
Information, Computing and Intelligent Systems, 2024, No. 5, 90 – 100 

© The Author(s) 2024. Published by Igor Sikorsky Kyiv Polytechnic Institute. 

This is an Open Access article distributed under the terms of the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), which 
permits re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 

UDC 004.047, 005.8, 519.85 https://doi.org/10.20535.2786-8729.5.2024/316545 

 

DYNAMIC MATHEMATICAL MODEL FOR RESOURCE 

MANAGEMENT AND SCHEDULING IN CLOUD COMPUTING 

ENVIRONMENTS 
 

Vladyslav Kovalenko * 
National Technical University of Ukraine 

“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine 
https://orcid.org/0009-0001-8723-914X 

 
Olena Zhdanova 

National Technical University of Ukraine 
“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine 

https://orcid.org/0000-0002-8787-846X 

 
*Corresponding author: vlad.kov@ukr.net 

 
The object of the research is resource management and scheduling in Kubernetes clusters, in 

particular, data centers. It was determined that in many publications dedicated to optimization models 

of scheduling for Kubernetes, mathematical models either do not include constraints at all, or only have 

the constraints determined on the high level only. The purpose of the research is the creation of a 
dynamic low-level mathematical optimization model for resource management and scheduling in cloud 

computing environments that utilize Kubernetes. Examples of such environments include the data 

centers where the customers can rent both dedicated servers and resources of shared hosting servers that 
are allocated on demand. The suggested model was created using the principles of creation of 

mathematical models of discrete (combinatorial) optimization, and was given the name “dynamic” 

because it takes the time parameter into account. 
The model receives data about individual servers in the cluster and individual pods that should be 

launched as an input. The model aims to regulate not only individual assignments of pods to nodes, but 

also turning on and off the servers. The model has objectives of: minimization of the average number of 

shared hosting servers running; maximization of the average resource utilization coefficient on such 
servers; minimization of the number of occasions when the servers are turned on and off; minimization 

of resource utilization by the pods that are running on shared hosting servers but created by the customers 

renting the dedicated servers. The model considers resource constraints, among other limitations. 
Key words: cloud computing, orchestration, Kubernetes, optimization, mathematical modeling 

 

1. Introduction 

Cloud computing technologies are getting chosen by a large number of organizations as a 

backbone of their IT infrastructure for achieving their business needs [1 – 2]. Therefore, problems 

related to efficient utilization of cloud providers’ servers arise [1 – 2]. These problems can be solved 

or mitigated by containerization of applications and usage of optimization strategies, such as usage 

of efficient scheduling algorithms [1, 3]. An increasingly popular Kubernetes orchestrator is capable 

of managing containerized applications and includes implementation of several scheduling strategies 

[1, 3 – 4]. Nevertheless, problems of efficient resource management and scheduling remain among 

of the most relevant challenges for Kubernetes users, as schedules built by kube-scheduler 

(Kubernetes’ in-built scheduler) are often suboptimal, and occasionally lead to inability to deploy the 

services [1, 5]. 

Publications dedicated to the development of new scheduling algorithms for Kubernetes 

mention the optimization objectives, but not the constraints the system has to operate within. 

Formulating a specific mathematical model with clear objectives and constraints may be helpful in 

further development of efficient scheduling algorithms. This article is dedicated to formulating a 
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specific mathematical model for the scheduling problem that was described on a high level in [1]. It 

includes the objectives of minimizing the total number of nodes (servers) in the cluster, and 

maximizing the average workload of a single node. The relevance of this publication can be explained 

by the relevance of a more general problem of resource management in the cloud environments, and 

the common objective of cloud service providers to minimize energy consumption [1, 6]. 

 

2. Literature review and problem statement 

The publication [1] contains a detailed literature review dedicated to scheduling problems in 

Kubernetes. In [1], thirty-two publications, all of them published abroad, proposing a specific solution 

for Kubernetes were reviewed and classified by the type of methods implemented in the solutions. It 

was specified which objectives and constraints were considered in the solutions using each of the 

specific types of methods. The key findings of [1] were as follows: 

– the Kubernetes nodes are roughly equivalent to physical or virtual machines, meanwhile 

Kubernetes pods are abstract entities consisting of containers with applications; 

– during the process of scheduling, pods are getting assigned to nodes; 

– the commonly used methods can be classified into nine types, of which methods powered by 

artificial intelligence, heuristic methods, and metaheuristic methods can be considered the most 

promising; 

– maximization of resource utilization coefficient is a common objective; 

– few publications (such as [7 – 9]) include mathematical optimization models with explicitly 

declared constraints, and those constraints that are declared are usually described on a high level. 

It is worth pointing out that Kubernetes pods can be created either manually or automatically 

(via Kubernetes jobs for short-term, one-time tasks, or via Kubernetes deployments for long-running 

applications) [10, pp. 103, 113–114, 139]. 

Scheduling in Kubernetes’ in-built scheduler (kube-scheduler) consists of two stages: 

– filtering (determining the set of nodes where the pod can be run); 

– scoring (determining the best node where the pod would eventually be scheduled) [11]. 

In order to reduce energy consumption, currently existing solutions turn off the idle servers and 

redistribute the resources [12 – 13]. 

The problem which was identified and which is covered by this article is the absence of a more 

complete, dynamic (time-flexible), low-level mathematical model. Such a model would take both 

Kubernetes-specific constraints and business rules of cloud service providers into account. The model 

would mathematically formalize the process of turning the servers on and off, alongside improving 

the scoring stage of the scheduling process. 

 

3. The aim and objectives of the study 

The aim of the study is to formulate a detailed low-level mathematical optimization model for 

resource management and scheduling for Kubernetes environments and with the usage of Kubernetes 

terms which would also be dynamic, and thus would quickly react to the changes in the environment. 

The model must take the cloud service providers’ rules of business operations (such as existence of 

several customers, and the need to allocate specific pods to dedicated servers or shared hosting servers 

specifically) into account. The model’s newly formulated objectives and constraints could later 

become a base for the future scheduling solutions for Kubernetes alongside previously existing 

models’ findings. 

Formulation of such a new model would enable the development of a solution which would 

determine exactly when individual nodes should be turned on and off. Despite the commonness of 

resource utilization optimization objective, turning on and off the individual servers was not 

considered in previous scheduling models, as per [1]. This can improve Kubernetes’ performance 

specifically for cloud service providers’ needs, in comparison to kube-scheduler’s performance with 

default settings. 
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To achieve the goal of formulating such a detailed model, the task of formulating the 

mathematical model is set. Based on the typical structure of mathematical optimization models, the 

following subtasks of this task were identified: 

– identifying the exogenous parameters (input data parameters); 

– identifying the decision variables (parameters to manage during the course of resource 

management); 

– identifying the objectives; 

– identifying the constraints. 

 

4. The study materials related to the environment that is being modeled 

Data centers have been known to rent their computing power to the customers via the following 

paradigms: 

– dedicated servers (when the customer rents the server with all its computing resources); 

– shared hosting servers (when the data center provides resources according to the customer’s 

needs, but a single physical server’s resources may be shared between several customers; such 

approach to providing resources may be called multi-tenancy) [14 – 15]. 

Usually, it is the shared hosting paradigm which is associated with cloud computing 

environments. Organizations’ migration to the cloud (to the approach of renting shared hosting 

servers’ resources) often results in decrease in operations costs and improved flexibility in terms of 

scalability [14]. Nevertheless, cloud providers like Amazon may offer options like Dedicated 

Instances, which, despite being hosted in the cloud environment, include a physical server fully 

dedicated to a single customer [16]. Usage of dedicated servers is usually billed per time periods 

depending on the amount of resources [17]. Usage of shared hosting servers in cloud environment is 

billed on pay-as-you-go or pay-per-use model [18 – 19]. 

The mathematical model would overview the operations model of a cloud service provider that 

can provide both dedicated servers and resources of shared hosting servers to its customers. In this 

model, the customers using dedicated servers may also temporarily rent the resources of shared 

hosting servers. More specifically, they may authorize running specific pods on the shared hosting 

services when they need to upscale their services and do not have the capacity on their dedicated 

servers. 

The mathematical model described in this article is created based on common approaches to 

creating the mathematical models for discrete (combinatorial) optimization problems in operations 

research. Some of these most common model-building approaches are described in [20]. 

The mathematical model will include multiple criteria that may conflict. The solutions 

implemented on top of the model may therefore use multi-criteria decision-making methods in order 

to achieve balance between optimizing different criteria. 

In real-life problems, some limitations may be soft rather than rigid. In order to decrease the 

restrictiveness of the model, and to avoid the possibility of the model not producing a feasible 

solution, the following approach is taken: 

– rigid limitations that strictly cannot be violated (such as limitations related to hardware or 

Kubernetes architecture) are formulated as constraints; 

– softer limitations that would not be violated ideally, but can be violated in exceptional 

circumstances, are formulated as additional objectives of minimization of a numeric representation 

of undesirable events. 

 

5. Results of investigating and formulating mathematical model components 

5.1. Exogenous parameters 

Let the cloud service provider’s cluster consist of 𝑆 servers (equivalent to Kubernetes nodes), 

and let the provider’s 𝑈 customers (users) have 𝑃 pods to run on the servers within time planning 

horizon 𝑇. 

For simplification of the model, the timescale would be considered discrete. In the model, each 

period 𝑡 (𝑡 = 1, … , 𝑇) would correspond to a brief time window where: 
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– no servers are getting turned on and off; 

– no servers are gaining or losing their status of a dedicated server; 

– no new pods are getting launched or shut down. 

Since such periods may not be equal in length, each period 𝑡 would be characterized by its 

length 𝐿𝑡. The model was named dynamic due to the presence of the time parameter. 

Each server 𝑠 (𝑠 = 1, … , 𝑆) would be characterized by: 

– 𝑐𝑠
′ – its CPU size; 

– 𝑚𝑠
′  – its memory size; 

– 𝑑𝑢𝑠𝑡 – whether the server is rented as a dedicated one for the specific customer during a certain 

period: 
 

𝑑𝑢𝑠𝑡 = {
1, if the server 𝑠 is running as a dedicated server

for the customer 𝑢 during the period 𝑡,          
0, otherwise,                                                                    

     𝑢 = 1, … , 𝑈, 𝑡 = 1, … , 𝑇 (1) 

 

Each pod 𝑝 (𝑝 = 1, … , 𝑃) would be characterized by: 

– 𝑐𝑝 – its CPU requirements; 

– 𝑚𝑝 – its memory requirements; 

– 𝑎𝑢𝑝 – whether it was created by the specific customer: 
 

𝑎𝑢𝑝 = {
1, if the pod 𝑝 was created by the customer 𝑢,
0, otherwise,                                                              

     𝑢 = 1, … , 𝑈 (2) 

 

– 𝑏𝑝 – whether the customer has authorized running it on a shared server: 
 

𝑏𝑝 = {
1, if the pod 𝑝 was authorized to run on a shared server,
0, otherwise.                                                                                   

 (3) 

 

The limitations on the values of exogenous parameters that characterize the problem are as 

follows: 

– a single pod can only be created by a single customer: 
 

∑ 𝑎𝑢𝑝

𝑈

𝑢=1

= 1,     𝑝 = 1, … , 𝑃; (4) 

 

– at any given period, a single server can only be rented as a dedicated one for either a single 

customer or for no customer at all: 
 

∑ 𝑑𝑢𝑠𝑡

𝑈

𝑢=1

≤ 1,     𝑠 = 1, … , 𝑆, 𝑡 = 1, … 𝑇. (5) 

 

The detailed description of all exogenous parameters would be needed for further formulation 

of the objectives and the constraints. The scientific novelty of this subtask includes introduction of 

parameters of relations between pods and servers on one side, and customers on the other side. Such 

relations were not present in the previous models, and they would help telling dedicated servers and 

shared hosting servers apart. 

 

5.2. Decision variables 

As per the scheduling problem reviewed in the article, the system must determine: 

– which servers should be turned on (up and running) in the cluster; 

– the details of assignment of individual pods to individual nodes (servers). 

These values would be stored in the following variables: 

– 𝑥𝑠𝑡 – whether individual servers are turned on in the certain period: 
 

𝑥𝑠𝑡 = {
1, if the server 𝑠 is turned on in the period 𝑡,
0, otherwise,                                                            

     𝑠 = 1, … , 𝑆, 𝑡 = 1, … , 𝑇; (6) 
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– 𝑦𝑝𝑠𝑡  – whether the pod is running on a given server in the certain period: 
 

𝑦𝑝𝑠𝑡 = {
1, if the pod 𝑝 is running on the

server 𝑠 in the period 𝑡,      
0, otherwise,                                   

     𝑝 = 1, … , 𝑃, 𝑠 = 1, … , 𝑆, 𝑡 = 1, … , 𝑇. (7) 

 

The scientific novelty of this subtask includes introduction of parameters dedicated to turning 

the servers on and off into the scheduling model specifically.  

 

5.3. Objectives 

The first objective considered in the system is minimization of the number of servers turned 

on in the cluster. Assuming some of the servers in the clusters are rented as specific customers’ 

dedicated servers that the cloud service provider cannot turn off – this objective should be specified 

as number of shared hosting servers turned on, specifically. 

The value ∑ 𝑑𝑢𝑠𝑡
𝑈
𝑢=1  equals 1 if the server 𝑠 is rented as a dedicated one for any customer, and 

0 if it does not. Conversely, the value (1 − ∑ 𝑑𝑢𝑠𝑡
𝑈
𝑢=1 ) equals 1 if the server is operating as a shared 

hosting server, and 0 if it does not. Therefore, the total number of shared hosting servers turned on in 

the cluster in the moment 𝑡 equals ∑ 𝑥𝑠𝑡(1 − ∑ 𝑑𝑢𝑠𝑡
𝑈
𝑢=1 )𝑆

𝑠=1 . Assuming the system needs to minimize 

the average value of such number across the timescale (rather than in every single period, otherwise 

the launch of some pods may be infinitely delayed) – the first objective function can be formulated 

as the time-averaged version of the statement above: 
 

min 𝑧1 =
∑ 𝐿𝑡[∑ 𝑥𝑠𝑡(1 − ∑ 𝑑𝑢𝑠𝑡

𝑈
𝑢=1 )𝑆

𝑠=1 ]𝑇
𝑡=1

∑ 𝐿𝑡
𝑇
𝑡=1

. (8) 

 

The second and third objectives considered in the system are maximization of the average 

resource utilization coefficient of the servers turned on in the cluster. The second one would be 

responsible for optimizing CPU utilization, the third one would be responsible for optimizing memory 

utilization. For reasons similar to those in the first objective, only shared hosting servers would be 

counted in these objectives. 

The CPU utilization coefficient of a single server 𝑠 in the moment 𝑡 equals ∑ 𝑐𝑝𝑦𝑝𝑠𝑡
𝑃
𝑝=1 . The 

average CPU utilization coefficient across all shared hosting servers equals the sum of such 

coefficients, divided by the total number of shared hosting servers: 
∑ [(1−∑ 𝑑𝑢𝑠𝑡

𝑈
𝑢=1 ) ∑ 𝑐𝑝𝑦𝑝𝑠𝑡

𝑃
𝑝=1 ]𝑆

𝑠=1

∑ 𝑥𝑠𝑡(1−∑ 𝑑𝑢𝑠𝑡
𝑈
𝑢=1 )𝑆

𝑠=1
. For 

reasons similar to those in the first objective, the second objective can be formulated as the time-

averaged version of the statement above: 
 

max 𝑧2 =

∑ 𝐿𝑡[
∑ [(1 − ∑ 𝑑𝑢𝑠𝑡

𝑈
𝑢=1 ) ∑ 𝑐𝑝𝑦𝑝𝑠𝑡

𝑃
𝑝=1 ]𝑆

𝑠=1

∑ 𝑥𝑠𝑡(1 − ∑ 𝑑𝑢𝑠𝑡
𝑈
𝑢=1 )𝑆

𝑠=1

]𝑇
𝑡=1

∑ 𝐿𝑡
𝑇
𝑡=1

. 
(9) 

 

The third objective is similar to the second objective, with the exception of references to 

memory utilization coefficients rather than CPU utilization coefficients: 
 

max 𝑧3 =

∑ 𝐿𝑡[
∑ [(1 − ∑ 𝑑𝑢𝑠𝑡

𝑈
𝑢=1 ) ∑ 𝑚𝑝𝑦𝑝𝑠𝑡

𝑃
𝑝=1 ]𝑆

𝑠=1

∑ 𝑥𝑠𝑡(1 − ∑ 𝑑𝑢𝑠𝑡
𝑈
𝑢=1 )𝑆

𝑠=1

]𝑇
𝑡=1

∑ 𝐿𝑡
𝑇
𝑡=1

. 
(10) 

 

Turning the servers on and off too often may increase the speed of disks’ wear and tear [13]. 

Therefore, it may be desirable to plan the workload in a way that minimizes the number of occasions 

on which individual servers should be turned on and off. For example, the pods with low-priority jobs 

could be scheduled when the total workload is low. This can be achieved by introducing the fourth 

objective, which would be described as minimization of the total number of occasions when the 

server’s status (“turned on or off”) is changed. |𝑥𝑠(𝑡+1) − 𝑥𝑠𝑡| equals 1 when the server 𝑠 had a status 
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change between the periods 𝑡 and (𝑡 + 1). The fourth objective can be formulated as the total number 

of status changes across all the servers and across the timescale: 
 

min 𝑧4 = ∑ ∑ |𝑥𝑠(𝑡+1) − 𝑥𝑠𝑡|

𝑆

𝑠=1

𝑇−1

𝑡=1

. (11) 

 

With the second and third objectives being designed with maximization of average workload 

per server, pods which were authorized for running on shared hosting servers may be allocated on 

such servers. This may lead to overcharging complaints from the customers, especially in case of 

existence of extra capacity on the dedicated servers. This can be prevented by introducing the fifth 

and sixth objectives. They would be described as minimization of the total resource consumption 

(CPU and memory) by the pods which are run on the shared hosting servers, but were created by the 

customers who rent dedicated servers, across the timescale. A decision was made to include such 

resource consumptions into the objectives with the weights equal to number of dedicated servers the 

customer rents. This was done in order to: 

– not introduce an extra Boolean parameter containing whether the customer rents at least one 

dedicated server or not; 

– to emphasize the increasing importance of assigning pods to dedicated servers with the 

increase of number of dedicated servers rented by the customer. 

Similarly to the part of the first objective, the value (1 − ∑ 𝑑𝑣𝑠𝑡
𝑈
𝑣=1 ) represents whether the 

server is operating as a shared hosting server (e.g. not dedicated to a single customer, not necessarily 

the current one). The value ∑ 𝑑𝑢𝑞𝑡
𝑆
𝑞=1  equals the total number of dedicated servers rented by the same 

customer. The fifth objective can be formulated as: 
 

min 𝑧5 = ∑ 𝐿𝑡 ∑ ∑ ∑ [(1 − ∑ 𝑑𝑣𝑠𝑡

𝑈

𝑣=1

) (∑ 𝑑𝑢𝑞𝑡

𝑆

𝑞=1

) 𝑐𝑝𝑦𝑝𝑠𝑡]

𝑃

𝑝=1

𝑆

𝑠=1

𝑈

𝑢=1

𝑇

𝑡=1

. (12) 

 

The sixth objective is similar to the fifth objective, with the exception of references to memory 

utilization coefficients rather than CPU utilization coefficients: 
 

min 𝑧6 = ∑ 𝐿𝑡 ∑ ∑ ∑[(1 − ∑ 𝑑𝑣𝑠𝑡

𝑈

𝑣=1

) (∑ 𝑑𝑢𝑞𝑡

𝑆

𝑞=1

) 𝑚𝑝𝑦𝑝𝑠𝑡]

𝑃

𝑝=1

𝑆

𝑠=1

𝑈

𝑢=1

𝑇

𝑡=1

. (13) 

 

It can be said about the objectives (12) – (13) that they represent the soft limitations, as stated 

in chapter 4. Ideally, the pod created by a customer renting a dedicated server would always be 

assigned to a dedicated server, otherwise, the objective value would increase. However, in exceptional 

circumstances (when no other option is feasible), the system shall allow assigning such a pod to a 

shared server. 

The scientific novelty of this subtask includes formulating new types of objectives alongside 

the types previously discovered in [1]. This stems from the need to manage the pods created by both 

types of customers: those who rent a dedicated server, and those who use the resources of shared 

hosting servers. 

 

5.4. Constraints 

The only type of constraints identified in all models in [7 – 9], as per [1], are resource constraints 

(in terms of both CPU and memory). 

The first set of constraints proposed for this model would be resource constraints per server. 

At any given time, the sums of CPU or memory requirements of all pods running on a specific server 

should not exceed the total CPU or memory resources available on the server. The first set of 

constraints is stated in (14) for CPU resources and (15) for memory resources. 
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∑ 𝑐𝑝𝑦𝑝𝑠𝑡

𝑃

𝑝=1

≤ 𝑐𝑠
′ ,     𝑠 = 1, … , 𝑆, 𝑡 = 1, … , 𝑇. (14) 

 

∑ 𝑚𝑝𝑦𝑝𝑠𝑡

𝑃

𝑝=1

≤ 𝑚𝑠
′ ,     𝑠 = 1, … , 𝑆, 𝑡 = 1, … , 𝑇. (15) 

 

The second set of constraints proposed for this model would be resource constraints per 

customer. At any given time, the sums of CPU or memory requirements of all pods created by a 

specific customer: 

– should not exceed the total CPU or memory resources of this customer’s dedicated servers, if 

this customer rents dedicated servers and did not authorize running any of their pods on a shared 

hosting server; 

– is not limited by anything, if the customer authorized running any of their pods on a shared 

hosting server (this includes the situation where the customer does not rent any dedicated servers).  

The value ∑ 𝑦𝑝𝑠𝑡
𝑆
𝑠=1  equals 1 if the pod 𝑝 is running on some node (server) in the period 𝑡, and 

0 otherwise. The value ∑ 𝑎𝑢𝑝𝑏𝑝
𝑃
𝑝=1  equals 0 if the customer 𝑢 did not authorize running any of their 

pods on a shared hosting server, and is larger than 0 otherwise. The value 𝑀 would represent the 

number which is several orders of magnitudes larger than any other number in the model, to be a 

replacement of “infinity.” The second set of constraints is stated in (16) for CPU resources and (17) 

for memory resources. 
 

∑ 𝑎𝑢𝑝𝑐𝑝(∑ 𝑦𝑝𝑠𝑡

𝑆

𝑠=1

)

𝑃

𝑝=1

≤ ∑ 𝑑𝑢𝑠𝑡𝑐𝑠
′

𝑆

𝑠=1

+ 𝑀 ∑ 𝑎𝑢𝑝𝑏𝑝

𝑃

𝑝=1

,     𝑢 = 1, … , 𝑈, 𝑡 = 1, … , 𝑇. (16) 

 

∑ 𝑎𝑢𝑝𝑚𝑝(∑ 𝑦𝑝𝑠𝑡

𝑆

𝑠=1

)

𝑃

𝑝=1

≤ ∑ 𝑑𝑢𝑠𝑡𝑚𝑠
′

𝑆

𝑠=1

+ 𝑀 ∑ 𝑎𝑢𝑝𝑏𝑝

𝑃

𝑝=1

,     𝑢 = 1, … , 𝑈, 𝑡 = 1, … , 𝑇. (17) 

 

A decision was made to omit other types of constraints identified in [1] from the current model 

due to its low level. For example, this model is working with individual pods rather than applications. 

Additionally, this model does not take relationship between individual pods (such as affinity rules 

and anti-affinity rules) into account, because it is assumed that this model works in addition to (not 

as a replacement of) existing scheduling solutions’ models. Instead, this model’s aim is to include 

constraints related to the business model of cloud service providers. 

The third set of constraints proposed for this model would prohibit running the pods on shared 

hosting servers if they were not authorized for this: 
 

∑[(1 − ∑ 𝑑𝑢𝑠𝑡

𝑈

𝑢=1

)𝑦𝑝𝑠𝑡]

𝑆

𝑠=1

≤ 𝑏𝑝,     𝑝 = 1, … , 𝑃, 𝑡 = 1, … , 𝑇. (18) 

 

The fourth set of constraints proposed for this model would prohibit running the pods on 

dedicated servers if they were created by any customer except the one who rents the server. When the 

server 𝑠 is running as a dedicated one, but not for the customer 𝑢 in the period 𝑡 specifically, then 

𝑑𝑢𝑠𝑡 = 0, and ∑ 𝑑𝑢𝑞𝑡
𝑆
𝑞=1 = 1. Therefore, the value 1 + 𝑑𝑢𝑠𝑡 − ∑ 𝑑𝑢𝑞𝑡

𝑆
𝑞=1  equals 1 in such situations, 

and 0 otherwise. The fourth set of constraints can be formulated as: 
 

∑ 𝑎𝑢𝑝𝑦𝑝𝑠𝑡

𝑃

𝑝=1

≤ 𝑀 (1 + 𝑑𝑢𝑠𝑡 − ∑ 𝑑𝑢𝑞𝑡

𝑆

𝑞=1

) ,     𝑢 = 1, … , 𝑈, 𝑠 = 1, … , 𝑆, 𝑡 = 1, … , 𝑇. (19) 

 

The fifth set of constraints would regulate that the pod can have its status changed (“running 

or not running”) no more than two times. Throughout the timescale, a pod can be launched, stopped, 
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or both, but it cannot be launched or stopped more than once, and it cannot be moved to a different 

node directly [21]. | ∑ 𝑦𝑝𝑠(𝑡+1)
𝑆
𝑠=1 − ∑ 𝑦𝑝𝑠𝑡

𝑆
𝑠=1 | equals 1 when the pod 𝑝 had a status change between 

the periods 𝑡 and (𝑡 + 1). The fifth set of constraints can be formulated as: 
 

∑ | ∑ 𝑦𝑝𝑠(𝑡+1)

𝑆

𝑠=1

− ∑ 𝑦𝑝𝑠𝑡

𝑆

𝑠=1

|

𝑇−1

𝑡=1

≤ 2,     𝑝 = 1, … , 𝑃. (20) 

 

The sixth set of constraints would regulate that the same pod cannot be running on two servers 

simultaneously (assuming different pod replicas as treated as different pods): 
 

∑ 𝑦𝑝𝑠𝑡

𝑆

𝑠=1

≤ 1,     𝑝 = 1, … , 𝑃, 𝑡 = 1, … , 𝑇. (21) 

 

The seventh set of constraints would regulate that no pods can be run on a server which has 

been turned off. This can be described as “the number of pods running on the server is limited by 0 

for a server which is turned off, and not limited by anything for a server which is turned on:” 
 

∑ 𝑦𝑝𝑠𝑡

𝑃

𝑝=1

≤ 𝑀𝑥𝑠𝑡,     𝑠 = 1, … , 𝑆, 𝑡 = 1, … , 𝑇. (22) 

 

The scientific novelty of this subtask includes formulating new types of constraints that take 

the features of the environment (such as two types of servers, dedicated and shared hosting) into 

account. Such constraints also describe the limitations to the possible combinations of assignments 

in a more detailed way than high-level constraints identified in [1]. 

 

6. Analysis of the obtained results of mathematical model creation 

The dynamic low-level scheduling model for Kubernetes that takes data center’s rules of 

business operation into account is provided in the formulae (1) – (22). 

The proposed model successfully covers both the cloud service provider’s objectives of 

utilizing the servers’ resources efficiently, and the customers’ objectives of not overpaying for the 

provided services. The proposed model focuses more on determining the exact number of nodes in 

the cluster that should be running. 

However, the model may be less focused on the assignment of each individual pod to a specific 

node. To overcome this challenge, this model may be accompanied by the second model, that can be 

called “static model.” Such a static model could be responsible for determining individual 

assignments during the time intervals when the number of nodes that are running in the cluster is not 

changing. 

The dynamic model and the static model can comprise a two-tier decision-making system. In 

such a system, the dynamic model could be responsible for making global decisions, and the static 

model could be responsible for making quicker operational decisions. 

Further scheduling solution development and related experiments are required to determine the 

effectiveness of the mathematical model for real-world use. 

 

Conclusion 

The dynamic low-level mathematical model was formulated to solve the problem of resource 

management for cloud computing environments, such as data centers. The model has accounted for 

new potential objectives and constraints which are unique to the environments containing both the 

dedicated servers (rented by specific customers) and shared (multi-tenant) hosting servers. 

The model’s exogenous parameters include the attributes of individual servers and pods, both 

from technical and business perspective. 

The model’s decision variables include whether each individual server is turned on or off, and 

whether each individual pod is running on a particular node (server). 
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The model’s objectives include: minimization of the average number of shared hosting servers 

turned on; maximization of average resource usage per such server; minimization of the number of 

occasions when servers get turned on and off; minimization of the resource usage by the pods running 

on shared hosting servers but created by the customers renting the dedicated servers. Such objectives 

are meant to increase the environment’s economic efficiency by decreasing the amount of idle 

computing resources and therefore reducing overall power consumption, while also keeping customer 

satisfaction high. 

The model’s constraints include: resource constraints; limitations on individual pods’ ability to 

run on individual servers; technical constraints such as inability of a pod to be launched or stopped 

more than once, to be moved to a different node, or to run on more than one server simultaneously. 
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Об’єктом дослідження є управління ресурсами та складання розкладів у кластерах 

Kubernetes, зокрема у центрах обробки даних. Було визначено, що у багатьох публікаціях, 

присвячених оптимізаційним моделям складання розкладів для Kubernetes, математичні 

моделі або не містять обмежень взагалі, або мають обмеження, визначені лише на високому 

рівні. Метою дослідження є побудова динамічної низькорівневої математичної оптимізаційної 

моделі для управління ресурсами та складання розкладів у середовищах хмарних обчислень, 

що використовують Kubernetes. До прикладів таких середовищ відносяться центри обробки 

даних, де клієнти мають змогу орендувати як виділені сервери, так і ресурси серверів спільного 

хостингу, що виділяються на вимогу. Запропонована модель була побудована із використанням 

принципів побудови математичних моделей дискретної (комбінаторної) оптимізації та 

отримала назву динамічної, оскільки враховує параметр часу. 

Модель приймає на вхід дані про окремі сервери кластера та про окремі Pod’и, що мають 

бути запущеними. Модель має на меті регулювати не лише окремими призначеннями Pod’ів на 

вузли, але і вмиканням і вимиканням серверів. Модель має цільові функції: мінімізації 

середньої кількості запущених серверів спільного хостингу; максимізації середнього 

коефіцієнту використання ресурсів на таких серверах; мінімізації кількості увімкнень та 

вимикань серверів; мінімізації використання ресурсів Pod’ами, що запущені на серверах 

спільного хостингу, але створені замовниками, що орендують виділені сервери. Модель 

приймає до уваги: обмеження на обсяги ресурсів; обмеження на здатність окремих Pod’ів бути 

запущеними на окремих вузлах; технічні обмеження, як-от неможливість запускати або 

зупиняти Pod більш ніж один раз, переміщувати Pod з вузла на вузол, чи запускати Pod більш 

ніж на одному вузлі. 

Key words: хмарні обчислення, оркестрація, Kubernetes, оптимізація, математичне 

моделювання. 

 


