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Water drones have significant potential for use in environmental monitoring, search and rescue
operations, and marine infrastructure inspection, but the specific conditions of the water environment
make it difficult to implement stable autonomous navigation.

The object of research presented in this paper is the machine learning process for autonomous
navigation of a water drone model in a simulated water environment. The purpose of the study is to
implement a neural network model for autonomous navigation of a water drone using a reinforcement
learning method that provides improved obstacle avoidance and adaptation to water currents.

To achieve this purpose, a new neural network model for autonomous drone navigation in the
water environment based on the reinforcement learning method is proposed, which differs from the
existing ones in that it uses an improved drone control algorithm that takes into account the speed and
direction of the water current, which makes it possible to stabilize the process of generating neural
network coefficients.

To ensure an effective learning process and optimization of the model, a simulation training
environment was developed using the USVSim simulator, which contains various factors that interfere
with the drone's movement, such as water current and the presence of other objects. The water drone,
acting as an agent, gradually learns to choose the most effective actions to maximize positive rewards
through trial and error, interacting with the environment and adapting to changing conditions. This
process takes place through the use of a Deep Q-Network: the drone provides the value of its current
state to a deep neural network; the neural network processes the data, predicts the value of the most
effective action, and gives it to the agent. The current state of the drone is information in the form of a
set of sensor readings measuring the distance to the nearest obstacles, drone’s heading and current
distance to goal. The value of the effective action received from the neural network is converted into a
command for the rudder that the drone can understand. The value of the drone's thruster power is
calculated by separate formulas using trigonometric functions.

The results of the study showed that the use of the proposed model allows the drone to make
decisions in a dynamic water environment when rapid adaptation to changes is required. The model
successfully adapted its strategy based on feedback from the environment, so it can be concluded that
the implemented model shows significant potential for further research and applications in the field of
autonomous water drones, especially in changing and unpredictable environments.
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1. Introduction
Autonomous water drones, or unmanned surface vehicles (USVs), have attracted considerable
interest in recent years due to their potential to revolutionize industries such as environmental
monitoring [1], maritime search and rescue [2] and infrastructure inspection. These drones are
increasingly valued for their ability to access complex environments, collect real-time data, and
perform tasks that may be too dangerous or inaccessible for human operators. However, effective
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water drone deployment faces unique challenges because aquatic environments present navigational
complexities unlike those found on land or in the air. Various water factors, such as water currents,
for example, can vary significantly in strength and direction, requiring constant adaptation. In
addition, water drones must be prepared for unpredictable obstacles, such as floating debris and other
vessels, which require immediate, context-sensitive responses.

Static control methods used in autonomous vehicles are generally effective in predictable,
controlled environments. However, in real-world aquatic environments where rapid environmental
changes require real-time decision making, they tend to underperform. Reinforcement Learning (RL)
is a method that allows aquatic drones to iteratively learn and optimize their responses to
environmental challenges through a process of trial and error. By constantly interacting with the
environment, RL-trained drones can gain a deeper "understanding" of complex environments,
allowing them to navigate more effectively. The development of new and improvement of existing
machine learning methods for drones can accelerate the process of model training and increase its
adaptability in a dynamic aquatic environment. These advances will not only increase the autonomy
and efficiency of water drones, but also expand the range of their potential applications, making them
more adaptable to work in complex real-world environments. Therefore, the autonomous navigation
of water drones using machine learning is an urgent task to solve.

2. Literature review and problem statement

While analyzing approaches to autonomous navigation, it was found that most of them are
focused on air [3] and land [4] environments. Such approaches, however, cannot be directly applied
in aquatic environments due to specific conditions.

Modern methods for solving the problem of autonomous navigation are divided into two main
types: static and dynamic. Static methods are typically based on the use of a pre-created map or fixed
route, which limits their ability to adapt to changes in the environment. These methods are well suited
for stable and predictable environments (static environments). Dynamic methods, on the other hand,
are designed to adapt in real time, using data from sensors to make navigation decisions even in the
face of uncertainty and unpredictable changes (dynamic environments) [5].

One of the most prominent examples of static methods is the use of the Dijkstra algorithm, a
classic algorithm for finding an optimal path developed by Dutch scientist Edsger Dijkstra in 1959.
This algorithm is used to find the shortest path in a weighted graph from one vertex to all others [6].
By using a pre-created map, Dijkstra's algorithm can determine the optimal route between given
points, taking into account all known obstacles on the way and building the shortest path in a static
environment.

Dynamic methods to autonomous navigation, as opposed to static methods, use real-time data
from sensors and other sources, enabling systems to respond quickly to changes in the environment.
They continuously take into account changing navigation conditions and unpredictable obstacles,
providing greater flexibility and the ability to make independent decisions in complex situations.

The Rapidly Exploring Random Tree (RRT) algorithm is an example of a dynamic methods to
autonomous navigation. It builds a tree of possible trajectories by randomly selecting points in space
and connecting them to the nearest vertices of the tree [ 7]. If the connection passes through free space
and meets the constraints, the new state is added to the tree. The tree grows in the direction of large
unexplored areas, which helps to cover the entire space. The length of the connections is limited by
the growth factor: if a random point is too far away, a state at the maximum allowed distance is added.
Thanks to this, the RRT algorithm works efficiently in complex environments with unpredictable
obstacles, quickly finding a passable path, although without a guarantee of optimality.

Another interesting dynamic method for solving the problem of autonomous navigation is
reinforcement learning, a machine learning method where an agent learns to make decisions through
interaction with its environment [8]. An autonomous agent is any entity (or system) that can make
decisions and act according to its environment. This method is based on the state-action-reward
sequence, where the action chosen by the agent brings a reward or punishment. Over time, the agent,
learning from rewards and punishments, masters actions that help achieve its goal in the environment.



6 Information, Computing and Intelligent Systems N2 5, 2024

To solve the problem of autonomous navigation of a water drone, the agent must receive a large
positive reward when reaching the target point, and a large negative reward when encountering an
obstacle.

According to the study [9], unmanned surface vessels (or water drones) face a number of
challenges when trying to achieve autonomy. One of the key challenges is environmental perception,
as safe autonomous navigation requires accurate recognition and assessment of sea conditions. An
efficient decision-making process is also important: water drones need to process information in real
time and autonomously select appropriate actions for maneuvering. The control algorithms must be
advanced enough to manage the dynamic movements of the vessel, adapting to changes in
maneuvering conditions. In addition, the level of autonomy must vary depending on the situation,
which requires flexibility and additional customization of the systems. Finally, for reliability,
comprehensive testing under different conditions is required to verify the capabilities of the
autonomous mooring system and ensure its safety and stability.

One of the possible solutions to the problem of autonomous navigation of water drones is
proposed in the research [10]. This research is based on the use of machine learning, namely the use
of various Deep Q-Network (DQN) optimization algorithms. The results show that the proposed
implementation is capable of accurately avoiding obstacles, recognizes buoys, and autonomously
makes collision-avoidance decisions in complex environments with static obstacles and buoys. The
authors note the problem of exposure to external factors like wind and waves. To solve the problem
of autonomous navigation in such conditions, they propose an autonomous port collision avoidance
algorithm based on deep reinforcement learning: that is, a dynamic method instead of a static one.
However, the consideration of the influence of external factors in their study is used to select the
method itself to solve this problem because they note the influence of these factors specifically on the
buoys. These factors are not taken into account in the training process of the drone itself.

In the research [11], a method is proposed to improve the autopilot capabilities of surface
unmanned vessels by combining a path planning strategy with a collision avoidance function under
uncertainty. The solution is based on DQN, which allows the agent to learn in a visually modeled
environment. To improve the results, an Artificial Potential Field (APF) [12] method is used to
optimize the action space and the DQN reward function. Despite the fact that this method emphasizes
the solution of the collision avoidance problem without taking into account external water factors, it
effectively copes with the task of path planning and collision avoidance.

Research [13] proposes a smoothed path planning algorithm A* for an autonomous system. The
authors note that their proposed algorithm is designed to improve the feasibility of collision avoidance
path planning in a real environment. Although A* is more commonly used for static environments
where the state of objects is known in advance, the authors were able to adapt it for path planning
with both static and dynamic obstacles.

The issues of ensuring the autonomy of water drones, taking into account such features as
difficult water conditions (like water currents) and water obstacles remain insufficiently researched.
Although some research in this area has already been conducted and is ongoing, the overall
knowledge base on navigation algorithms and methods for autonomous water drones is still limited.
The aquatic environment requires the development of adapted solutions that can take into account
water dynamics, including water current directions and velocities, as well as effective interaction with
obstacles. This creates a need for new research and development aimed at creating and optimizing
autonomous navigation and decision-making solutions for water drones that can operate effectively
in the water environment.

3. The aim and objectives of the study
The object of study presented in this article is the machine learning process for autonomous
navigation of a water drone model in a simulated water environment.
The purpose of this study is to implement a neural network model for autonomous navigation
of a water drone using the reinforcement learning method, which provides increased efficiency of
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obstacle avoidance and adaptation to water currents. This study seeks to enhance the reliability and
flexibility of navigation in unpredictable water conditions through reinforcement learning techniques.

To achieve this aim, the following tasks are set:

— to develop and configure a neural network model for autonomous navigation and create a
simulation for training and testing the implemented model that can adapt to varying water currents
and navigate around obstacles effectively.

— to make a comparative analysis of training results using proposed model for cases with and
without thruster power control.

4. The study materials and methods for neural network model for autonomous navigation
of a water drone

The research methods of the article are the search and analysis of theoretical material on
possible solutions to the autonomous navigation problem of water drones, external factors of the water
environment and their impact. The formalization method is used for an algorithm that takes into
account the direction and speed of the water current in the learning process. Methods of modeling,
experiment, observation, measurement, analogy and testing are also used to verify the performance
of the proposed model under simulation conditions.

4.1. Reinforcement learning for autonomous water drones

To solve the problem of autonomous drone navigation, a model based on reinforcement learning
[8] with deep neural network [14], that takes into account the specifics of the water environment,
including the current and the presence of obstacles is proposed. This allows the USV to adapt to the
dynamic conditions of the water environment. The drone, acting as an agent, learns through trial and
error, gradually mastering the optimal actions to maximize rewards. Interacting with the environment,
it constantly adapts to changes, improving its navigation skills in the process.

This can be achieved by following these steps:

1. Analyze the elements of the learning environment: define the task for the drone and the
factors that will affect the learning process, such as the direction and speed of the currents, obstacles,
etc. This will help to understand which variables are important for effective training.

2. Setting up the environment parameters: after the analysis, an environment that reflects the
conditions of the task should be created. For a water drone, this may include adding obstacles,
modeling water current, etc.

3. Defining the reward function: creating a system of rewards and penalties that guides the
model to complete the task. For example, a drone receives a reward for reaching a goal and a penalty
for colliding with obstacles.

4. Hyperparameter tuning: identify and set optimal values for hyperparameters, such as the
learning factor, to help ensure the stability of the learning process.

5. Configuring additional parameters related to the model training process: adjust certain
settings required for training. For the water drone in this study, this includes setting the logic that
adjusts the drone's thruster power depending on the speed and direction of the water current.

6. Starting the learning process: after the settings, the learning process starts. Initially, the agent
explores the environment with random actions, but over time, it adapts, determining the best
strategies.

7. Monitoring and correction of the training process: It is important to monitor the training
results regularly. If the model is not achieving the desired results, learning process should be stopped,
parameters should be updated, and training should be restarted.

8. Evaluation of results: if the model completes the task, you need to evaluate the quality of its
work. If the results do not meet expectations, you should return to the parameter settings and restart
the training process.

Such steps allow the drone to analyze the current state of the environment in real time without
the need for static maps or fixed routes. Because the drone is adaptable to changing conditions, the
learning process becomes more stable, which is key to successfully achieving the goal.
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To implement this model, it was decided to use DQN, an algorithm in deep reinforcement
learning that combines Q-learning with a deep neural network (Convolutional Neural Network) to
teach it to approximate the Q function. This function establishes a connection between state-action
pairs and their expected rewards [15]. The advantages of DQN over classical Q-learning are
scalability to high-dimensional spaces (neural networks allow to approximate the Q-function in
environments with large or continuous state spaces), stability and efficiency of training. This is
achieved by using a replay memory and two neural networks.

However, DQN also has its limitations. One of the main disadvantages is a strong dependence
on hyperparameters and random values. Hyperparameters are settings that are not optimized by the
model itself but are set before training and affect the algorithm's performance. These initial
parameters determine the model training process and significantly affect its efficiency.

Randomness also plays an important role in DQN: it appears during the initialization of neural
network parameters, in the research policy, in the sampling from the playback memory, and can also
be inherent in the environment in which the agent is trained. For example, if the environment contains
random elements (such as unpredictable rewards or punishments), this creates an additional level of
uncertainty. In such conditions, the agent needs to learn how to make optimal decisions in situations
of uncertainty, which greatly complicates the learning process. Due to the presence of such
characteristics in DQN, there is a consequence that each run can produce a different result:
randomness in initialization and training means that repeated runs of the same algorithm can lead to
different results.

Updating network values in a DQN is based on the Bellman equation, which is presented in
formula:

Q(s,a) < Q(s,a) +afr +ymax, Q(s',a’67) - Q(s,a;0)], (D

where, 0 — the weights of the main network; 8- — the weights of the target network; s — the current
state; a — the selected action; r — the calculated reward; s’ — the next state; max,. Q(s',a';6~) — the
maximum value of O for the next state.

4.2. Integration of water current speed and direction into the training process

As mentioned above, the water environment has its own peculiarities that need to be taken into
account when training the model. The water current is an important factor affecting this process. If
the drone's thruster is turned off and the rudder remains in the same position, the drone is at rest, and
its direction and speed change only under the influence of external forces, such as the water current.

For a more stable learning process, it is advisable to provide as many stable values as possible
during the training process. This reduces fluctuations in the neural network results and forecast errors,
which makes training more uniform. Such conditions contribute to better memorization and
generalization of information by the neural network, as well as reduce the risk of excessive changes
in model weights during training.

The speed of the drone during training is a key parameter. In an environment without external
factors, the drone will move at a constant speed at a fixed thruster power. However, in the case of an
environment with external influences, such as a water current, its speed can change even with a
constant thruster power. For example, moving in the direction of the current, the drone will gain
additional acceleration, while moving against the current will slow it down. Thus, if you leave the
thruster power fixed, moving along the water current will increase the speed, and moving against the
water current will decrease it.

Such changes in speed can negatively affect the learning process. For example, when moving
along the current, the drone may not have time to make the right decision in the current situation, and
in a random environment, the likelihood of such situations is quite high. If such conditions are
repeated many times, this can lead to the drone learning the wrong actions that do not correspond to
the desired result. Therefore, to ensure the most stable drone speed in the environment, it is important
to take into account the state of the environment and constantly adjust key parameters to ensure
optimal learning conditions.
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The proposed model uses an additional algorithm for adjusting the thruster power according to
the direction and speed of the water current. This algorithm is based on the use of trigonometric
formulas to calculate the current angle between the drone's direction vector and the water current
vector, as well as monotonic cubic interpolation to determine the required power corresponding to
the calculated target drone speed. Figure 1 shows the possible drone and water current direction
vectors and the corresponding angles: o — the angle between the unit vector of the X-axis and the
water current direction vector; y — the angle between the unit vector of the X-axis and the drone
direction vector; 0 — the resulting angle between the current direction vector and the drone direction

vector; \_/cur_xy — the current direction vector; b is the drone direction vector. If the value of the angle
o is greater than 180 degrees, it is adjusted by formula to be in the range [0; «t]:

5=2r-5. )

<

cur_xy

S

Fig. 1. Possible location of the drone and water current direction vectors and corresponding angles

The next step is to implement the concept of using the obtained J value to adjust the motor
power. First, we need to determine the desired speed for training the model. After that, we need to
develop logic that will adjust this speed according to the value of the angle 6. For example, the abstract
value of viur s can be taken as the initial desired value, and v, can be taken as the resulting velocity
value. If the angle ¢ is less than 90 degrees, then the value of vy, is calculated using the formula:

\_/cur_xy * (% - 5)
Viar = vtar_start - p : (3 )
2
If the angle ¢ is greater than 90 degrees, the value of v is formed by formula:
Ver_o|*(5 =)
Viar = Viar_start T . 4)

z
2
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So, if the angle between the drone's heading vector and the water current vector is acute, it
means that the current is favoring the desired drone speed. In this case, we need to subtract a portion
of'the water current speed from the expected drone speed. If the angle is obtuse, the current is resisting
the drone's movement — in this case we need to add part of the water current speed to the desired
drone speed to compensate for its influence. The value of the corrected drone speed can vary within
the range [Viar siari— Vewr; Viar start+ Veur], Where, Viar sare 18 the initial desired drone speed and ve is the
water current speed.

Figure 1 shows the main elements that need to be found and considered in the proposed model.

4.3. Training environment

Training water drones directly in real-world conditions has practical limitations. Operating in
vivo carries risks, including possible hardware damage from collisions, environmental impact, and
high operational costs. Direct training of hardware is often inefficient and can lead to costly failures.
To mitigate these issues, a robust simulation environment must be used. A simulated environment
allows for controlled experiments without risk, enabling drones to safely learn and test navigation
strategies.

The USVSim simulator [16] is used to create a prototype of a neural network model proposed
in this study. It was chosen because it is a powerful simulation product that contains many aspects
that must be taken into account for a correct and convenient simulation process. It provides several
pre-created boats and the ability to customize various external factors inherent in the water
environment. A view of one of the prepared environments for training the drone is shown in Figure 2.

World msest || Layers “$ O - - B00|¥%Z|BAE0|E,
aul
Scene
Spherical Coardinates
Physics

» Lights

» M steps: 1, Real Time Factor: Sim Time: Real Time: Iterations:

Fig. 2. The environment in which the drone training took place

A computer with an Intel Core 15-7300HQ processor, 16 GB of RAM, NVIDIA GeForce GTX
1050 GPU and Ubuntu 16.04.7 LTS (Xenial Xerus) operating system is used to simulate the aquatic
environment and conduct the experiments.

The range of possible thruster power values is set to [0; 12]. For each integer in this range, the
corresponding speed in meters per second is calculated. The interpolation method was chosen to
determine the required power value from the corrected velocity vi,. Interpolation is a method of
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finding intermediate values between known points in a discrete data set [17]. It allows us to estimate
the value of a function at points that are not specified in the original set, "filling in the blanks" to get
a more complete picture of the function change. There are several types of interpolation:

— linear interpolation is the simplest method that determines a new value based on a straight
line connecting the two closest known points;

— polynomial interpolation uses polynomials to calculate intermediate values, which allows to
more accurately reflect complex changes in a function;

— spline interpolation applies splines to smoothly transition between points.

Monotone cubic interpolation, a variant of cubic interpolation that preserves the monotonicity
of the interpolated data set [18], was used to calculate the required power. Its use provides smooth
transitions between points while maintaining the monotonicity of the original set, which is especially
important to avoid unwanted fluctuations in values between points. PchipInterpolator function from
the scipy (Python programming language package) was used to implement monotone cubic
interpolation while learning process.

Figure 2 shows a test environment for training a model for autonomous navigation with external
factors such as water current and obstacles (buoys and walls).

5. Results of the research on the neural network model for autonomous navigation of a water
drone

5.1. Analysis of the proposed model for the autonomous navigation of water drone

The result of this study is a neural network model for autonomous navigation of a water drone.
The proposed model uses an approach that reduces the uncertainty of the learning environment by
considering the direction and speed of the water current to control the power of the drone's thruster
during training. As a result, the model is able to reach the required goal faster, as fewer uncertainties
contribute to a faster learning process.

Unlike studies [10 — 11] in paragraph 2, which use DQN for planning drone trajectories, the
proposed model stabilizes learning by accounting for environmental factors, such as water current.
Solutions [10 — 11] use a dynamic approach, relying on the model, which learns through trial and
error and gradually begins to make correct decisions based on the current state of the environment.
In these studies, optimization of the reward function is used to improve the results, which can help
the drone perform the desired task faster. However, stabilizing the learning process by considering
environmental factors, as it is done in the proposed model, also has a positive effect on the results. It
reduces uncertainty and helps the model to focus on reaching the target point.

To consider the speed and direction of the water current in the learning process, certain
information is required. This includes the speed and direction of the water current, the drone's
direction, and its capability to achieve specific speed. To obtain such values for real conditions, it is
necessary to use a variety of sensors. For example, compasses and GPS are used to obtain the direction
of the drone. The maximum possible speed and corresponding thruster power ratings are usually
provided by the boat manufacturer or tested by trial runs in calm water conditions. The speed and
direction of the water current can be found, for example, with the help of "floating buoys". These
devices are installed on the surface of the water and drift under the influence of the water current.
They are equipped with GPS, which allows tracking of their movements in real time, which provides
data on the direction and speed of water current on the surface. If training takes place in a simulator,
then such data can be obtained much more easily — usually, they are stored in the form of certain
variables that can be accessed.

The results of using the proposed model in practice are presented in 5.2. Figure 3 shows an
example of considering the water current speed and direction during training.
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Fig. 3. Logging of calculated data to maintain specific power and velocity

Figure 3 shows that the drone's thruster power is constantly changing depending on the direction
and speed of the water current. Adaptation of the drone's thruster power to the water current occurs

throughout the training process.

5.2. Results of practical use of the proposed model

As mentioned in 4.3, the USVSim simulator is used to implement and test the proposed model.
For testing, a special training environment was created in which a water current was implemented;
there were various obstacles for movement and the drone itself was located. The use of monotone
cubic interpolation made it possible to obtain a "smooth" monotone function of the dependence of
speed on thruster power, shown in Figure 4.
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Fig. 4. Using monotone cubic interpolation for the calculated power range

To verify the effectiveness of the proposed model, several processes of training for autonomous
navigation of a water drone with the same hyperparameters and settings of the simulation training
environment were conducted. Each training consisted of 1500 episodes. The test was to compare the
average number of points reached per episode with DQN and with the proposed model.
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Since the results of each new training run are not like each other, several training processes
were carried out for both: with DQN and with the proposed model. From the obtained results, the best
ones were selected and the average number of points reached per episode was calculated.

One of the best results for the case of training the model without considering the speed and
direction of the water current (DQN) is shown in Figure 5. With a constant maximum thruster power,
in the finest attempt at learning, the drone begins to perform the task of navigating between the set
points from approximately the 1200th episode. Different restarts gave a difference of about 100-200
episodes from this value. The average number of points reached is approximately ~2-3.

The result of one of the best learning processes considering the speed and direction of the water
current (proposed model) is shown in Figure 6. In this case, the drone starts to perform the task from
800-900 episodes with a difference of 150-200 episodes for different restarts. The average number
of points reached per episode is approximately ~4.
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Fig. 5. Results for one of the runs with a constant maximum drone thruster power
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Fig. 6. Results for one of the runs with a thruster power adjustment
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The results presented in Figures 5 and 6 show that the model adapted to the dynamic conditions
ofthe aquatic environment. It started to move more or less stably between the target points even using
the standard DQN. However, the implementation of the proposed model allowed us to obtain the
desired expected result earlier than with standard DQN.

Thus, usage of the proposed model makes it possible to reduce the amount of time and
computing resources required. It can also significantly improve the learning process and results,
which is very important for such tasks.

6. Analyzing of the obtained results of the proposed neural network model for autonomous
navigation of a water drone

Experimental results confirm the feasibility of using the proposed model for autonomous water
drone navigation. The model effectively avoids obstacles and adapts to water currents in a simulated
environment, highlighting the importance of a structured training dataset and well-tuned reward
mechanisms for optimal performance.

It should be noted that although the proposed model performed well under simulated conditions,
further refinement may be required to improve the reliability of the model in more diverse aquatic
environments. Moreover, alternative reinforcement learning methods, such as, for example, proximal
policy optimization (PPO) [19], could be explored to potentially improve the drone's decision making
under more stringent environmental conditions.

This analysis highlights that the adaptability of the model is not only influenced by its internal
parameters, but also by the complexity of the environment within the simulation. The ability to
dynamically adjust to currents and obstacles in real time offers great potential for the application of
such autonomous navigation systems in real-world scenarios.

The knowledge gained from this study can serve as a basis for further improving water drone
autonomy, supporting the integration of autonomous systems into broader maritime applications.
Future research could investigate additional factors, such as waves, coordination of multiple drones,
and advanced environmental sensing. These factors could enhance the performance and applicability
of autonomous water drones in both controlled and unpredictable aquatic environments.

7. Conclusions

After the completion of the study, all defined tasks were accomplished. The neural network
model for achieving autonomous navigation for water drones using reinforcement learning is
proposed and described. It utilizes DQN to enable adaptive obstacle avoidance and thruster power
adjustment in dynamic aquatic environments. Aspects, which should be taken into account for
successful training of a water drone model for autonomous navigation, were analyzed.

Implementing such model in a simulated environment provides an opportunity to improve the
autonomous navigation capabilities of water drones prior to real-world deployment. The results,
obtained in the USVSim, show that neural networks can significantly improve the ability of a water
drone to operate independently, adjusting to environmental changes without manual intervention.
These results can be applied to a variety of water drone applications, from environmental monitoring
to search and rescue operations. Future implementations of this model can be incorporated into
various systems designed to control and analyze autonomous navigation in different aquatic
environments, providing a basis for further development and operational use of water drones in
challenging environments.
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Boani ApoHM MaroTh 3HAUHUM MOTEHINAN JUIsl 3aCTOCYBaHHSA B €KOJOTIYHOMY MOHITOPHUHTY,
MOIIYKOBO-PATYBAJIbHUX ONEpAaLifiX Ta IHCIEKIilT MOPCHKOI IHQPACTPYKTypH, OAHAK CIEUU(IUHI
YMOBH BOJHOT'O CEpeIOBHUIIA YCKIAIHIOIOTh peai3alito cTablibHOT aBTOHOMHOT HaBirarii.

O0’€eKTOM JOCHIIKEHHS, TTPEICTABIICHOTO B Il CTaTTi, € MPOIEC MAIIMHHOTO HABYAHHS IS
ABTOHOMHOI HaBiraiii Mojesli BOJHOTO IPOHA Y CHMYISAIIMHOMY BOJHOMY CepeaoBHIl. MeToro
JTOCITDKEHHS € pealtizallisi MoeNl HEHPOHHOT Mepexki /Il aBTOHOMHO1 HaBirailii BOJHOTO JIpOHa 3
BUKOPHUCTAHHSAM METOAY HaBYaHHS 3 MIJKPIIUIEHHAM, 10 3a0e3neuye MiBUILEHHS €()EeKTUBHOCTI
YHUKHEHHS TIEPEIIKO/I Ta aJanTaIliio 0 BOJIHUX TEUIi.

JIJiss foCATHEHHS TaHOT METH 3alPOIIOHOBAHO HOBY HEHPOMEPEKEBY MOJICIb JIII aBTOHOMHOT
Hapiraiii JpoHa y BOJHOMY cCepeloBHINI Ha 0a3i MeToAy HaBYaHHS 3 TIAKPIMUICHHSM, sKa
BIIPI3HAETHCS BiJl HASBHUX TUM, 1[0 BUKOPUCTOBYE YIOCKOHAJIICHUN aJITOPUTM YIIPABIIIHHS IPOHOM,
SIKUWA BPAaXOBYE MIBUAKICTh Ta HAMpsSM Tedii, 1[0 Ja€ 3MOTy CTaOUI3yBaTH MpOIeC TeHEePYBaHHS
koe(dilieHTiB HEHPOHHOT MEpExi.

3amns 3abe3redeHHsT eEeKTUBHOTO IMPOIECY HAaBUAHHS Ta ONTHMI3aIlii MOJeli po3poOaeHo
CUMYIISIIHHE HaBYAJIbHE CEpPEIOBHINE 3a J0mMoMororo cumynsatopa USVSim, sxe MiICTUTH
PI3HOMaHITHI ()aKTOPH, 10 3aBAKAIOTH PYXY JPOHA, TaKi sIK T€Uis BOJIM Ta HASBHICT IHIITUX 00’ €KTIB.
Bomuuii 1poH, BUCTYIMAaOUH sSIK areHT, MOCTYIIOBO HABYAETHCS 00MpaTH HAMOUIhIN e(heKTUBHI Ai1 IS
JNOCSITHEHHSI MaKCHUMaJIbHOI MO3UTUBHOI BUHATOPOAX METOAOM CIIPOO 1 MOMMWIOK, B3a€EMOJIIOUH 13
CEpEeOBUILEM Ta MPUCTOCOBYIOUMCH A0 3MIHHMX yMOB. lleil mpouec BigOyBaeThCsi 3a paxyHOK
Buxkopuctanuss Deep (Q-Network: npoH Hajae 3HAYEHHS CBOTO MOTOYHOTO CTaHy [0 IMHOOKOi
HEWPOHHOI Mepeki; HeWpOHHA Mepexa 00poOJIsse OTpUMaHi JlaHi, MPOTHO3YE 3HAYEHHS HAWOUIBII
edexTrBHOI i Ta Bigjgae oro areHrty. [loTouHum cTtaHoM JapoHa € iHdopMallisl y BUIIISAI Ha00py
MMOKa3HUKIB IJaTYMKIB BUMIPIOBAHHS BiJCTaH1 0 HAHOIMKYMX TIEPEIKO/I, HAIIPsIM JpOHA Ta MOTOYHA
BIJICTaHb JI0 LUILOBOI TOYKW. 3HAUCHHS €(QEKTUBHOI ii, OTpUMAHOi Bil HEWPOHHOI MEPEKi,
MIEPETBOPIOETHCS HA KOMAHAY AJIsl KepMa, 3p03yMiTy AJIs JpoHa. 3HaY€HHS MOTY>KHOCTI MOTOPa IpOHA
PO3paxXoOBYETHCS OKPEMHUMH (HOPMYIaMH 3 BUKOPUCTAHHIM TPUTOHOMETPUYHUX (DYHKITIH.

Pesynpratu nociimKeHHs MOKa3aid, 110 BUKOPUCTAHHS 3alPOMOHOBAHOI MOJIENI A€ IPOHY
3MOTY IpUiMaTH pIlIEHHS B YMOBaX JAMHAMIYHOI BOJHOI OOCTaHOBKH, KOJM HEOOXigHA IIBHUAKA
ajanTaris 10 3MiH. Mojienb YCHINIHO aJlanTyBajla CBOKO CTPATETil0 Ha OCHOBI 3BOPOTHOTO 3B SI3KY 3
CepeloBUINleM, TOMY MOXKHa 3pOOMTH BHCHOBOK, IO pealli3oBaHa HeWpoMepekeBa MOJeb
JEMOHCTPY€E 3HAUHUHN MOTEHIIaN JJIs MOJAIbIIUX JTOCTIHKEHb Ta 3aCTOCYBaHb y c(hepi aBTOHOMHHX
BOJIHUX JIPOHIB, 0COONIMBO Y MIHJIMBHX 1 HETIepe10auyBaHUX CEPEIOBHIIAX.

KnrouoBi cnoBa: BoAHMIA JpoH, MalHHe HaB4aHHsA, DQN, aBTOHOMHa HaBirailis, anropuTM.



