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An overview of high-level synthesis (HLS) systems for designing pipelined datapaths is 

presented in the paper. The goal is to explore methods of mapping algorithms to the pipelined 

datapaths implementing the cyclic data flow graphs with dynamic schedules. The proposed method 

involves describing cyclo-dynamic data flow graphs in VHDL and optimizing them. Through 

examples like sequence detector and LZW decompressor, the method is demonstrated to be effective 

and can be implemented in HLS tools for field programable gate arrays. 
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1. Introduction 

The high-level synthesis (HLS) systems are increasingly distributed by companies producing 

CAD tools for integral circuit and FPGA design. They are intended, in general, to speed up the 

computer-aided design of hardware devices. The user using such a system can describe the parallel 

algorithm and map it automatically into hardware described at the register transfer level (RTL). 

Next, the RTL description is transformed into the gate-level description using the proper compiler-

synthesizer. The use of HLS systems makes it possible to speed up the design process tenfold [1]. 

Among HLS compilers the industrial compilers like Intel Data Parallel C++ [2], AMD-Xilinx 

Vitis HLS [3], Cadence C-to-Silicon compler, named Stratus HLS [4], Calypto Catapult HLS [1], are 

well-known. The initial algorithms for them are written in C/C++ language. But this language is not 

intended for the parallel algorithm representation. To do this, the HLS user has to add special 

pragmas and functions in the program to express the parallelism explicitely. As a result, the designed 

project effectiveness strongly depends on the designer`s skills. 

MathWorks HDL Coder provides mapping both Matlab codes and Simulink graphical 

algorithm representation into the pipelined datapath [5]. The Catapult HLS compiler is able to map 

the graphical representation as well. In both situations, the algorithm expressess its parallelism 

explicitely by the synchronous dataflow (SDF) graph. This helps to get more effective hardware 

solutions. 

However, HLS still does not provide a decent minimization of hardware costs of synthesized 

pipelined datapaths compared to the manual design. So, the most of integral circuit or FPGA projects 

are performed using the traditional register transfer level (RTL) description. Therefore, it is 

necessary to search for new methods of mapping algorithms into hardware computing devices. 

Existing methods of mapping the data flow graphs of various types have found application in the 

program compilation, but they are rarely used in hardware design [6, 7]. 

In this paper, we examine the methods of pipelined datapath design that are already known. 

Through these methods of analysis, it is possible to select a method for designing pipelined datapaths 

based on cyclic data flow graphs with dynamic scheduling that focuses on algorithm execution. 

Using a VHDL language, a cyclo-dynamic data flow graph (CDDF) is mapped into the datapath 

accompanied by the finite state machines (FSMs). 
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2. Pipelined datapath design using dataflow graphs. A review 

Typically, datapath design involves describing the algorithm with a dataflow graph (DFG) and 

control flow graph, and mapping them into hardware. In such a mapping, three steps are sequentially 

executed: resource selection, operation scheduling, and operation assignment. After that, FSM is 

designed along with the interconnection scheme drawing. In spite of this, the quality of the resulting 

device is strongly influenced by the efficiency of the various steps of synthesis, each of which is 

focused on a specific objective. So, the resource selection intends to minimize hardware and 

operation scheduling does the time of the algorithm execution.  

A very popular FSM with datapath (FSMD) design method is based on this approach. It 

synthesizes both the datapath and FSM that controls it [8]. A large set of algorithms can be 

implemented using this method. However, it cannot be directly used for synthesis of pipelined 

datapath that has high throughput. 

 For the synthesis of pipelined computers, the method of mapping the synchronous data flow 

graphs (SDF) has become widespread [9]. Such a graph consists of operator nodes and directed 

edges connecting them. It is considered that the operator in the node is executed (fired) immediately 

as soon as data (tokens) appear at its inputs, and then it outputs the results in its output edges. An 

edge serves in SDF as a dataflow and has a buffer to store the data. Usually, this is a FIFO buffer. It 

is represented graphically by thick dashes across the edge, that correspond to register delays.  

If all data in the dataflows are one-to-one correlated, the dataflow graph is a synchronous one. 

For example, the data have indices, which linearly depend on the iteration number. Therefore, the 

execution of the algorithm on SDF has a constant period during which each node consumes and 

generates the same number of tokens [10]. Because of this, SDF is classified as a statically scheduled 

dataflow graph (SSDF) [11]. 

In a single-rate or uniform SDF, inputs and outputs of nodes consume and produce the same 

number of tokens during the calculation period. This helps to map such an SDF into a pipelined 

datapath that executes an algorithm with a period of one cycle. This mapping is based on the 

following. The nodes correspond to the logical circuits that calculate operators. The edges and their 

register delays are mapped into the communication lines and pipeline registers respectively [12].  

The representation of SDF in a multidimensional space makes it possible to formally design 

the pipelined datapaths with a given period of algorithm execution [13]. The SDF use is limited by 

the set of algorithms in which nodes execute the same operations in each period.   

The cyclo-static dataflow (CSDF) is a more general model than SDF. It considers that the 

actors can have different numbers of executed tokens in different firings, but the amount of these 

tokens in a single cycle is stable. Therefore, such a model provides a static schedule [14].  

The parametrized SDF (PSDF) is a more general and impressive model of the cyclic 

algorithms. It considers that the nodes can perform a set of different operations, which can be 

switched depending on the configuration of tokens in the node inputs. Moreover, the graph can be 

hierarchical, i.e., its node can be expanded as some SDF or FSM [15].  

But CSDF, SSDF, and PSDF could not express the algorithms in which the operator execution 

is performed dynamically depending on the data. They are practically used only in the automatic 

programming but not in the hardware design [6, 15].  

The DFG with the dynamical shedule, the dynamic dataflow (DDF) model could not get its 

schedule at compile time. The specific time period of the node firing is derived for it only during the 

algorithm execution for concrete input data set. In such an algorithm execution, the deadlock hazard 

can occur. However, the most of practical algorithms belongs to this cathegory. They are 

programmed and tested with the concrete data sets detecting the possible deadlocks. But they are 

implemented in hardware very rarely. 

The core functional dataflow (CFDF) model of computation is a highly expressive DDF model 

with the properties of PSDF, in which the blockings of the node firings are removed using specific 

rules of such firings [16]. This model is concretized in the dataflow schedule graph (DSG). Such a 

graph represents the time-multiplexed execution of CFDF across a set of hardware resources [17]. 

However, DSG finds the effective implementation only in the multithreading programming [6]. 
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There is a wide class of cyclic algorithms which could not be represented by SDF, CSDF, or 

SSDF. However, they are less expressive than CFDF algorithms. They distinguished in that the 

algorithm period depends on the data which it executes. For example, it is the compression 

algorithm, each output code calculation period is variable and strongly depends on the data. 

Therefore, such an algorithm has a dynamic schedule and the respective computation model is 

named cyclo-dynamic dataflow (CDDF) [18]. The hardware implementation of such an algorithm is 

performed usually by the FSMD method, and therefore, it is complex and often ineffective. Consider 

the design of a new method of mapping CDDF into the pipelined datapath. 

 

3. The aim and objectives of the research 

The aim of the research is a new method of mapping CDDF into the pipelined datapath. The 

objectives are mapping conditions formulation, graph node mapping details, graph optimization 

method selection, and the proposed method validation.  

 

4. Method of mapping cyclo-dynamic dataflow 

4.1. Prerequisites for the method creation 
The method is intended for the design of pipelined datapaths on FPGAs. This means that the 

dataflow implementation and hardware execution of the FPGA architecture must be considered. And 
a CDDF model arrangement must ensure both correct hardware implementation and deadlock 
absence. 

CDDF can be mapped into the pipelined datapath as well as homogeneous SDF can be. Such a 
mapping is possible when a set of conditions is satisfied. Firstly, the necessary conditions are that 
CDDF must be deterministic and free of deadlocks [18]. Each CDDF node is mapped into the 
respective logic scheme. Then, the dataflow represented by a weighted edge is mapped into the 
respective register chain or FIFO buffer. Finally, when the resulting structure is described by some 
hardware description language like VHDL the conditions of proper mapping into hardware must be 
satisfied.  

So, the mapping conditions are the following. 
1. The control token must have a limited number of values, which indicate dynamic behavior. 

It must be present in the same phase (iteration) where it determines which phase should be executed, 
and it must not be affected by the input datum value or index. [14]. 

2. The graph should not have cycles of dependencies without any delay in the edges [14]. Due 
to this condition, the corresponding data dependency graph has no dependency cycles and, therefore, 
provides structural solutions without blocking. As a result, there will be no loop in the combination 
circuit, which will result in an unintended latch [18]. 

3. All delays that load the edges must have the initial data or tokens; this condition is named 
the live cycle condition [19]. 

4. CDDF is a cycle-based model. Each cycle executes a different number of iterations. As in 
the homogeneous SDF [14, 19], each node must consume and generate tokens at the same rate each 
iteration. 

5. When a cycle is completed, CDDF must return to its initial state. This ensures the period-
safety of CDDF [19].  

6. FSM which generates the control tokens must be determined one and none deadlock must be 

in it.  

7. The logic scheme which is described in the VHDL language using the process operator, 

must use the IF-THEN-ELSE and CASE logical operators. The deadlock free condition is that the 

ELSE alternative and all alternative branches of the CASE statement are present. The similar 

features have the WHEN-ELSE and WITH-SELECT operators as well [20]. 

8. The dataflow is described in the VHDL language as a process that is triggered by the edge of 

a common clock signal, in which assignments are made to the signals that mark the FIFO registers 

[20]. 

CDDF is mapped into hardware as its description in VHDL along with the FSM descriptions. 

The pipelined datapath is described as a set of descriptions of the graph nodes. Each node along with 

the adjacent output edges are described by one process operator which is sensitive to the common 
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clock signal. However, a set of such process operators can be combined into a single process 

operator [21]. 

The CDDF elements have a symbolic representation, such as SDF elements. The examples of 

which are shown in Fig. 1. So, the counter is set using the incrementing node of and register delay as 

in Fig. 1, a. At the node inputs, the enable, initialization control data as well as the data stored in the 

register delay are inputted. A similar counter but with a separate output edge is shown in Fig. 1, b.  

If the random access memory (RAM) is the mapping target, then the specific subgraph of 

CDDF is related to it. The Block RAM (BRAM), which is used in FPGA, has storage as the register 

set, writing data register, write and read address registers, and respective write address decoder and 

read data multiplexor. The corresponding subgraph has a node for data writing (MW), storage, and 

reading data node (MR) (Fig. 1, c). Nodes MW and MR have the data D and address A inputs. The 

storage itself is depicted by a long bar. The edge that passes through the storage bar is also thickened 

because it characterizes n data buses that are attached to n registers of the storage. 

The subgraph of FSM consists of the node that forms the next state (NS) based on the input 

signal X, the output state (OS) node, which forms the output data Y, and the state register (ST) which 

loads the edge connecting both nodes (Fig. 1, d). 

 

        
 

Fig. 1. Some CDDF element graphical representations: a – counter with output from the 

register, b – counter with output from the incrementor node, c – BRAM, d – FSM. 

 

4.2. CDDF Optimization 

When synthesizing the pipeline datapath, SDF is optimized by shortening the critical path in 

the corresponding datapath circuit, and then, optimized SDF is mapped to the datapath. The retiming 

procedure is recognized as a universal method of optimizing SDF, and it consists of such a 

permutation of delays in edges that does not disrupt the general execution of the algorithm. The 

pipelining method is most often used for SDFs, according to which the same number of delays is 

inserted into the edges, which are directed in the same direction relative to the graph intersection. 

The pipelining is similar to the retiming because it shortens the critical path as well. But at the same 

time, the latent delay of the algorithm increases [22]. Likewise, CDDF can be optimized using the 

retiming and pipelining methods. 

 

4.3. Method of mapping CDDF into pipelined datapath 

The method is intended for design of pipelined datapaths, which are configured in FPGAs and 

execute the algorithm using a period of one clock cycle. Initial data for design are: 

– a dataflow algorithm that is represented as CDDF and that can use access to single or multi-

port memory, which has the control part like FSM; 

– effectiveness criterion tC as the minimum period of the clock interval; 

– library of FPGA elements of a certain series, which includes registers, adders, and BRAM 

with specific delays. 

Design results are the device description in VHDL or Verilog, which is ready for synthesis and 

further configuration in FPGA. 

1. Representation of the algorithm in the form of CDDF. The functions performed by the logic 

circuits are represented by the corresponding nodes. The data transfer between the nodes along with 

the corresponding delays for the required number of clock cycles are represented by edges loaded by 

the respective delays. The functions of storing data into BRAM and reading these data are 
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represented by the subgraph like the one in Fig. 1, c. The control FSM is represented by the subgraph 

like the one in Fig. 1, d. The derived CDDF must satisfy the necessary conditions to be deterministic 

and free of deadlocks mentioned above. 

2. Optimization of CDDF using pipelining and retiming. The goal of optimization is to 

minimize the value tC of the maximum clock signal period. It is approximated by the critical path in 

CDDF.  

3. Mapping optimized CDDF to the hardware. At the same time, nodes with outputted edges 

incident to them are described by VHDL language process operators or Verilog language Always 

constructs. The FSM is described as a separate process. The resulting VHDL or Verilog program is a 

description of the functional scheme at the level of register transfers of a pipeline computer that 

executes a given algorithm with a period of one cycle, which is minimized in terms of duration. 

The following should be taken into account during the optimization of CDDF. The critical path 

tC in CDDF is the maximum path delay. It is determined as a sum of delays in the logic circuits 

which are relevant to the nodes that belong to the path between two edges loaded by registered 

delays: 

  tC = max 
i

 tPi,      (1) 

where tPi is the delay of the i-th node of the P-th type which belongs to the considered path. It should 

also be noted that in modern FPGAs, the share of delay in the interconnection lines reaches 60-90%, 

and the delay in logic circuits accounts for 10-40% of the total delay, respectively. Therefore, the 

final decision to obtain an optimized project should be made after processing the VHDL file with a 

compiler-synthesizer, placer, and router of the FPGA CAD tool which calculate the formula (1) 

automatically. 

 

5. Experimental results 

5.1. Sequence detector synthesis 

A sequence detector synthesis is excellent example of CDDF mapping into application specific 

hardware because it is both simple and showing all the method features. Such a detector is FSM that 

is designed to determine whether an input string of characters corresponds to a given grammar of a 

particular language or not. In fact, such an automaton performs parsing of input character sequences. 

The software implementation of such FSM is a traditional step in the development of compilers, 

protocol implementation systems, Web applications, etc. Its hardware implementation makes it 

possible to significantly speed up detection, reduce power consumption and is typical in specialized 

devices. 

The characters і  Т of the input words А = 12…n from the input stream belonging to the 

alphabet of terminal symbols of the language L are sequentially fed to FSM input. Among the 

symbols in the stream are empty symbols   Т, which separate words from each other and are 

present in every alphabet implicitly. 

When FSM is started or when there is a symbol  at the input, it goes to the initial state S. As 

soon as the first symbol 1  , appears at the input of the automaton, it goes to the next state 

corresponding to the symbol 1 in the expected word. With each new symbol і in the input stream, 

which belongs to a word of language L, FSM moves to the next correct state. Otherwise, it goes into 

error state E, which indicates that the word being analyzed does not belong to language L. 

If FSM is in the state it entered after analyzing the last symbol n in the word, and the next 

symbol is  or a special symbol at the end of the word, then FSM goes to the final state that 

corresponds to the recognized word A. If there are several words in the language L, then several final 

states are possible. 
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In the operation of FSM described above, it is assumed that it receives input symbols from 

some input data stream. In its hardware implementation, the FIFO buffer plays the role of a stream as 

a means of data transfer between computing processes.  

The FIFO buffer together with FSM of the regular expression in the form of CDDF is shown in 

Fig. 2. The FIFO buffer is usually implemented using a cyclic buffer scheme based on RAM and 

write pointer pw and read pointer pr. The subgraph corresponding to the FIFO buffer has a data write 

edge (MW), a BUF buffer, and a data read edge (MR). Edges MW, MR have data input DI and 

address input A. The edges of the increment I1, I2 perform the increment of the states of the pointer 

registers for writing pw and reading pr. 

 

 
 

Fig. 2. CDDF of the sequence detector 

 

After the START input signal, the pointers pw, pr and the status register ST are set to the 

initial state. The input stream of symbols d is fed to the DI input and the symbols are written to the 

BUF memory by the enable signal ED, which also increments the write address pw. When the FIFO 

is full (for example, the pw pointer reaches half of the BUF memory), the full signal is generated, 

which starts the operation of FSM. 

A subgraph represented by FSM consists of a node that forms a next state (NS) based on its 

inputs X, an output control signal (OS) node that forms its output Y, and a state register (ST) that 

loads the edge, which connects both nodes. The FSM outputs are the ipr signal of the read pointer 

increment, the OK device output, signaling that a word has been found, and the ERR output, which 

indicates an incorrect word. 
Consider a sequence detector that recognizes the lines START and STOP. This detector must 

match the following regular expression grammar: 

  G = START + STOP = ST(ART + OP).    (2) 

The corresponding FSM diagram is shown in Fig. 3. Unlike a typical FSM diagram of the 

sequence detectors which are synthesized according to the grammar (2) the state node S1 is added to 

this diagram. FSM enters the state S1 when the START signal arrives, and state S when the FIFO 

input buffer is full. In addition, in the S state, FSM waits for the characters of the words, and FSM 

enters this state after receiving each word.  

One can see that the detector executes the periodical algorithm in which the inner loop (a word 

recogniton) has the number of cycles depending on input data and the outer loop (word flow) which 

is stable. So, this example represents an example of CDDF use. It should be noted that each inner 

loop starts with the same FSM state S. The respective control token full, which is generated by the 

node I1, has two values: true and false. According to the algorithm, the input data are entering 

periodically and therefore, the deadlock with this token must not occur. Therefore, the conditions 

that the control token must have a limited number of values, and that it must be present in the same 

iteration where it determines which phase should be executed, and it must not be affected by the 
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input datum value or index are satisfied. As a result, both CDDF in Fig.2 and FSM diagram in Fig. 3 

satisfy all the mapping conditions described in Section 3.  

 

 
 

Fig.3. FSM diagram of the detector detecting the words START and STOP 

 

The CDDF in Fig. 2 accompanied by FSM diagram in Fig.3 are described by the VHDL 

program shown below. 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.all;  

use IEEE.Numeric_std.all;   
entity DETECT1 is 
 port( CLK :   in STD_LOGIC;   -- Clock  
  RST :  in STD_LOGIC;   -- Reset 
  START:  in STD_LOGIC;     -- input data starting  
  ED :   in STD_LOGIC;    -- data enable 
  DI :   in STD_LOGIC_VECTOR(7 downto 0); -- input data 
  STRT: out STD_LOGIC;   -- START detected 
  STOP: out STD_LOGIC;   -- STOP detected 
  OK :   out STD_LOGIC;  -- is detected 
  ERR :  out STD_LOGIC);  -- error in input data 
end DETECT1; 
architecture beh of DETECT1 is     
     type type8 is array (0 to 15) of unsigned(7 downto 0);--buffer FIFO type 
 signal BUF: type8:=(others=>x"00");   -- buffer FIFO type of the length 16  
 type state is (S, S1,A,B,C,D,E,G,H,K,R);  -- FSM states  
 signal ST: state; 
 signal pw, pr:unsigned(3 downto 0);    -- write and read pointer 
 signal full, ipr: std_logic; 
 signal symb:unsigned(7 downto 0);  -- FIFO output symbol 
begin    
 FIFO:process(CLK,RST, BUF,pw,pr) begin  -- FIFO buffer 
  if RST='1' then 
   pw<="0000";  pr <="0000";   
  elsif Rising_edge(CLK) then    
   if ED='1' then 
    pw<=pw+1;  -- write pointer increment 
    BUF(to_integer(pw))<=unsigned(DI);--input datum  
   end if; 
   if ipr='1' then 
    pr<=pr+1;  --read pointer increment 
   end if; 
  end if; 
  symb<= BUF(to_integer(pr));   -- FIFO outputs a symbol 



11 Information, Computing and Intelligent systems № 4, 2024 

 

  if pw - pr >= 8 then   -- condition that FIFO is full 
   full<='1';     
  else 
   full<='0';  
  end if; 

 end process; 
  
 FSM:process(CLK,RST) begin 
  if RST='1' then 
   ST<= S1; STRT<='0';  STOP<='0';    
              elsif Rising_edge(CLK) then  
   if START='1' then  

    ST<=S1;  -- state register  
   end if; 
   case ST is  
    when S1=>if full = '1' then 
      ST<= S; 
     end if; 
    when S=> 
      STRT<='0'; STOP<='0';      
     if symb = 0 then    
      ST<=S; 
     elsif symb = character'pos('S') then   
      ST<= A;  
     else 
      ST<= E;  
     end if; 
    when A=>if symb = character'pos('T') then 
      ST<= B;  
     else 
      ST<= E;  
     end if;    
    when B=>if symb = character'pos('A') then 
      ST<= C;  
     elsif symb = character'pos('O') then 
      ST<= H;   
     else 
      ST<= E;  
     end if; 
    when C=>if symb = character'pos('R') then 
      ST<= D;  
     else 
      ST<= E;  
     end if;  
    when D=>if symb = character'pos('T') then 
      ST<= G;  
     else 
      ST<= E;  
     end if;   
    when G =>if symb = 0 then 
     ST<= R;  STRT<='1';          --  START flag 
     end if;   
    when H=>if symb = character'pos('P') then 
      ST<= K;  
     else 
      ST<= E;  
     end if;     
    when  K =>if symb = 0 then 
     ST<= R;  STOP<='1';          --  STOP flag 
     end if;   
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    when R =>if   full = '1' then 
      ST<= S;  
     end if;  
    when others=> null; 
   end case;  

  end if; 
 end process;    
 ipr<='1' when ST=S or ST=A or ST=B or ST=C -- increment of reading pointer of FIFO  
   or ST=D or ST=G or ST=H or ST=K else '0'; 
 OK<='1'   when ST=R else '0';        --  output flags 
 ERR<='1' when ST=E else '0';  
end beh; 

 

In this program, the FIFO process describes the input buffer of symbols (four nodes of CDDF 

in Fig. 2), and the FSM process is a finite state machine (two other nodes in CDDF). The bars which 

load the CDDF edges are mapped in the respective models of the registers: pw, pr. FSM actually 

detects sequences. In the case ST operator, the FSM behavior is programmed, the graph of which is 

shown in Fig. 3. The ST signal represents the state register of this FSM. The signal assignment of this 

register is controlled by the long operator case ST. In each alternative when Х of this operator, a 

transition from a given node-state X to another node is coded (Fig. 3) depending on the signals, 

which come from the FIFO buffer (Fig. 2). At the same time, an input symbol is compared with the 

given one: symb = character'pos('S').  

Table 1 shows the hardware volume of the sequence detector in number of look-up tables 

(LUTs), flip-flops (FFs), and configurable logic blocks (CLBs) when it is configured in AMD-Xlinx 

Kintex-7 FPGA. This table shows the maximum clock frequency as well. 

 

Table 1 

Results of the sequence detector synthesis 

Hardware volume Maximum clock 

frequency, MHz LUTs FFs CLBs 

49 14 20 446 

 

The given results show us that the clock frequency is very high and the hardware volume is 

small, so detector synthesis and the proposed method are effective. 

 

5.2. LZW decompressor syntheses 

The LZW loss-less compression algorithm is distinguished in that its decompression turns out 

to be much simpler than the compression is. Because of this, the LZW algorithm is common in 

systems where decompression occurs more often than compression, for example, when 

decompressing GIF files. Therefore, this algorithm is widely used in many applications where the 

decompression is very frequently used, for example, in WEB applications. The paper [23] illustrates 

both the LZW algorithm and its execution in a microprocessor with a specialized architecture by 

hardware-software approach in detail. However, the full hardware implementation of this algorithm 

provides much higher throughput. 

Consider an example of the development of a pipelined module that performs decompression 

in the LZW algorithm which is more sophisticated than the sequence detector algorithm. The LZW 

algorithm is represented by CDDF because, for each input code, it has to get from the dictionary the 

output symbols in sequence. The length of this sequence is variable depending on the input code.  

The synthesis of the LZW decompressor using the method of CDDF mapping is described in 

[24] in detail. The optimized CDDF of the LZW decompressor takes 25 nodes and 35 register delays. 

It contains 2 FSM and 3 FIFO buffer subgraphs like ones in Fig.1 c, d.  

The results of the synthesis of the decompressor for AMD-Xilinx FPGAs using the proposed 

method are presented in Table 2. There, the result of the synthesis of the similar device that performs 
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the same algorithm is given for comparison. This device is built using the traditional method of 

design and invention of its authors. 

The proposed design is implemented in Xilinx Kintex-7 FPGA, and the analogous device is in 

Xilinx Virtex-7 series. It should be taken into account that the FPGAs of the Virtex-7 series have 

slightly better timing characteristics than Kintex-7, however, they are manufactured using the same 

architecture and technology. 

 

Table 2. 

Features of the LZW decompressors configured in AMD-Xilinx FPGA 

Decompressor Hardware volume Maximum clock 

frequency, MHz 

Throughut, 

MB/s LUTs FFs 18k BRAMs 

Proposed  154 162 7 360 205 

Kagawa [25] 213 224 13 296 295 

 

Analysis of Table II shows that the decompressor described in [25] has the highest throughput 

due to excessive built-in RAM block (BRAM) memory volumes. The decompressor developed 

according to the proposed method has a 21% higher clock frequency and 28% lower hardware costs, 

as well as a 46% smaller memory volume compared to the device [25], which has the same 

dictionary volume, and bit sizes of input and output data. It should be noted that BRAM memory is a 

valuable resource, because one block of 18 kilobit BRAM in an AMD-Xilinx FPGA, on average, 

accounts for 800 LUTs. Therefore, the developed decompressor is certainly profitable in terms of 

hardware costs. The received throughput achieves 205 decompressed megabytes per second with an 

average compression ratio of two times.  

So, the use of the proposed method simplifies the design process of the pipelined datapaths, 

compared to the most popular method of FSMD design. It optimizes the project both in clock 

frequency and in hardware volume, providing the effective utilization of the specific blocks of FPGA 

like BRAM. 

 

6. Discussion 

Analysis of Table II shows that the decompressor described in [25] has the highest throughput 

due to excessive built-in RAM block (BRAM) memory volumes. The decompressor developed 

according to the proposed method has a 21% higher clock frequency and 28% lower hardware costs, 

as well as a 46% smaller memory volume compared to the device [25], which has the same 

dictionary volume, and bit sizes of input and output data. It should be noted that BRAM memory is a 

valuable resource, because one block of 18 kilobit BRAM in an AMD-Xilinx FPGA, on average, 

accounts for 800 LUTs. Therefore, the developed decompressor is certainly profitable in terms of 

hardware costs. The received throughput achieves 205 decompressed megabytes per second with an 

average compression ratio of two times.  

So, the use of the proposed method simplifies the design process of the pipelined datapaths, 

compared to the most popular method of FSMD design. It optimizes the project both in clock 

frequency and in hardware volume, providing the effective utilization of the specific blocks of FPGA 

like BRAM. 

 

7. Conclusion 

The graph models of data flow processing algorithms are analyzed and a class of cyclo-

dynamic data flow graphs is selected. A method of designing the pipelined datapath that performs 

cyclic algorithms with a dynamic schedule is proposed. The results of designing a sequence detector 

and a lossless decompression device using this method are given. The method can be used manually 

as well as be implemented in the HLS systems. The next investigation steps will be devoted to 

probing this method for more complex algorithm mapping into FPGA and to designing an automatic 

framework for the pipelined datapath development. 
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У статті представлено огляд систем високорівневого синтезу для проектування 

конвеєрних обчилювачів. Мета полягає в дослідженні методів відображення алгоритмів у 

конвеєрні обчилювачі, що реалізують циклічні алгоритми з графами потоків даних із 

динамічним розкладом. Граф циклодинамічних потоків даних (ГЦДПД) вибрано як виразну 

модель для опису широкої області алгоритмів обробки потоків даних. ГЦДПД відрізняється 

тим, що період алгоритму залежить від обчислених даних і має динамічний розклад. 

Сформульовано набір умов відображення, які забезпечують розклад ГЦДПД без 

взаємоблокувань, коли його відображають у конвеєрний обчислювач. Згідно з 

запропонованому методу, алгоритм представляється ГЦДПД і керуючими автоматами. 

Причому останні є підграфами ГЦДПД. ГЦДПД оптимізується за допомогою методів 

ресинхронізації та конвеєризації. Після цього ГЦДПД та його керуючі автомати описуються 

мовою опису обладнання, наприклад VHDL, так само, як описується граф синхронних 

потоків даних при синтезі конвеєрного обчислювача. Запропонований метод включає 

оптимізацію ГЦДПД та його опис на VHDL для реалізації в програмованих логічних 

інтегральних схемах. На прикладі проєктування детектора послідовностей детально показано 

реалізацію методу. Більш складне відображення алгоритму декомпресії LZW демонструє, що 

запропонований метод досить ефективний і дає в результаті синтезу конвеєрний обчислювач, 

ефективність якого порівнянна з ефективністю найкращого відомого апаратного рішення. 

Метод може бути реалізований в сучасних системах високорівневого синтезу. 

Ключові слова: граф потоків даних, програмована логічна інтегральна схема, VHDL, 

конвеєрний обчислювач, динамічний розклад. 


