋅M-

1 mod X, where M-1 is the multiplicative inversion of M=2N modulo X. To obtain the correct result,
the resulting Y code must be modularly multiplied by M: Y' = M⋅Y mod X. However, when performing
the operation of modular multiplication as a component of modular exponentiation, corrective
multiplication by code M is performed only once, after all cycles of the classical algorithm of modular
exponentiation have been executed.

31 Information, Computing and Intelligent systems № 3

Evaluation of the effectiveness of the method of parallel modular multiplication
It is expedient to estimate the efficiency of the proposed method of modular multiplication by

means of the achieved acceleration of the computational implementation of this operation when using
s processor cores. The numerical expression for the acceleration estimate can be the coefficient q,
which is determined by the ratio of the time t1 for performing modular multiplication in the form of
a single process using the Montgomery reduction to the time t for performing this operation in the
form of s parallel processes using the developed method:

 kt
tq 1= (3)

The time t1 of performing the operation of modular multiplication on one processor using the
alternation of the multiplication cycle and the reduction of the precalculation result is determined by
the execution time of n cycles by the number of digits of the numbers. Each cycle, depending on the
value of the current digit of the multiplier A в, the addition of the multiplier B to the code of the
precalculation result Y is performed or not performed. After that, depending on the value of the least
significant digit of the received sum Y, the addition of the module X to the code of the precalculation
result Y is performed or not performed. ends with shifting the precalculation result code to the right
by one bit. Thus, the cycle, on average, contains two operations on n-bit numbers. If the execution
time of these operations is denoted by tN, then t1=2⋅N⋅tN.

The developed procedure provides for the implementation of the multiplication of the multiplier
by the partial factor in the form of N/s cycles, in each of which the following is performed: adding
the multiplicand to the result if the least significant bit of the partial factor is equal to one, adding the
code from the precalculation table to the result, as well as shifting the multiplier and the result to the
right. Accordingly, the average number of operations on n-digit numbers is 3.5, and the value
tX=3.5⋅N⋅tN/s. Thus, the numerical value of the acceleration coefficient q is determined by the
following formula:

s

s
Nt

tN
t
tq

N

N

k

⋅≈
⋅⋅

⋅⋅
== 57.0

5.3

21 (4)

Experiments on multi-core processors using a specially developed program showed the role of
the acceleration factor equal to 0.5⋅s, close to the predicted theoretical estimate.

Conclusion

As a result of the research aimed at increasing the speed of computer implementation of modular
multiplication - the basic operation of public key cryptography based on unsolvable mathematical
problems of number theory, the following results were obtained:

Theoretically substantiated, developed and investigated a method for parallelizing the operation
of modular multiplication in the form of s independent parallel processes that can be executed on the
cores of modern processors, a distinctive feature of which is the division of significant digits of the
multiplier into different processes, due to which parallelization is ensured, which allows achieving
real acceleration performing this important operation for cryptographic applications. The processing
of insignificant digits of partial factors is performed in the form of Montgomery group reduction,
which is an additional acceleration factor. To implement group reduction, precomputation tables are
used, which depend only on the module and practically do not change, since the module is part of the
public key of cryptosystems.

It has been theoretically and experimentally proven that the presented method makes it
possible to speed up the computational implementation of modular multiplication by 0.57⋅s times.

The developed method is focused on application in multi-core computer systems to accelerate
the implementation of a wide range of cryptographic data protection protocols with a public key.

Organization of parallel execution of modular multiplication to speed up the computational
implementation of public-key cryptography 32

References
1. Kabir L.A. The method of accelerating modular multiplication according to Montgomery

technology / L.A. Kabir, O.V. Rusanova, I.O. Humenyuk //Almanac of Science No. 1(52).-
2022.- P.44-46.

2. Tribunska K.E. The method of accelerating modular multiplication using group reduction
/K.E. Trybunska // Current issues of the development of science and education: materials of
the M International Scientific and Practical Conference in Lviv, March 30-31, 2022.-Lviv:
Lviv Scientific Forum, 2022.- P.38-46.

3. Giorgi P. Parallel modular multiplication on multi-core processors. / Giorgi P., Imbert L.,
Izard T. // IEEE Symposium on Computer Arithmetic, Apr 2013, Austin, TX, United States.
- R.135-142.

4. Boyarshin I. Method of accelerated modular multiplication with Montgomery group reduction
/ I. Boyarshin, O. Markovskyi, B. Ostrovska // Proceeding of International Conference
Security, Fault Tolerance, Intelligence. ICSFTI-2022, - Kyiv. - P.40-45.

5. Buhrow B. Parallel modular multiplication using 512-bit advanced vector instructions: RSA
fault-injection countermeasure via interleaved parallel multiplication / Buhrow B., Gilbert B.,
Haider C. // Journal of Cryptographic Engineering.-2021.- No. 2.- R. 46-53.

6. Osadchyy V. The Order of Edwards and Montgomery Curves «, / V.Osadchyy // WSEAS
Transactions on Mathematics, - 2020.- Vol. 19.- No. 25, - P. 253-264.

7. Haches G. Montgomery multiplication with no final subtraction./ G. Haches, J.J. Quisquater
// Cryptographic Hardware and Embedded System - CHES'2000. LNCS-1965, Springer-
Verlag. — 2000.- R. 293-301.

8. Markovskyi O.P. The method of accelerating exponentiation using recalculations / O.P.
Markovskyi, O.V. Rusanova, A.A. Olievskyi, V.M. Cherevyk // Telecommunication and
information technologies. - 2018.- No. 1(58). - P.31-39.

9. Elfard S. Justification of Montgomery Modular Reductions / S. Elfard //Advanced
Computing.- 2012. - No. 11. – P.41-45.

10. Anisimov A.V. Fast direct calculation of modular reduction // Cybernetics and system
analysis.-1999.-№ 4.-S.3-12.

11. Kawamura S. A fast modular exponentiation algorithm / S. Kawamura, K. Takabayashi, A.
Shimbo // IEEE Transaction on Information Theory. – Vol. 94. - No. 6. - 2015. - P.2136-2142.

12. Samofalov K.G. Effective realization of multiplicative operations of modular arithmetic in
information protection systems/ K.G. Samofalov, H.M. Lutskyi, // Proceeding of International
scientific conference UNITECH-09. Gabrovo November 20-21, 2009.- Technical University
of Gabrovo. - 2009.— V.1.— P.435-437.

13. Che Wun Chion. Parallel modular multiplication with table look-up. / Che Wun Chion, Ted
C. Yang // International Journal of Computer Mathematics.-1998.-Vol.69.-Issue 1-2.- P.22-
23.

14. Anisimov A.V. Algorithmic theory of large numbers / A.V. Anisimov // K.:
Akademperiodika. —2001. — P.153.

15. Blum T., Paar C. Montgomery Modular Exponentiation on Reconfigurable
Hardware.//Proc.14-th IEEE Symp.on Comput. Arithmetic, Adelaide, 14-16 April 1999, -
IEEE Press,-1999- P.70-77.

	DESIGN OF DATA BUFFERS IN FIELD PROGRAMMABLR GATE ARRAYS
	Introduction
	Methods for the buffer design
	Goals of the investigation
	FPGA resources for the buffer design
	Spatial SDF method
	Method for the buffer design
	Experimental results
	Synthesis framework
	Conclusions
	References

	ORGANIZATION OF FAST EXPONENTIATION ON GALOIS FIELDS FOR CRYPTOGRAPHIC DATA PROTECTION SYSTEMS
	Introduction
	Problem statement and review of methods for its solution
	Purpose and objectives of research
	Accelerated squaring method on Galois fields with Montgomery group reduction.
	Analysis of the obtained results
	Conclusion
	References

	ORGANIZATION OF PARALLEL EXECUTION OF MODULAR MULTIPLICATION TO SPEED UP THE COMPUTATIONAL IMPLEMENTATION OF PUBLIC-KEY CRYPTOGRAPHY
	Introduction
	Problem statement and review of methods for its solution
	Purpose and objectives of research
	The method of parallel calculation of the modular product on multicore processors
	Evaluation of the effectiveness of the method of parallel modular multiplication
	Conclusion
	References

	SIMULATION OF FLUID MOTION IN COMPLEX CLOSED SURFACES USING A LATTICE BOLTZMANN MODEL
	Introduction
	Literature review
	Methodology
	Experiments
	Results
	Conclusions
	References

	ZERO-KNOWLEDGE IDENTIFICATION OF REMOTE USERS BY UTILIZATION OF PSEUDORANDOM SEQUENCES
	Introduction
	Problem statement and review of methods for its solution
	Purpose and objectives of research
	The method of implementing the concept of "zero knowledge" using pseudo-random sequences for subscriber identification
	Effectiveness evaluation of the method
	Conclusion
	References

	ORGANIZATION OF PROTECTED FILTERING OF IMAGES IN CLOUDS
	Introduction
	Problem statement and review of methods for its solution
	Purpose and objectives of research
	Method of homomorphic encryption of image upon arithmetic mean filtration
	Evaluation of the developed method effectiveness
	Conclusion
	References

	FAST SECURE CALCULATION OF THE OPEN KEY CRYPTOGRAPHY PROCEDURES FOR IOT IN CLOUDS
	Introduction
	Problem statement and review of methods for its solution
	Purpose and objectives of research
	The method of protected modular exponentiation in the cloud based on multiplicative-additive exponential decomposition
	Evaluation of the developed method effectiveness
	6.Conclusion
	References

	METHODS OF EFFECTIVIZATION OF SCALABLE SYSTEMS: REWIEW
	Introduction
	Reasons for limitation
	Analysis of the subject area
	Quantum computing
	Dataflow as alternative paradigm.
	Network level and its specifics

	Comparative analysis
	Discussions
	Conclusions
	References.

	MODERN INFORMATION SYSTEMS SECURITY MEANS
	Introduction
	Information security threats: categories and specifics
	Threat analysis techniques
	Malicious threat detection techniques
	Conclusions
	References

	OVERVIEW OF OCR TOOLS FOR THE TASK OF RECOGNIZING TABLES AND GRAPHS IN DOCUMENTS
	Introduction
	OCR systems development
	The modern state of OCR processing for technical documents
	Conclusion
	Directions for future research
	References

	ABSTRACTS
	DESIGN OF DATA BUFFERS IN FIELD PROGRAMMABLR GATE ARRAYS (р. 4-17)
	ORGANIZATION OF FAST EXPONENTIATION ON GALOIS FIELDS FOR CRYPTOGRAPHIC DATA PROTECTION SYSTEMS (p. 18-26)
	ORGANIZATION OF PARALLEL EXECUTION OF MODULAR MULTIPLICATION TO SPEED UP THE COMPUTATIONAL IMPLEMENTATION OF PUBLIC-KEY CRYPTOGRAPHY (p. 27-33)
	SIMULATION OF FLUID MOTION IN COMPLEX CLOSED SURFACES USING A LATTICE BOLTZMANN MODEL (p. 34-42)
	ZERO-KNOWLEDGE IDENTIFICATION OF REMOTE USERS BY UTILIZATION OF PSEUDORANDOM SEQUENCES (p. 43-50)
	ORGANIZATION OF PROTECTED FILTERING OF IMAGES IN CLOUDS (p. 51-57)
	FAST SECURE CALCULATION OF THE OPEN KEY CRYPTOGRAPHY PROCEDURES FOR IOT IN CLOUDS (p. 58-64)
	METHODS OF EFFECTIVIZATION OF SCALABLE SYSTEMS: REWIEW (p. 65-79)
	MODERN INFORMATION SYSTEMS SECURITY MEANS (p. 80-89)
	OVERVIEW OF OCR TOOLS FOR THE TASK OF RECOGNIZING TABLES AND GRAPHS IN DOCUMENTS (p. 90-97)

	АНОТАЦІЇ
	РОЗРОБКА БУФЕРІВ ДАНИХ НА ПРОГРАМОВАНИХ ЛОГІЧНИХ ІНТЕГРАЛЬНИХ СХЕМАХ
	ОРГАНІЗАЦІЯ ШВИДКОГО ЕКСПОНЕНЦІЮВАННЯ НА ПОЛЯХ ГАЛУА ДЛЯ СИСТЕМ КРИПТОГРАФІЧНОГО ЗАХИСТУ ДАНИХ
	ОРГАНІЗАЦІЯ ПАРАЛЕЛЬНОГО ВИКОНАННЯ МОДУЛЯРНОГО МНОЖЕННЯ ДЛЯ ПРИСКОРЕННЯ ОБЧИСЛЮВАЛЬНОЇ РЕАЛІЗАЦІЇ КРИПТОГРАФІЇ З ВІДКРИТИМ КЛЮЧЕМ
	SIMULATION OF FLUID MOTION IN COMPLEX CLOSED SURFACES USING A LATTICE BOLTZMANN MODEL
	ІДЕНТИФІКАЦІЯ ВІДДАЛЕНИХ КОРИСТУВАЧІВ З НУЛЬОВИМ РОЗГОЛОШЕННЯМ З ВИКОРИСТАННЯМ ПСЕВДОВИПАДКОВИХ ПОСЛІДОВНОСТЕЙ
	ОРГАНІЗАЦІЯ ЗАХИЩЕНОЇ ФІЛЬТРАЦІЇ ЗОБРАЖЕНЬ В ХМАРАХ
	ШВИДКЕ ЗАХИЩЕНЕ ОБЧИСЛЕННЯ В ХМАРІ ПРОЦЕДУР КРИПТОГРАФІЇ З ВІДКРИТИМ КЛЮЧЕМ ДЛЯ IoT
	МЕТОДИ ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ МАСШТАБОВАНИХ СИСТЕМ: ОГЛЯД
	СУЧАСНІ ЗАСОБИ БЕЗПЕКИ ІНФОРМАЦІЙНИХ СИСТЕМ
	ОГЛЯД ІНСТРУМЕНТІВ OCR ДЛЯ ЗАВДАННЯ РОЗПІЗНАВАННЯ ТАБЛИЦЬ І ГРАФІКІВ У ДОКУМЕНТАХ

