Information, Computing and Intelligent Systems, 2024, No. 5, 90 — 100
UDC 004.047, 005.8, 519.85 https://doi.org/10.20535.2786-8729.5.2024/316545

DYNAMIC MATHEMATICAL MODEL FOR RESOURCE
MANAGEMENT AND SCHEDULING IN CLOUD COMPUTING
ENVIRONMENTS

Vladyslav Kovalenko *

National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
https://orcid.org/0009-0001-8723-914X

Olena Zhdanova

National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
https://orcid.org/0000-0002-8787-846X

*Corresponding author: vlad.kov@ukr.net

The object of the research is resource management and scheduling in Kubernetes clusters, in
particular, data centers. It was determined that in many publications dedicated to optimization models
of scheduling for Kubernetes, mathematical models either do not include constraints at all, or only have
the constraints determined on the high level only. The purpose of the research is the creation of a
dynamic low-level mathematical optimization model for resource management and scheduling in cloud
computing environments that utilize Kubernetes. Examples of such environments include the data
centers where the customers can rent both dedicated servers and resources of shared hosting servers that
are allocated on demand. The suggested model was created using the principles of creation of
mathematical models of discrete (combinatorial) optimization, and was given the name “dynamic”
because it takes the time parameter into account.

The model receives data about individual servers in the cluster and individual pods that should be
launched as an input. The model aims to regulate not only individual assignments of pods to nodes, but
also turning on and off the servers. The model has objectives of: minimization of the average number of
shared hosting servers running; maximization of the average resource utilization coefficient on such
servers; minimization of the number of occasions when the servers are turned on and off; minimization
of resource utilization by the pods that are running on shared hosting servers but created by the customers
renting the dedicated servers. The model considers resource constraints, among other limitations.

Key words: cloud computing, orchestration, Kubernetes, optimization, mathematical modeling

1. Introduction

Cloud computing technologies are getting chosen by a large number of organizations as a
backbone of their IT infrastructure for achieving their business needs [1 — 2]. Therefore, problems
related to efficient utilization of cloud providers’ servers arise [1 — 2]. These problems can be solved
or mitigated by containerization of applications and usage of optimization strategies, such as usage
of efficient scheduling algorithms [1, 3]. An increasingly popular Kubernetes orchestrator is capable
of managing containerized applications and includes implementation of several scheduling strategies
[1, 3 — 4]. Nevertheless, problems of efficient resource management and scheduling remain among
of the most relevant challenges for Kubernetes users, as schedules built by kube-scheduler
(Kubernetes’ in-built scheduler) are often suboptimal, and occasionally lead to inability to deploy the
services [1, 5].

Publications dedicated to the development of new scheduling algorithms for Kubernetes
mention the optimization objectives, but not the constraints the system has to operate within.
Formulating a specific mathematical model with clear objectives and constraints may be helpful in
further development of efficient scheduling algorithms. This article is dedicated to formulating a

© The Author(s) 2024. Published by Igor Sikorsky Kyiv Polytechnic Institute.
This is an Open Access article distributed under the terms of the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), which
permits re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:vlad.kov@ukr.net

Dynamic mathematical model for resource management and scheduling in cloud computing... 91

specific mathematical model for the scheduling problem that was described on a high level in [1]. It
includes the objectives of minimizing the total number of nodes (servers) in the cluster, and
maximizing the average workload of a single node. The relevance of this publication can be explained
by the relevance of a more general problem of resource management in the cloud environments, and
the common objective of cloud service providers to minimize energy consumption [1, 6].

2. Literature review and problem statement

The publication [1] contains a detailed literature review dedicated to scheduling problems in
Kubernetes. In [1], thirty-two publications, all of them published abroad, proposing a specific solution
for Kubernetes were reviewed and classified by the type of methods implemented in the solutions. It
was specified which objectives and constraints were considered in the solutions using each of the
specific types of methods. The key findings of [1] were as follows:

— the Kubernetes nodes are roughly equivalent to physical or virtual machines, meanwhile
Kubernetes pods are abstract entities consisting of containers with applications;

— during the process of scheduling, pods are getting assigned to nodes;

— the commonly used methods can be classified into nine types, of which methods powered by
artificial intelligence, heuristic methods, and metaheuristic methods can be considered the most
promising;

— maximization of resource utilization coefficient is a common objective;

— few publications (such as [7 — 9]) include mathematical optimization models with explicitly
declared constraints, and those constraints that are declared are usually described on a high level.

It is worth pointing out that Kubernetes pods can be created either manually or automatically
(via Kubernetes jobs for short-term, one-time tasks, or via Kubernetes deployments for long-running
applications) [10, pp. 103, 113-114, 139].

Scheduling in Kubernetes’ in-built scheduler (kube-scheduler) consists of two stages:

— filtering (determining the set of nodes where the pod can be run);

— scoring (determining the best node where the pod would eventually be scheduled) [11].

In order to reduce energy consumption, currently existing solutions turn off the idle servers and
redistribute the resources [12 — 13].

The problem which was identified and which is covered by this article is the absence of a more
complete, dynamic (time-flexible), low-level mathematical model. Such a model would take both
Kubernetes-specific constraints and business rules of cloud service providers into account. The model
would mathematically formalize the process of turning the servers on and off, alongside improving
the scoring stage of the scheduling process.

3. The aim and objectives of the study

The aim of the study is to formulate a detailed low-level mathematical optimization model for
resource management and scheduling for Kubernetes environments and with the usage of Kubernetes
terms which would also be dynamic, and thus would quickly react to the changes in the environment.
The model must take the cloud service providers’ rules of business operations (such as existence of
several customers, and the need to allocate specific pods to dedicated servers or shared hosting servers
specifically) into account. The model’s newly formulated objectives and constraints could later
become a base for the future scheduling solutions for Kubernetes alongside previously existing
models’ findings.

Formulation of such a new model would enable the development of a solution which would
determine exactly when individual nodes should be turned on and off. Despite the commonness of
resource utilization optimization objective, turning on and off the individual servers was not
considered in previous scheduling models, as per [1]. This can improve Kubernetes’ performance
specifically for cloud service providers’ needs, in comparison to kube-scheduler’s performance with
default settings.

92 Information, Computing and Intelligent Systems N2 5, 2024

To achieve the goal of formulating such a detailed model, the task of formulating the
mathematical model is set. Based on the typical structure of mathematical optimization models, the
following subtasks of this task were identified:

— identifying the exogenous parameters (input data parameters);

— identifying the decision variables (parameters to manage during the course of resource
management);

— identifying the objectives;

— identifying the constraints.

4. The study materials related to the environment that is being modeled

Data centers have been known to rent their computing power to the customers via the following
paradigms:

— dedicated servers (when the customer rents the server with all its computing resources);

— shared hosting servers (when the data center provides resources according to the customer’s
needs, but a single physical server’s resources may be shared between several customers; such
approach to providing resources may be called multi-tenancy) [14 — 15].

Usually, it is the shared hosting paradigm which is associated with cloud computing
environments. Organizations’ migration to the cloud (to the approach of renting shared hosting
servers’ resources) often results in decrease in operations costs and improved flexibility in terms of
scalability [14]. Nevertheless, cloud providers like Amazon may offer options like Dedicated
Instances, which, despite being hosted in the cloud environment, include a physical server fully
dedicated to a single customer [16]. Usage of dedicated servers is usually billed per time periods
depending on the amount of resources [17]. Usage of shared hosting servers in cloud environment is
billed on pay-as-you-go or pay-per-use model [18 — 19].

The mathematical model would overview the operations model of a cloud service provider that
can provide both dedicated servers and resources of shared hosting servers to its customers. In this
model, the customers using dedicated servers may also temporarily rent the resources of shared
hosting servers. More specifically, they may authorize running specific pods on the shared hosting
services when they need to upscale their services and do not have the capacity on their dedicated
servers.

The mathematical model described in this article is created based on common approaches to
creating the mathematical models for discrete (combinatorial) optimization problems in operations
research. Some of these most common model-building approaches are described in [20].

The mathematical model will include multiple criteria that may conflict. The solutions
implemented on top of the model may therefore use multi-criteria decision-making methods in order
to achieve balance between optimizing different criteria.

In real-life problems, some limitations may be soft rather than rigid. In order to decrease the
restrictiveness of the model, and to avoid the possibility of the model not producing a feasible
solution, the following approach is taken:

— rigid limitations that strictly cannot be violated (such as limitations related to hardware or
Kubernetes architecture) are formulated as constraints;

— softer limitations that would not be violated ideally, but can be violated in exceptional
circumstances, are formulated as additional objectives of minimization of a numeric representation
of undesirable events.

5. Results of investigating and formulating mathematical model components
5.1. Exogenous parameters
Let the cloud service provider’s cluster consist of S servers (equivalent to Kubernetes nodes),
and let the provider’s U customers (users) have P pods to run on the servers within time planning
horizon T.
For simplification of the model, the timescale would be considered discrete. In the model, each
period t (t = 1, ...,T) would correspond to a brief time window where:

Dynamic mathematical model for resource management and scheduling in cloud computing... 93

— no servers are getting turned on and off;

— no servers are gaining or losing their status of a dedicated server;

—no new pods are getting launched or shut down.

Since such periods may not be equal in length, each period t would be characterized by its
length L;. The model was named dynamic due to the presence of the time parameter.

Each server s (s = 1, ..., S) would be characterized by:

— cg —its CPU size;

— mg — its memory size;

—d, s+ — Whether the server is rented as a dedicated one for the specific customer during a certain
period:

for the customer u during the period ¢, u=1,.,U0t=1,..T (1)

1,if the server s is running as a dedicated server
dyse =
0, otherwise,

Eachpodp (p = 1, ..., P) would be characterized by:

— ¢p — its CPU requirements;

—m,, — its memory requirements;

— @y, — Whether it was created by the specific customer:

_ (1,if the pod p was created by the customer u,

= =1,.. 2
Gup {0, otherwise, u U 2)

— b, — whether the customer has authorized running it on a shared server:

b = {1, if the pod p was authorized to run on a shared server,
P = |0, otherwise.

The limitations on the values of exogenous parameters that characterize the problem are as
follows:
— a single pod can only be created by a single customer:

3)

U
Z ay,=1 p=1,.,P; 4)
u=1

— at any given period, a single server can only be rented as a dedicated one for either a single
customer or for no customer at all:

U
Z dye <1, s=1,..,St=1,.T.)
u=1

The detailed description of all exogenous parameters would be needed for further formulation
of the objectives and the constraints. The scientific novelty of this subtask includes introduction of
parameters of relations between pods and servers on one side, and customers on the other side. Such
relations were not present in the previous models, and they would help telling dedicated servers and
shared hosting servers apart.

5.2. Decision variables
As per the scheduling problem reviewed in the article, the system must determine:
— which servers should be turned on (up and running) in the cluster;
— the details of assignment of individual pods to individual nodes (servers).
These values would be stored in the following variables:
— x5 — Whether individual servers are turned on in the certain period:

_ {1, if the server s is turned on in the period ¢, s=1..St=1 .T 6)

Xop = .
st 710, otherwise,

24 Information, Computing and Intelligent Systems N2 5, 2024

— Ypst — Whether the pod is running on a given server in the certain period:

1,if the pod p is running on the
Ypst =9 server s in the period ¢, r=1,.,Ps=1,.,5t=1,..,T. (7
0, otherwise,

The scientific novelty of this subtask includes introduction of parameters dedicated to turning
the servers on and off into the scheduling model specifically.

5.3. Objectives

The first objective considered in the system is minimization of the number of servers turned
on in the cluster. Assuming some of the servers in the clusters are rented as specific customers’
dedicated servers that the cloud service provider cannot turn off — this objective should be specified
as number of shared hosting servers turned on, specifically.

The value YU_, d,,s; equals 1 if the server s is rented as a dedicated one for any customer, and
0 if it does not. Conversely, the value (1 — YY_, d,¢) equals 1 if the server is operating as a shared
hosting server, and O if it does not. Therefore, the total number of shared hosting servers turned on in
the cluster in the moment t equals Y.5_; x..(1 — XY_, d,,s;). Assuming the system needs to minimize
the average value of such number across the timescale (rather than in every single period, otherwise
the launch of some pods may be infinitely delayed) — the first objective function can be formulated
as the time-averaged version of the statement above:

1 f1 L X3oy x5 (1 = 24—y dyge)]
= T .
t=1b¢

min z (8)

The second and third objectives considered in the system are maximization of the average
resource utilization coefficient of the servers turned on in the cluster. The second one would be
responsible for optimizing CPU utilization, the third one would be responsible for optimizing memory
utilization. For reasons similar to those in the first objective, only shared hosting servers would be
counted in these objectives.

The CPU utilization coefficient of a single server s in the moment t equals ZS:l CpYpst- The
average CPU utilization coefficient across all shared hosting servers equals the sum of such
2_‘2‘:1[(2_23:1 dust) Z§=1 CpﬁVpst]. For

Zs:let(l_ZILL]:ldust)
reasons similar to those in the first objective, the second objective can be formulated as the time-
averaged version of the statement above:

:2:1[(1 - Zg:l dust) 25:1 prpst]
:2:1 xst(l — 25:1 dust)
Xi=1Le
The third objective is similar to the second objective, with the exception of references to
memory utilization coefficients rather than CPU utilization coefficients:

§=1[(1 - Zg:l dyst) 25:1 mpypst]
g:l xst(1 - 25:1 dust)
T L
t=1"t

coefficients, divided by the total number of shared hosting servers:

t=1 Ll

] ©)

max z? =

t=1 Lel

] (10)

max z3 =

Turning the servers on and off too often may increase the speed of disks’ wear and tear [13].
Therefore, it may be desirable to plan the workload in a way that minimizes the number of occasions
on which individual servers should be turned on and off. For example, the pods with low-priority jobs
could be scheduled when the total workload is low. This can be achieved by introducing the fourth
objective, which would be described as minimization of the total number of occasions when the
server’s status (“turned on or off”) is changed. [xst11) — Xs¢| €quals 1 when the server s had a status

Dynamic mathematical model for resource management and scheduling in cloud computing... 95

change between the periods t and (t + 1). The fourth objective can be formulated as the total number
of status changes across all the servers and across the timescale:

T-1 S

minz* = z z |xs(t+1) Xt |- (11)
s=

t=1

With the second and third objectives being designed with maximization of average workload
per server, pods which were authorized for running on shared hosting servers may be allocated on
such servers. This may lead to overcharging complaints from the customers, especially in case of
existence of extra capacity on the dedicated servers. This can be prevented by introducing the fifth
and sixth objectives. They would be described as minimization of the total resource consumption
(CPU and memory) by the pods which are run on the shared hosting servers, but were created by the
customers who rent dedicated servers, across the timescale. A decision was made to include such
resource consumptions into the objectives with the weights equal to number of dedicated servers the
customer rents. This was done in order to:

— not introduce an extra Boolean parameter containing whether the customer rents at least one
dedicated server or not;

— to emphasize the increasing importance of assigning pods to dedicated servers with the
increase of number of dedicated servers rented by the customer.

Similarly to the part of the first objective, the value (1 — XY_, d,) represents whether the
server is operating as a shared hosting server (e.g. not dedicated to a single customer, not necessarily
the current one). The value Zgﬂ dy,q¢ €quals the total number of dedicated servers rented by the same
customer. The fifth objective can be formulated as:

T u S P U S
mingt =3 133 (1= o | Yt | a2

The sixth objective is similar to the fifth objective, with the exception of references to memory
utilization coefficients rather than CPU utilization coefficients:

min 7 = i i ii (1 - z d) Z uge | MpYpstl: (13)

s=1p

It can be said about the objectives (12) — (13) that they represent the soft limitations, as stated
in chapter 4. Ideally, the pod created by a customer renting a dedicated server would always be
assigned to a dedicated server, otherwise, the objective value would increase. However, in exceptional
circumstances (when no other option is feasible), the system shall allow assigning such a pod to a
shared server.

The scientific novelty of this subtask includes formulating new types of objectives alongside
the types previously discovered in [1]. This stems from the need to manage the pods created by both
types of customers: those who rent a dedicated server, and those who use the resources of shared
hosting servers.

5.4. Constraints
The only type of constraints identified in all models in [7 — 9], as per [1], are resource constraints
(in terms of both CPU and memory).
The first set of constraints proposed for this model would be resource constraints per server.
At any given time, the sums of CPU or memory requirements of all pods running on a specific server
should not exceed the total CPU or memory resources available on the server. The first set of
constraints is stated in (14) for CPU resources and (15) for memory resources.

96 Information, Computing and Intelligent Systems N2 5, 2024

P

z CpYVpst = c,, s=1,..,5t=1,..,T. (14)
p=1

P
Zmpypst <m; s=1,..,5t=1,..,T. (15)
p=1

The second set of constraints proposed for this model would be resource constraints per
customer. At any given time, the sums of CPU or memory requirements of all pods created by a
specific customer:

— should not exceed the total CPU or memory resources of this customer’s dedicated servers, if
this customer rents dedicated servers and did not authorize running any of their pods on a shared
hosting server;

— is not limited by anything, if the customer authorized running any of their pods on a shared
hosting server (this includes the situation where the customer does not rent any dedicated servers).

The value Y.5_, Ypst €quals 1 if the pod p is running on some node (server) in the period t, and
0 otherwise. The value 21’;:1 aypby, equals 0 if the customer u did not authorize running any of their
pods on a shared hosting server, and is larger than 0 otherwise. The value M would represent the
number which is several orders of magnitudes larger than any other number in the model, to be a
replacement of “infinity.” The second set of constraints is stated in (16) for CPU resources and (17)
for memory resources.

P S S P
Z aupcp(z Vpst) < z dysiCs + MZ aypb,, u=1,.,U0t=1,.,T. (16)
p=1 s=1 s=1 p=1
P s s P

Z aupmp(z Vpst) < z dysems + MZ aypb,, u=1,.,0,t=1,..,T. (17)

p=1 s=1 s=1 p=1

A decision was made to omit other types of constraints identified in [1] from the current model
due to its low level. For example, this model is working with individual pods rather than applications.
Additionally, this model does not take relationship between individual pods (such as affinity rules
and anti-affinity rules) into account, because it is assumed that this model works in addition to (not
as a replacement of) existing scheduling solutions’ models. Instead, this model’s aim is to include
constraints related to the business model of cloud service providers.

The third set of constraints proposed for this model would prohibit running the pods on shared
hosting servers if they were not authorized for this:

S U
Z[u _ Z dust)Vpse) < by, p=1,..,Pt=1,..T. (18)
s=1 u=1

The fourth set of constraints proposed for this model would prohibit running the pods on
dedicated servers if they were created by any customer except the one who rents the server. When the
server s is running as a dedicated one, but not for the customer u in the period t specifically, then
dyse = 0, and Zgzl dyqt = 1. Therefore, the value 1 + dyor — Zfl:l dyqe €quals 1 in such situations,
and 0 otherwise. The fourth set of constraints can be formulated as:

P

S
ZaupypstSM 1+du5t—zduqt S u=1,..Us=1,.,St=1,.,T (19)
p=1 g=1

The fifth set of constraints would regulate that the pod can have its status changed (“running
or not running”’) no more than two times. Throughout the timescale, a pod can be launched, stopped,

Dynamic mathematical model for resource management and scheduling in cloud computing... 97

or both, but it cannot be launched or stopped more than once, and it cannot be moved to a different
node directly [21]. | ¥3_; Vps(t+1) — >, Ypst | €quals 1 when the pod p had a status change between
the periods t and (t + 1). The fifth set of constraints can be formulated as:

T-1 S S
z |ZYps(t+1) - Zypst | <2 p=1..,P. (20)
t=1 s=1 s=1

The sixth set of constraints would regulate that the same pod cannot be running on two servers
simultaneously (assuming different pod replicas as treated as different pods):

S
Zypst <1 p=1..,Pt=1,..,T. (21)
s=1

The seventh set of constraints would regulate that no pods can be run on a server which has
been turned off. This can be described as “the number of pods running on the server is limited by 0
for a server which is turned off, and not limited by anything for a server which is turned on:”

P
Zypst Sstt; S = 1, ...,S,tz 1,...,T. (22)
p=1

The scientific novelty of this subtask includes formulating new types of constraints that take
the features of the environment (such as two types of servers, dedicated and shared hosting) into
account. Such constraints also describe the limitations to the possible combinations of assignments
in a more detailed way than high-level constraints identified in [1].

6. Analysis of the obtained results of mathematical model creation

The dynamic low-level scheduling model for Kubernetes that takes data center’s rules of
business operation into account is provided in the formulae (1) — (22).

The proposed model successfully covers both the cloud service provider’s objectives of
utilizing the servers’ resources efficiently, and the customers’ objectives of not overpaying for the
provided services. The proposed model focuses more on determining the exact number of nodes in
the cluster that should be running.

However, the model may be less focused on the assignment of each individual pod to a specific
node. To overcome this challenge, this model may be accompanied by the second model, that can be
called “static model.” Such a static model could be responsible for determining individual
assignments during the time intervals when the number of nodes that are running in the cluster is not
changing.

The dynamic model and the static model can comprise a two-tier decision-making system. In
such a system, the dynamic model could be responsible for making global decisions, and the static
model could be responsible for making quicker operational decisions.

Further scheduling solution development and related experiments are required to determine the
effectiveness of the mathematical model for real-world use.

Conclusion

The dynamic low-level mathematical model was formulated to solve the problem of resource
management for cloud computing environments, such as data centers. The model has accounted for
new potential objectives and constraints which are unique to the environments containing both the
dedicated servers (rented by specific customers) and shared (multi-tenant) hosting servers.

The model’s exogenous parameters include the attributes of individual servers and pods, both
from technical and business perspective.

The model’s decision variables include whether each individual server is turned on or off, and
whether each individual pod is running on a particular node (server).

98 Information, Computing and Intelligent Systems N2 5, 2024

The model’s objectives include: minimization of the average number of shared hosting servers
turned on; maximization of average resource usage per such server; minimization of the number of
occasions when servers get turned on and off; minimization of the resource usage by the pods running
on shared hosting servers but created by the customers renting the dedicated servers. Such objectives
are meant to increase the environment’s economic efficiency by decreasing the amount of idle
computing resources and therefore reducing overall power consumption, while also keeping customer
satisfaction high.

The model’s constraints include: resource constraints; limitations on individual pods’ ability to
run on individual servers; technical constraints such as inability of a pod to be launched or stopped
more than once, to be moved to a different node, or to run on more than one server simultaneously.

References

[1] V. V. Kovalenko, and M. M. Bukasov, “Scheduling Methods and Models for Kubernetes
Orchestrator,” Visnyk of Vinnytsia Politechnical Institute, vol. 175, no. 4, pp. 86-94, 2024,
https://doi.org/10.31649/1997-9266-2024-175-4-86-94.

[2] L. Golightly, V. Chang, Q. A. Xu, X. Gao, and B. S. Liu, “Adoption of cloud computing as
innovation in the organization,” International Journal of Engineering Business Management,
vol. 14, Jan. 2022, https://doi.org/10.1177/18479790221093992.

[3] K. Senjab, S. Abbas, N. Ahmed, and A.u. R. Khan, “A survey of Kubernetes scheduling
algorithms,” Journal of Cloud Computing, vol. 12, no.1, p.87, Jun. 2023,
https://doi.org/10.1186/s13677-023-00471-1.

[4] “Overview.” Kubernetes. [Online]. Available: https://kubernetes.io/docs/concepts/overview/

[5] T. Lebesbye, J. Mauro, G. Turin, and 1. C. Yu, “Boreas — A Service Scheduler for Optimal
Kubernetes Deployment,” in Service-Oriented Computing. Cham: Springer Int. Publishing, 2021,
pp. 221-237, https://doi.org/10.1007/978-3-030-91431-8 14.

[6] P. Townend, S. Clement, D. Burdett, R. Yang, J. Shaw, B. Slater, and J. Xu, “Invited Paper:
Improving Data Center Efficiency Through Holistic Scheduling In Kubernetes,” in 2019 IEEE
International Conference on Service-Oriented System Engineering (SOSE), San Francisco East
Bay, CA, USA, Apr. 4-9, 2019. IEEE, 2019, pp. 156-15610,
https://doi.org/10.1109/s0se.2019.00030.

[7] Y. Qiao, S. Shen, C. Zhang, W. Wang, T. Qiu, and X. Wang, “EdgeOptimizer: A programmable
containerized scheduler of time-critical tasks in Kubernetes-based edge-cloud clusters”, Future
Generation Computer Systems, vol. 156, pp. 221-230, Jul. 2024,
https://doi.org/10.1016/j.future.2024.03.007.

[8] M. Lin, J. Xi, W. Bai, and J. Wu, “Ant Colony Algorithm for Multi-Objective Optimization of
Container-Based Microservice Scheduling in Cloud,” IEEE Access, vol. 7, pp. 83088—-83100,
2019, https://doi.org/10.1109/access.2019.2924414.

[9] J. Santos, C. Wang, T. Wauters, and F. D. Turck, “Diktyo: Network-Aware Scheduling in
Container-based Clouds,” IEEE Transactions on Network and Service Management, p. 1, 2023,
https://doi.org/10.1109/tnsm.2023.3271415.

[10] B. Burns, J. Beda, and K. Hightower, Kubernetes: Up and Running. Dive into the Future of
Infrastructure, 2nd ed. Sebastopol, CA, USA: O’Reilly Media, Inc., 2019.

[11]S. Huaxin, X. Gu, K. Ping, and H. Hongyu, “An Improved Kubernetes Scheduling Algorithm for
Deep Learning Platform,” in 2020 17th International Computer Conference on Wavelet Active
Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, Dec. 18-20,
2020. IEEE, 2020, pp. 113-116, https://doi.org/10.1109/iccwamtip51612.2020.9317317.

[12] S. Telenyk, O. Rolik, E. Zharikov, and Y. Serdiuk, “Energy efficient data center resources
management using beam search algorithm,” Czasopismo Techniczne, vol. 4, pp. 127-138, 2018,
https://doi.org/10.4467/2353737xct.18.060.8372.

[13] M. Callau-Zori, L. Arantes, J. Sopena, and P. Sens, “MERCi-MIsS: Should I Turn off My
Servers?” Springer Int. Publishing, 2015, pp. 16-29, https://doi.org/10.1007/978-3-319-19129-
4 2.

Dynamic mathematical model for resource management and scheduling in cloud computing... 99

[14] F. Abidi and V. Singh, “Cloud servers vs. dedicated servers — A survey,” in 2013 IEEE
International Conference in MOOC, Innovation and Technology in Education (MITE), Jaipur,
India, Dec. 20-22, 2013. IEEE, 2013, pp. 1-5, https://doi.org/10.1109/mite.2013.6756294.

[15] P.-J. Maenhaut, H. Moens, V. Ongenae, and F. De Turck, “Migrating legacy software to the
cloud: approach and verification by means of two medical software use cases,” Software: Practice
and Experience, vol. 46, no. 1, pp. 31-54, Jan. 2016, https://doi.org/10.1002/spe.2320.

[16] “Amazon EC2 Dedicated Instances.” Amazon Elastic Compute Cloud. [Online].
Available: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html.
[17] G. Cornetta, J. Mateos, A. Touhafi, and G.-M. Muntean, “Design, simulation and testing of a
cloud platform for sharing digital fabrication resources for education,” Journal of Cloud

Computing, vol. 8, no. 1, p. 12, Aug. 2019, https://doi.org/10.1186/s13677-019-0135-x.

[18] N. K. Sehgal, P. C. P. Bhatt, and J. M. Acken, “Cost and Billing Practices in Cloud,” in Cloud
Computing with Security and Scalability. Cham: Springer Int. Publishing, 2022, pp. 177-195,
https://doi.org/10.1007/978-3-031-07242-0 _10.

[19] D. Lowe, and B. Galhotra, “An Overview of Pricing Models for Using Cloud Services with
analysis on Pay-Per-Use Model,” International Journal of Engineering & Technology, vol. 7,
no. 3.12, pp. 248-254, Jul. 2018, https://doi.org/10.14419/ijet.v7i3.12.16035.

[20] O. H. Zhdanova, V. D. Popenko, and M. O. Sperkach, Doslidzhennia operatsii. Vstup do
dyskretnoho prohramuvannia. Praktykum, (in Ukrainian). Kyiv: NTUU Igor Sikorsky Kyiv
Polytechnic Institute, 2019. [Online]. Available: https://ela.kpi.ua/handle/123456789/32225.

[21] C. Centofanti, W. Tiberti, A. Marotta, F. Graziosi, and D. Cassioli, “Taming latency at the edge:
A user-aware service placement approach,” Computer Networks, p. 110444, Apr. 2024,
https://doi.org/10.1016/j.comnet.2024.110444.

100 Information, Computing and Intelligent Systems N2 5, 2024
VIIK 004.047, 005.8, 519.85

JAUHAMIYHA MATEMATUYHA MOJAEJIb AJIAA YIIPABJIIHHA
PECYPCAMMU TA CKJIAJJAHHSA PO3KJIAIIB Y CEPEJOBHUIIAX
XMAPHUX OBYUCJ/IEHD

Bnaaucnas KoBasieHko

HamnionansHuii TeXHIYHUN yHIBEpCUTET YKpaiHu

«KuiBcpkuit monitexHiuHni iHCTUTYT iMeHi [ropst Cikopcerkoroy, Kuis, Ykpaina
https://orcid.org/0009-0001-8723-914X

OneHa XpaHoBa

HarionansHuii TeXHIYHUN yHIBEpCHTET YKpaiHu

«KuiBcpkuit monitexHiuHUi iHCTHTYT iMeHi [ropst Cikopebkoroy, Kuis, Ykpaina
https://orcid.org/0000-0002-8787-846X

O0’eKTOM JOCHIDKEHHSI € YIPaBIiHHA pecypcaMy Ta CKIaJaHHs PO3KIAIIB y KilacTepax
Kubernetes, 30kpema y meaTpax oOpoOku nanux. bymo Bu3HaueHo, mo y OaraThbox MyOJiKaIisax,
MPUCBAYEHUX ONTHMI3AllIiHUM MOJIEISIM CKIamaHHs po3kiaanaiB juisi Kubernetes, maremarnyHi
Mojieli a00 He MICTATh 0OMEKeHb B3araii, ab0 MalOTh OOMEKEHHsI, BH3HAYCHI JIMIIIE Ha BUCOKOMY
piBHI. MeToto 1oCiiKeHHs € Mo0y0Ba JUHAMIYHOT HU3bKOPIBHEBOT MAaTEMaTHYHOT ONTUMI3AIIMHOT
MOJIENTi JUTsl YIPABITIHHS PeCcypcaMy Ta CKIIaJaHHS PO3KIIAMIIB Y CepeIOBHUIAX XMAPHUX OOYNCIICHB,
o BUKOpUcTOBYIOTh Kubernetes. /o mpuxmaniB Takux CepenoBHUIN BITHOCATHCS IIEHTPU 0OpPOOKH
JAaHUX, JIe KITIEHTH MalOTh 3MOTY OPEHIYBAaTH SIK BHJIUICHI CEPBEPH, TaK 1 pECYpCH CEPBEPIB CIUTHHOTO
XOCTHHTY, 1110 BUIUIAIOTHCS HA BUMOTY. 3apoIioHOBaHa MO/IEIb Oyiia moOy10BaHa i3 BAKOPHUCTAHHIM
MPUHIMITB TOOYIOBM MaTEeMaTHYHUX MOJAENed IUCKpeTHOi (KoMOiHaTOpHOI) omTuUMizamii Ta
OoTpHUMaJia Ha3By AMHAMIYHOI, OCKUIHKH BPAaxOBY€E IMapaMeTp vacy.

Monens npuiiMae Ha BXiJ1 1aH1 PO OKpEMi CEpPBEPH KiracTepa Ta rmpo okpemi Pod’u, mo maiots
Oyt 3amyrieHuMu. MoJienb Mae Ha METI peryjTioBaTH HE JIUIIe OKpEMUMH ipu3HadeHHsIMU Pod’1B Ha
BY3JIM, aje¢ 1 BMHKaHHSM 1 BUMHKAHHSIM cepBepiB. Mojenb Mae IuiboB1 (yHKINII: MiHiMI3aIii
CepenHbOi KUIBKOCTI 3allyIIEHUX CEpPBEPIB CIUIBHOTO XOCTHHTY; MaKCHUMI3alii CcepeaHboro
koe(illieHTy BHKOPHCTaHHS PECypCiB Ha TaKMX CepBepax; MiHiIMi3alii KUIbKOCTI YBIMKHEHb Ta
BHUMHUKaHb CEpBEpiB; MiHIMI3amii BUKopucTaHHs pecypciB Pod’amu, mo 3amyimieHi Ha cepBepax
CHUIBHOTO XOCTHHTY, aje CTBOpPEHI 3aMOBHUKaMH, 110 OpPEHAYIOTh BUJIUICH1 cepBepu. Mojenb
MpuiMae 10 yBaru: oOMeKeHHs Ha 00CATH pecypciB; 0OMEKeHHS Ha 31aTHICTh okpeMux Pod’iB Oytu
3allyllIEHUMH Ha OKPEMHUX BYy3JaX; TEXHIYHI OOMEXKEHHS, SIK-OT HEMOXJIMBICTH 3amyckaTH abo
synusaTH Pod 6inbin HiXK ofuH pa3, nepeminryBatu Pod 3 By3na Ha By30:1, uu 3amyckatu Pod 6inbin
HDK Ha OTHOMY BY3IIL.

Key words: xmaphi oOuucieHHs, opkectpanis, Kubernetes, onrumizanis, MaremMarudHe
MO/ICTFOBaHHS.

