Information, Computing and Intelligent Systems, 2024, No. 5, 159 - 171
UDC 004.415.2 https://doi.org/10.20535.2786-8729.5.2024/316288

IMPROVING THE EFFECTIVENESS OF MONOLITH
ARCHITECTURE TO MICROSERVICES MIGRATION USING
EXISTING MIGRATION METHODS

Yaroslav Kornaha

National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
https://orcid.org/0000-0001-9768-2615

Hubariev Oleksandr *

National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
https://orcid.org/0009-0001-1028-4604

*Corresponding author: gubarev.alexandr@gmail.com

The theme of the transition from monolithic architecture to microservice is one of the key
challenges of modern software engineering. This transformation allows for greater flexibility, scalability
and adaptability of systems, but requires careful planning and consideration of numerous factors that
affect the efficiency of migration. This study aims to improve the algorithm for determining the
effectiveness of using methods for migrating monolithic systems to microservice architecture. Migration
from monolithic architecture to microservice is a complex process involving significant technical and
organizational challenges. Since monolithic systems often have a complex structure and relationships
between components, the transition to a microservice architecture requires careful planning and
selection of effective migration methods. The lack of a unified approach to assessing the effectiveness
of different migration patterns makes the transition process difficult and risky.

The article is aimed at improving the algorithm for determining the efficiency of using migration
methods from monolithic architecture to microservices. To do this, we compare existing migration
patterns, such as the Strangler Fig Pattern, Branch by Abstraction, Parallel Run, Decorating Collaborator
and Change Data Capture, according to the criteria: implementation time, test complexity, error risk,
performance degradation and efficiency. The study uses methods of comparative analysis and
quantitative evaluation of the effectiveness of migration patterns. For this, criteria are applied to assess
the implementation time, testing complexity, possible risks, as well as the impact on system performance.
In addition, scenarios are analyzed in which each template is most effective, which allows you to
determine the optimal approaches to migration depending on the specifics of the project.

The obtained results allow not only a deeper understanding of the advantages and disadvantages
of different approaches to migration, but also to form recommendations for choosing the optimal pattern,
depending on the specifics of the system and business needs. The scientific novelty of the study is to
create an algorithm that integrates these criteria to increase the efficiency of migration processes. The
results of the work can be useful for software engineers, architects and managers planning the transition
to microservice architecture, providing a structured methodology for evaluating and selecting migration
methods.

Key words: microservice, monolith, distributed, architecture, transition.

1. Introduction
The migration of software systems from monolithic architecture to microservices is one of the
most discussed and demanded topics in the modern field of software engineering. It directly addresses
the problems of architectural software design and the management of complex information systems.
Traditional monoliths, despite their structure, have significant shortcomings, which are manifested in
the conditions of rapid scaling, constant changes in business requirements and the need for the rapid

© The Author(s) 2024. Published by Igor Sikorsky Kyiv Polytechnic Institute.
This is an Open Access article distributed under the terms of the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/),
which permits re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:gubarev.alexandr@gmail.com

160 Information, Computing and Intelligent Systems N2 5, 2024

introduction of new functions. In this context, the microservice architecture offers solutions that
enable flexible, scalable and easily supported systems.

This article refers to the scientific field of software development and architectural modeling, as
well as to related disciplines such as system integration and DevOps practices. The main problem of
the study is to determine the optimal approaches and patterns for the gradual and safe migration of
software systems from monolithic architecture to microservices. In particular, the question arises of
choosing the right architectural pattern in the conditions of specific business requirements,
infrastructure limitations and risks associated with the continuous operation of systems.

The relevance of the research is due to the need of modern organizations to create software that
can quickly adapt to changes, easily scale and remain available.

So, research on the topic of migration from monolith to microservices using proven
architectural patterns is relevant and practically significant. It is aimed at solving the key problem of
optimizing the transition process, minimizing risks and increasing the efficiency of modern software
systems. This will allow organizations to achieve strategic business goals, such as increasing the
speed of innovation, reducing downtime and increasing competitiveness in a dynamic market.

2. Literature review and problem statement

The migration of monolithic architectures to microservices is a complex process that attracts
significant attention from researchers and practitioners in the field of software development. This
literature review highlights key works covering aspects of migration, in particular the patterns,
strategies, challenges and tools used for a successful transition [1].

Work [2] describes microservices as small, independent services that interact through well-
defined APIs. This work is considered a basic tool for understanding the concepts of microservice
architecture.

Study [3] examines in detail the operational complexity arising from the distributed nature of
microservices.

In the [4] article analyzes the evolution of microservices and their impact on the design of
modern programs. The authors identify the main architectural patterns, such as Strangler Fig and
Branch by Abstraction, as the most effective for gradual migration.The main thesis: microservices
contribute to increasing modularity, but their implementation requires a significant restructuring of
the architecture and development culture.

In the study [5] made overview of the most common patterns, including Parallel Run, Change
Data Capture, and Anti-Corruption Layer. The article focuses on the need to take into account
interdependencies in the monolith and describes approaches to reducing risks during the deployment
of new microservices.

Work [6] focuses on technical challenges such as dependency management, the integration of
old and new components, and the need for refactoring code.

Most works focus on the technical aspects of implementing individual patterns, but less
attention is paid to assessing their impact on performance and scalability during and after migration.

Based on the analysis, it was found that the process of migration from monolithic architecture
to microservice is accompanied by a number of challenges, among which the key ones are: ensuring
data consistency, the complexity of the distribution of functional modules, infrastructure adaptation
and organizational changes. Despite the significant advantages of the microservice architecture, such
as scalability, flexibility and fault tolerance, the disadvantages associated with the increasing
complexity of system development and operation remain significant.

The analysis showed that the problem of the lack of a universal approach to the development
of a gradual migration strategy remains relevant, which would take into account the specifics of
business processes, reduce technical risks and ensure the effectiveness of the transition period. Of
particular interest is the development of methods that would simultaneously ensure: minimizing
system malfunctions, increasing the independence of microservices, adapting the existing
infrastructure without significant costs.

Improving the effectivness of monolith architecture to microservices migration ... 161

Migration is often accompanied by a significant waste of time and resources due to the lack of
standardized approaches to automating the deployment, testing and monitoring of microservices.

And one of the biggest problems of monolith migration to microservices is the standardization
of the process and the choice of the most effective approach for each individual project.

3. The aim and objectives of the study

The purpose of the study is to improve the algorithm for determining the effectiveness of using
monolith migration methods for microservices.

Explore existing migration patterns such as Strangler Fig Pattern, Branch by Abstraction,
Parallel Run, Decorating Collaborator, and Change Data Capture.

Compare patterns by criteria: implementation time, test complexity, risk of errors, performance
degradation, efficiency.

Identify scenarios in which each pattern is most effective.

4. The study materials and methods of transition from monolithic architecture to
microservices
4.1 Strangler fig pattern

The idea behind this approach is for our new system to be initially supported by and part of the
existing system. That is, the old and new systems must coexist in the same environment. It gives the
new system time to develop and adapt in order to be able to completely replace the old system or part
of it in the future. The key advantage of this template is that it allows gradual migration to the new
system. Moreover, it makes it possible to suspend and even completely stop migration at any step,
taking advantage of the new system. Also, when we implement this idea for our software, we strive
to ensure that every step can be easily undone, reducing the risks of new changes at every step.

If we consider this approach in the context of the transition from a monolith to a microservice
architecture, the task will be to actually copy the code from the monolith, or re-implement the
corresponding functionality. In addition, if the functionality in question requires state stability, then
it is necessary to consider how this state can be transferred to a new service, and possibly back. To
transfer functionality, you need to perform 3 steps (Fig.1.1) [7].

Requests Requests Requests
Monolith Monolith Monolith Microservice
)) N Functionality for Functionality for
Functlonghty for : moving moving
moving V]
Defining the Moving the Redirect requests
functionality for functionality to from monolith to
microservice microservice microservice

Fig.1.1 Algorithm of transition from monolith to microservices using Strangler fig pattern

162 Information, Computing and Intelligent Systems N2 5, 2024

At the first step you need to determine which parts of the system will be transferred and how it
will help to solve the task, taking into account all the advantages and disadvantages of future changes.
A list of results that correspond to what the business is trying to achieve should be created, and these
results can be formulated in such a way as to describe the benefits to the end users of the system. And
also, a list of criteria has been prepared that will help to understand whether the goal was achieved
after the transfer of the selected functionality.

The second step is the implementation of this functionality in the new microservice. And after
the new functionality is implemented in the new microservice, it is necessary to create an opportunity
to redirect requests that are related to the implemented functionality from the monolith to the new
microservice.

Until requests are redirected to a new microservice, the new functionality does not work, despite
the fact that it is deployed in a production environment. This allows time for testing and gradual
implementation of the new microservice into the existing system.

After the new service implements the same equivalent functionality as the monolith, you can
consider using one of the deployment and testing patterns of microservices, such as Canary
Deployment, Blue/Green Deployments, A/B testing. This will help test the operation of the new
microservice as part of a system in a production environment with real users. If you consider release
and deployment as two separate concepts, you can get the opportunity to test your softiware in the
final production environment before using it, which reduces the risk of errors [2].

A key feature of this approach is not only that we can gradually bring new functionality to the
new service, but that we can also roll back this change very easily if needed.

The advantages of this pattern include:

1. Allows you to smoothly transition from a service to one or more replacement services.

2. Keeps old services running when refactoring to updated versions.

3. Provides the ability to add new services and features when refactoring old services.

4. The pattern can be used to version the API.

5. The pattern can be used for interactions with legacy solutions that will not be updated.

The disadvantages:

1. Not suitable for small systems with low complexity and small size.

2. Cannot be used on systems where requests to the server system cannot be intercepted or
routed.

3. A proxy or elevation level can become a single point of failure or performance bottleneck if
it is not designed properly.

4. Requires a rollback plan for each updated service to quickly and safely return to the old way
of working if something goes wrong.

4.2. Branch by Abstraction pattern

Considering the Strangler Fig Application pattern, it was about redirecting calls from the
monolith to the newly created microservice. But, if the module that needs to be moved is deeper than
the outer boundaries of the monolith and it is necessary to make significant changes to the system and
to the modules that interact with this functionality. These changes can become a source of errors and
incorrect operation of the system and rolling back such changes can be a much more difficult task.

Consequently, the main task is to be able to gradually make changes to the code base, as well
as minimize failures for developers working on other parts of the code base. There is another pattern
that allows you to gradually make changes to the monolith, without resorting to branching the source
code.

The first step is to create an abstraction for the functionality you want to replace. Next, add
changes to modules that use this functionality so that they can use the new functionality. The next
step is to write a second abstraction implementation for the code, which will be allocated to a separate
service. Next, you need to switch the abstraction so that a new implementation of the functionality is
used. It remains only to remove the implementation that needs to be replaced and remove the
abstraction (Fig. 1.2) [2].

Improving the effectivness of monolith architecture to microservices migration ... 163
Monolith Monolith
Requests Requests
Functionality for Implementation | Abstraction Functionality for Implementation | Abstraction
moving > moving >
Create an abstraction for the Switching requests to
functionality needed to extract abstraction
Monolith Monolith
Requests
Abstraction

Microservice

Moved
functionality

Another implementation of
abstraction, bringing it to the
microservice and removing the
previous implementation

T

Microservice

Moved
functionality

Removing an abstraction

Fig.1.2. Algorithm for switching from monolith to microservice
using Branch by Abstraction pattern

But how to roll back the changes if the newly created system does not work as expected? To do
this, it is possible to leave both implementations of the functionality in the system and switch between

them in case of failures and errors.

This adds complexity not only in terms of code, but also in terms of system research. In fact,
both implementations can be active at any given time, which can make it difficult to understand the
behavior of the system. If two implementations have a state, then the consistency of the data must
also be taken into account. Since this pattern allows you to switch between implementations, this
means that you will need a consistent common set of data that both implementations can access [2].

164 Information, Computing and Intelligent Systems N2 5, 2024

The advantages of this pattern include:

1. Allows incremental changes that can be undone if something goes wrong (backward
compatibility).

2. Allows you to access functionality that is deep inside the monolith, in the case when it is
impossible to intercept calls to it at the boundaries of the monolith.

3. Allows several implementations in the software system to coexist.

4. Provides an easy way to implement a backup mechanism using an intermediate validation
step to invoke both new and old features.

5. Supports continuous delivery as the code runs all the time during the restructuring phase.

The disadvantages of this pattern include:

1. Not suitable when it comes to data consistency.

2. Requires changes to an existing system.

3. Can increase the cost of the development process, especially if the code base is poorly
structured.

4.3. Parallel Run pattern

The previous two patterns that were described above allow old and new implementations of the
same functionality to coexist in the production environment at the same time. Both of these methods
allow you to perform either the old implementation in the monolith, or a new solution based on
microservices. Also, to reduce the risk of switching to a new service implementation, these methods
allow you to quickly return to the previous implementation. When using the Parallel Run pattern,
instead of calling an old or new implementation, both are called, which makes it possible to compare
the results to make sure that they are equivalent. Although both implementations exist and work, only
one is considered the source of truth at any given time. As a rule, the old implementation is considered
the source of truth, until the current check shows that we can trust our new implementation (Fig. 1.3).

Requests
Monolith Microservice
Functionality
v v
Results Results
Comparison
process

Fig.1.3. Algorithm for switching from monolith to microservice using Parallel Run pattern

This template has been used in various forms for a long time, but it is usually used to run two
systems in parallel. This template can also be useful within the same system when comparing two
implementations of the same functionality. This technique can be used to verify not only that a new
implementation produces the same results as an existing implementation, but that it also works within
acceptable non-functional parameters.

Improving the effectivness of monolith architecture to microservices migration ... 165

Advantages of the approach:

1. Testing with production data: makes it possible to test all possible use cases in a real
environment.

2. Deployment takes place in stages: it is possible to activate functionality for individual cases.

3. Easy rollback: the new architecture is isolated from the old one. If, after activating the new
service, the system does not work properly, the service can be easily deactivated and continue to use
the old module.

4. Benchmarks: Enables you to compare old and new architectures to see which one works more
efficiently.

Limitations:

1. Increased load: Given that requests received by the monolith are forwarded to the
microservice, the load on all components increases, potentially doubling.

2. Nontrivial comparisons: Comparing results is not always an easy task. For example,
comparing PDFs may be difficult due to different but minor metadata, or a change within http may
result in different default response headers, or collections may have a different order.

3. It takes time to get the desired result: even if this approach leads to a smooth and safe
migration, it takes a lot of time and effort to properly configure.

4.4. Decorating Collaborator pattern

In the event that it is necessary to trigger a certain behavior based on an event inside the
monolith, but there is no way to change the monolith itself, you can use the Decorating Collaborator
pattern. With this pattern, you can add functionality without changing the behavior of the monolith.
The decorator here is used to make it seem that the monolith sends requests directly to services,
although in fact the functionality of the monolith has not changed. Instead of intercepting these
requests before they reach the monolith, the pattern allows the monolith to process this request. Then,
based on the result of processing, the request will be sent to external microservices through any
cooperation mechanism that will be selected (Fig. 1.4) [2].

\
Request 1 Response
S I RS - Request to
! Proxy ! microservice Microservice
NSRS IR E
v
Monolith

Fig.1.4 Algorithm for switching from monolith to microservice using Decorating Collaborator
pattern
Advantages of the pattern:
1. New features are added without changes in the source code of the base object, which
minimizes the risk of errors.

166 Information, Computing and Intelligent Systems N2 5, 2024

2. You can create dynamic combinations of behavior by combining several decorators.

3. The base object class remains closed to changes, but open to extensions through decorators.

4. Decorators are independent components that can be reused in different parts of the system.

5. Instead of creating new classes for each variation of behavior, combinations of existing
decorators are used.

6. Each decorator can be tested separately, which simplifies the detection of errors.

Disadvantages of the pattern:

1. When using several decorators, it is difficult to understand exactly what changes were applied
to the object.

2. May result in a complex call stack.

3. Each decorator is a separate object, which can increase memory consumption and complicate
dependency management.

4. Risk of violation of the single liability principle (SRP):

In some cases, decorators may add too much heterogeneous functionality, making them difficult
to maintain.

5. It is not always obvious what behavior the object will have at a particular time, which
complicates the debug.

6. Conflicts can occur between decorators if they change the same behavior in different ways.

4.5. Change Data Capture pattern
With the change data capture pattern, instead of trying to intercept and respond to calls made to
a monolith, we respond to changes made to the data warehouse. For the pattern to work, the basic
interception system must be associated with the monolith data store (Fig. 1.5) [7].

Monolith

Microservice

Monolith DB

A 4

Fig.1.5 Algorithm for switching from monolith to microservice using Change Data Capture pattern

Different approaches can be used to implement data collection on changes, each of which has
its own difficulties, advantages and disadvantages [8].

Database triggers. Most relational databases allow you to call a certain behavior when data
changes (for example, INSERT', 'UPDATE' or 'DELETE'). How these triggers are defined, and what
they can cause, depends on the database, but all modern relational databases support them anyway.

Triggers must be implemented in the database itself, just like any other stored procedure. There
may also be limitations as to what these triggers can do. At first glance, this may seem quite simple.
No need to work with any other software, no need to implement any new technologies. However, like
stored procedures, database triggers can cause certain difficulties. The more triggers are created in

Improving the effectivness of monolith architecture to microservices migration ... 167

the database, the more difficult it is to understand how the system actually works. The problem is
often maintaining and managing changes to database triggers [2].

Advantages:

1. Detects all types of changes: INSERT', 'UPDATE' and 'DELETE"'.

2. Supported by most databases.

Disadvantages:

1. Affects output database performance through additional records.

2. Requires changes to the source database schema.

Transaction log pollers. Within most databases, there is a transaction log. This is usually the
file in which all changes made to the database are written. To collect data on changes, the most
complex tools, as a rule, use the transaction log. These systems operate as a separate process, and
their only interaction with the existing database is through the transaction log. Here it is worth noting
that only completed transactions will be displayed in the transaction log [2].

Important for using the transaction log is its format and it depends on different types of
databases. Thus, which tools will be available will depend on which database is used. There are a
number of solutions designed to display changes in the transaction log through messages that will be
placed on the message broker; this can be very useful if the microservice is running asynchronously.

Advantages:

1. There is no additional load on the databases.

2. Detects all types of changes without having to modify the schema.

Disadvantages:

1. Lack of standardization of transaction log formats across vendors.

2. Target systems should recognize and ignore changes that have been rolled back in databases.

Batch delta copier. The most simplified approach is to write a program that regularly scans the
database for data that has been changed and copies this data. These tasks are often performed using
tools such as cron or similar tools. The main problem is to find out what data has actually changed
since the batch collier was last launched. The design of the circuit may or may not make this obvious.
Some databases allow you to view table metadata to see when data has been changed. But this is not
a universal approach, and can only give time stamps of changes at the table level when it is necessary
to have row-level information. You can add these temporary ones yourself, for example, add a special
column to the tables that displays the time of the last change (for example, 'LAST MODIFIED' or
'LAST UPDATED"). Systems can then query this field to retrieve records updated since the last scan
[2].

The advantages include:

1. Simple implementation.

Disadvantages:

1. Detects only soft deletions, not 'DELETE' operations.

2. Imposes a computational load on the source system through a full line scan.

5. Result of investigating on the effectiveness of methods of transition from monolithic
architecture to microservices

To assess the effectiveness of migration patterns, a test environment was created based on a
monolithic data management system using the Spring Boot framework. The microservice architecture
was deployed on the Kubernetes platform using Docker containers.

The experiment was conducted in two stages: the first evaluated the speed of processing
requests in the old monolithic architecture, the second — in a distributed system implemented using
each of the patterns.

We will highlight the following key characteristics for analyzing the application of a particular
approach:

1. Implementation time (7) — how quickly and with minimal effort you can apply the pattern.

2. Complexity of testing (S) — the amount and nature of work required to test the system after
changes (conditional number of hours for testing).

168 Information, Computing and Intelligent Systems N2 5, 2024

3. Error Risks (R) — possibility of failures or malfunctions during implementation (% probability
of errors). The error percentage (R) was calculated by the formula:

R = Count of errors % 100%. (l)

Count of requests

4. System Performance (P) — Impact of changes on speed and stability (relative system
performance reduction (%)). The decrease in productivity was calculated by the formula:
p= W X 100%, 2)

old
where, Tnew — average time to perform operations in the new system (microservices), Told — average
time of operations in the monolith.

Then the efficiency of using the method can be calculated by the formula (efficiency index):
1

E = m. (3)

This formula reflects the relationship between key factors, which allows you to quantify the
effectiveness of the method. Substituting the values of the corresponding parameters, the efficiency
index provides a clear metric for comparing the effectiveness of this method with alternative
approaches or basic scenarios.

This approach provides a systematic assessment, highlighting areas of improvement or
confirming the suitability of the method to achieve the desired results.

Table 1 Comparative characteristics of methods
of transition from monolithic architecture to microservices

Implementation Test Risk of Performance | Efficiency
Pattern time (T) complexity | errors(R) | degradation (E)
(©) (P.%)

Strangler Fig 4 months 5 days 8% 4% 0,6
Pattern
Branch by 2 months 4 days 10% 6% 1,17
Abstraction
Parallel Run 3 months 7 days 15% 15% 0,27
Decorating 1 months 2 days 4% 8% 11,62
Collaborator
Change Data 2 months 4 days 9% 6% 1,31
Capture

As can be seen from the Table 1 Decorating Collaborator has the highest efficiency due to its
fast implementation, low testing complexity, and minimal risk of errors.

Branch by Abstraction and Change Data Capture have lower efficiency under the Decorating
Collaborator due to the average level of testing complexity and implementation time.

Parallel Run has the lowest efficiency due to the high complexity of testing, significant
performance degradation and risks of discrepancies in parallel systems.

Strangler Fig Pattern strikes a good balance between risk, performance and gradual migration,
but takes longer.

6. Discussion of results on the effectiveness of using methodsof transition from monolithic
architecture to microservices
Based on the defined criteria, conclusions can be drawn about the application of these patterns.
Strangler Fig Pattern is well suited for gradual migration with low risk, but takes longer.

Improving the effectivness of monolith architecture to microservices migration ... 169

Branch by Abstraction allows you to integrate new behavior quickly, but the complexity of
testing increases due to working with abstractions.

Parallel Run is ideal for identifying differences between systems, but requires significant
resources.

Decorating Collaborator is simple and flexible, but can reduce performance in complex systems.

Change Data Capture is useful for integrating new systems without stopping the current process,
but requires careful testing of changes in data.

Each of the patterns considered can be useful in certain situations, depending on the specifics
of the project, budget, time and risks, and the optimal choice depends on the specific needs and
priorities in the modernization process.

The process of migration from monolithic architecture to microservices is a complex and
multifaceted task that requires further research in a number of areas. Further research may focus on
using statistical models and machine learning techniques to more accurately predict migration
efficiency. Using data on past migrations, as well as analyzing their results using more complex
algorithms, will improve the accuracy of forecasts for implementation costs and reduced productivity.

7. Conclusions

In this study, criteria were chosen and an algorithm for calculating the efficiency of patterns for
the transition from monolithic architecture to microservices was proposed. Analysis showed that all
five selected patterns have shown their effectiveness in certain contexts.

Each pattern provides a unique approach to solving the challenges of monolith-to-microservices
migration. The most effective choice depends on the system's architecture, project requirements, and
business constraints.

The Strangler Fig Pattern and Change Data Capture emerge as the most flexible and broadly
applicable options, suitable for gradual and low-risk transitions. For high-availability systems
requiring exhaustive testing, the Parallel Run pattern offers the best reliability. Meanwhile, Branch
by Abstraction and Decorating Collaborator are advantageous for maintaining stability during
complex migrations.

Based on the results obtained, you can identify scenarios in which each pattern is most effective:

Strangler Fig Pattern is effective in large organizations where the system has a complex
architecture and migration requires gradual changes without stopping the entire system. This allows
the transition from monolithic to microservice architecture over a long period.

Branch by Abstraction is most effective when you need to add new functions without disrupting
the main functionality. This is suitable for medium and large projects where new technologies or
components need to be introduced.

Parallel Run is ideal for critical projects where you need to check the performance and accuracy
of'anew system based on an old one. This applies in migrations that require high stability, for example
in financial or medical systems.

Decorating Collaborator is best used when you need to add new features to an existing system
without significant changes. This is suitable for projects where it is important to maintain the stability
of the main functionality.

Change Data Capture is used for projects where it is important to synchronize data in real time,
ensuring the continuity of business processes during migration.

The refined formula will be used to evaluate migration methods (e.g., Strangler Fig Pattern,
Branch by Abstraction) against criteria such as implementation time, testing complexity, risk of errors,
performance degradation, and overall effectiveness. This quantitative approach ensures a systematic
comparison, leading to insights about the best practices and recommendations for specific migration
scenarios.

The migration of a monolithic architecture to a microservice one is a strategic solution that can
significantly improve the flexibility, scalability and sustainability of the system. However, this
process requires careful planning, technical expertise and consideration of potential risks.

170 Information, Computing and Intelligent Systems N2 5, 2024

References

[1] S. Mooghala, “A Comprehensive Study of the Transition from Monolithic to Micro services—
Based Software Architectures” Journal of Technology and Systems pp. 27—40, November 2023,
https://doi.org/10.47941/jts.1538.

[2] S. Newman, Building Microservices: Designing Fine-Grained Systems, 2nd ed. O’Reilly Media,
2021.

[3] N. Ford and M. Richards, Fundamentals of Software Architecture: An Engineering Approach,
O'Reilly Media, 2020.

[4] N. Dragoni, S. Dustdar, S. Giallorenzo, A. L. Montesi, M. Mazzara, F. Saez, and L. Troya,
"Microservices: Yesterday, today, and tomorrow," in Present and Ulterior Software Engineering,
2017, pp. 195-216, https://doi.org/10.1007/978-3-319-67425-4 12.

[5] A. Balalaie, A. Heydarnoori, and P. Jamshidi, "Microservices migration patterns," in Softw. Pract.
Exp pp. 1-24, July 2018, https://doi.org/10.1002/spe.2608.

[6] F. Tapia, M.A. Mora,W. Fuertes, H. Aules, E. Flores and T. Toulkeridis, “From Monolithic
Systems to Microservices: A Comparative Study of Performance” in Appl. Sci. 2020, 10(17),
5797, https://doi.org/10.3390/app10175797.

[7] S. Eski and F. Buzluca, “An automatic extraction approach: transition to microservices
architecture from monolithic application” XP 'l18: Proceedings of the 19th International
Conference on Agile Software Development: Companion, May 2018, pp. 1-6,
https://doi.org/10.1145/3234152.3234195.

[8] J. Fritzsch, J. Bogner, S. Wagner, A. Zimmermann, “Microservices Migration in Industry:
Intentions, Strategies, and Challenges”, IEEE International Conference on Software Maintenance
and Evolution (ICSME), June 2019, https://doi.org/10.48550/arXiv.1906.04702.

Improving the effectivness of monolith architecture to microservices migration ... 171

VIIK 004.415.2

MIIBULLEHHSI E®EKTUBHOCTI MNEPEXOJAY BII MOHOJITHOI
APXITEKTYPU JIO MIKPOCEPBICHOI 3 BHUKOPUCTAHHSIM
ICHYIOUMX METO/IB MITPALI{

fipocnaB KopHara
HamionanbHuii TEXHIYHUNA YHIBEPCUTET YKpaiHu
«KuiBcbkuii ositexHiuHuil iHCTUTYT iMeHi Iropst Cikopebkoroy, Kuis, Ykpaina

https://orcid.org/0000-0001-9768-2615

OnekcaHpp lNybapes
HanionanbHuii TeXHIYHUN YHIBEpCUTET YKpaiHu
«KuiBcpkuii nmomirexHiyHui iHcTUTYT IMeH1 [rops Cikopebkoro», Kuis, Ykpaina

https://orcid.org/0009-0001-1028-4604

Tema mepexony Bil MOHOJITHOI apXITEKTypu IO MIKPOCEPBICHOI € OJIHUM 13 KIIFOUOBHUX
BUKJIMKIB CY4acHOi 1H)KeHepil mporpamHoro 3abesnedeHHs. Ll TpaHcdopmaris 103BoJIsIE
3a0e3neynTH OUIbIlYy T'HYYKICTh, MAaclITa0OBAaHICTh 1 aJalNTUBHICTh CHUCTEM, MpPOTE MHOTpedye
PETENbHOTO MUIAaHYBAHHS Ta BPAaxXyBaHHS YMCIEHHUX (DaKTOPIB, SKI BIUIMBAIOTh HAa €(EKTUBHICTh
Mirpauii. Y AaHoOMy JOCHIDKEHH1 CTaBUTHCA 3a METY BIOCKOHAJIEHHS ajirOpPUTMYy BHU3HAUYECHHS
e(EeKTUBHOCTI BHUKOPHUCTAHHS METOJIB Mirpamii MOHOJITHUX CHCTEM JO MIKPOCEPBICHOT
apxiTekTypu. Mirpairist Bil MOHOJIITHOT apXiTEKTypH JI0 MIKPOCEPBICHOT € CKJIaJIHUM TPOIIECOM, 1110
BKJIFOYA€E 3HAYHI TEXHIYHI Ta OpraHizaimiiiHi BUKIHKA. OCKUTBKM MOHOJIITHI CHCTEMH YacTO MaloTh
CKJIQJIHYy CTPYKTYPY Ta B3a€MO3B'SI3KM MK KOMIIOHEHTaMH, TIEPEXiJl 10 MIKpOCEPBICHOT apXITEKTYpPH
BHMAarae peTesIbHOTO TJIaHYyBaHHS Ta BUOOPY €(EeKTHBHUX METOJIIB Mirpairii. BiCyTHICTh €1uHOTO
MIXOMy 10 OIHKA €(PEKTUBHOCTI PI3HMX MIrpaiiiHuX IIa0IoHIB pOOUTH TPOLEC IMEePEXOTy
CKJIQJIHUM 1 PU3UKOBAHUM.

MeTor0 cTaTTi € BJIOCKOHAJICHHS aJIrOpUTMYy BH3HAUEHHS €(PEKTHMBHOCTI BUKOPHUCTAHHS
METOJIB Mirpamii BiJ MOHOJITHOI apxXiTeKTypu 10 MikpocepBiciB. i1 1IbOTO MPOBOIUTHCS
MOPIBHSAHHS ICHYIOUMX Mirpamiinux mabsioniB, Takux sk Strangler Fig Pattern, Branch by
Abstraction, Parallel Run, Decorating Collaborator ta Change Data Capture, 3a kpuTepisimu: 4ac
peanizallii, CKJIaJIHICTh TECTYBaHHS, PU3HK ITOMHJIOK, JIETpajiaIlis MpoyKTUBHOCTI Ta €(EKTUBHICTD.
VY JmochipKeHHI BHKOPHCTOBYIOTHCS METOJM TOPIBHSUIBHOTO aHali3y Ta KUIbKICHOT OIlIHKH
e(eKTUBHOCTI MirpamiiHux madaoHiB. /[1bOro 3acTOCOBYIOTBCS KpUTEpii, IO J03BOJISIOTH
OI[IHUTH 4Yac peawi3amii, CKIAJHICTb TECTyBaHHS, MOXJHUBI PHU3UKH, a TaKOX BIUIMB Ha
MIPOIYKTUBHICTh cucTeMHU. KpiM TOro, aHami3yroThCs ClIEHapii, y SKUX KOXKEH I1a0JIOH € HalOUIbIn
e(heKTUBHUM, IO J03BOJIIE BU3HAYUTH ONTHMAIbHI MIIXOAM J0 Mirparlii 3aJle)KHO Bif crerudiku
MIPOEKTY.

OTtpuMaHi pe3ysibTaT JO3BOJISAIOTH HE JIUIIIE TINOIIe 3pO3YMITH IepeBaru Ta HeJI0JIKU PI3HUX
MiAXOAIB A0 Mirpauii, ane i chopmyBaTH pekoMeHJalil Ajsi BHOOPY ONTUMAJIbHOIO IMAaTEepHY
3aJIe)KHO BiJ crerudiku cucteMu Ta Oi3Hec-moTped. HaykoBa HOBM3HA NOCHIKEHHS MOJIATAE Y
CTBOPEHHI alTOpPUTMYy, IIO IHTErpye Ii KpuUTepii /Ui MiABMIIEHHS e()EeKTUBHOCTI MirpaunifHuX
nporeciB. PesynmbraT poOOTH MOXYTh OYTH KOPUCHHUMM JJsl IHXKEHEpIB IMPOrpaMHOIo
3a0e3neueHHsl, apXITeKTOPIB 1 MEHeDKePIB, sKi MIIAHYIOTh MepeXifl 10 MIKPOCEPBICHOT apXiTEKTypH,
Ha/Ial09M CTPYKTYPOBaHY METOJIOJIOTIO JUIsl OLIIHKM Ta BUOOPY METO/IB Mirpariii.

KnrouoBsi cnoBa: MikpocepBic, MOHOJIIT, pO3NOALIEH], Mirpallis, apXiTeKkTypa.

