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The article focuses on studying the effectiveness of two different Hybrid Neural Networks (HNNs)
architectures for solving real-world image classification problems. The first approach investigated in the
research is a hybridization technique that allows creation of HNN based on a classical neural network by
replacing a number of hidden layers of the neural network with a variational quantum circuit, which
allows to reduce the complexity of the classical part of the neural network and move part of computations
to a quantum device. The second approach is a hybridization technique based on utilizing quanvolutional
operations for image processing as the first quantum convolutional layer of the hybrid neural network,
thus building a Quanvolutional Neural Network (QNN). QNN leverages quantum phenomena to facilitate
feature extraction, enabling the model to achieve higher accuracy metrics than its classical counterpart.

The effectiveness of both architectures was tested on several image classification problems. The
first one is a classical image classification problem of CIFAR10 images classification, widely used as a
benchmark for various imagery-related tasks. Another problem used for the effectiveness study is the
problem of geospatial data analysis. The second problem represents a real-world use case where quantum
computing utilization can be very fruitful in the future. For studying the effectiveness, several models
were assembled: HNN with a quantum device that replaces one of the hidden layers of the neural network,
QNN based on quanvolutional operation and utilizes VGG-16 architecture as a classical part of the model,
and also an unmodified VGG-16 was used as a reference model. Experiments were conducted to measure
the models' key efficiency metrics: maximal accuracy, complexity of a quantum part of the model and
complexity of a classical part of the model.

The results of the research indicated the feasibility of both approaches for solving both proposed
image classification problems. Results were analyzed to outline the advantages and disadvantages of
every approach in terms of selected key metrics. Experiments showed that QNN architectures proved to
be a feasible and effective solution for critical practical tasks requiring higher levels of model prediction
accuracy and, simultaneously, can tolerate higher processing time and significantly increased costs due
to a high number of quantum operations required. Also, the results of the experiments indicated that HNN
architectures proved to be a feasible solution for time-critical practical tasks that require higher processing
speed and can tolerate slightly decreased accuracy of model predictions.
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1. Introduction
Machine learning and deep learning, in particular, are established but still incredibly dynamic
and rapidly growing fields of study that have revolutionized numerous domains, including computer
vision, among many others. Classical deep neural models have achieved extraordinary levels of
accuracy in various computer vision tasks, including image classification, due to their ability to detect
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complex patterns in data. However, with today's growing demands and increasing scale of datasets,
classical machine learning algorithms encounter challenges in performance and energy consumption.
The aforementioned limitations are a driving force in the exploration of alternative computational
paradigms.

Quantum computing has emerged as a promising solution capable of addressing some of the
bottlenecks classical approaches face. By leveraging the phenomena of quantum mechanics, such as
superposition and entanglement, quantum computing can perform computations impossible or
infeasible for classical systems. The hybrid quantum-classical model's domain lies at the edge between
classical and quantum computing and allows the combination of the strengths of classical neural
networks with quantum algorithms. This field has gained attention recently as a most practical
approach to utilizing today's quantum computing capabilities, providing a pathway to more efficient
and robust machine learning models.

Within this context, Hybrid Quantum-Classical Neural Networks (HNNs) have shown
significant promise for image classification tasks in particular. HNNs integrate quantum devices into
classical architectures, enhancing feature extraction from images of various complexity. Recent
advancements, such as the development of quantum convolutional layers, have demonstrated the
ability to improve feature extraction and enhance classification performance on complex classical
datasets. However, this field still remains in its early stages of research with numerous challenges
related to quantum hardware constraints, scalability issues and a lack of theoretical understanding of
quantum neural network behaviors.

2. Literature review and problem statement

One of the most notable contributions of HNNs is the introduction of quantum convolutional
neural networks (QCNNs), which replace classical convolutional layers with quantum circuits to
extract complex features [1]. QCNNs have shown the ability to process data fundamentally differently
by leveraging quantum parallelism, which allows simultaneous evaluation of multiple states. This
architecture has been explored on image classification problems, including the MNIST dataset, where
hybrid models demonstrated competitive performance with reduced classical computational
complexity compared to purely classical networks.

Another emerging promising approach involves using quanvolutional layers, which act as
quantum feature extractors embedded within classical neural network pipelines [2]. These layers act
similarly to classical convolutional layers and operate on small sections of images, applying a quantum
transformation to generate feature maps. The outputs of the quanvolutional layers are then processed
by a classical part of the model to achieve classification.

In addition to quantum convolutional approaches, researchers have explored hybrid variational
quantum circuits (VQCSs) to replace fully connected layers in classical networks [3]. VQCs are
parameterized quantum circuits which act as a part of a neural network and take part in the training
process. These circuits enable quantum models to learn advanced feature transformations that can
complement the classical learning process. Studies indicated that VQC-based hybrid models achieve
acceptable levels of accuracy on benchmark datasets like CIFAR10 and FashionMNIST,
demonstrating the potential of quantum components to complement classical parts of hybrid models.

Moreover, hybrid quantum-classical transfer learning has emerged as a promising technique,
where pre-trained classical models are used with embedded quantum layers and fine-tuned [4]. This
method allows leveraging the representational power of existing classical networks while introducing
guantum enhancements in downstream tasks. Such hybrid transfer learning approaches have
successfully improved performance on smaller, specialized datasets.

Despite all the recent advancements in the domain of HNNs, they still face most of the limitations
of current quantum computing. One of the most significant challenges in HNN development is the
current state of quantum hardware. Existing noisy intermediate-scale quantum (NISQ) devices are
limited by factors such as qubit count, decoherence times, and gate fidelity [5]. Quantum models often
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require larger quantum circuits with numerous gates to improve performance. However, hardware
noise and errors significantly degrade model accuracy.

While quantum computing provides significant theoretical advantages, HNNs' scaling to handle
large datasets remains challenging due to the limited computational resources of current quantum
processors and very limited access to those computation resources at all. Training HNNs also requires
a significant amount of quantum-classical communication, which can lead to computational
bottlenecks due to significant communication overhead.

However, recent studies have proposed quite effective error-mitigation strategies and various
quantum-inspired optimizations to address these challenges, paving the way for more robust and
scalable hybrid models. The continuation of the evolution of quantum hardware, coupled with
continuous research and advancements in quantum algorithms, is expected to continue in future and
enhance quantum computing capabilities and prospects further.

3. The aim and objectives of the study
The aim of the study is to experimentally research the effectiveness of the proposed techniques
of creating hybrid quantum-classical neural networks and investigate the advantages of proposed
techniques in certain practical scenarios.

4. Methodology

This article is focused on researching the effectiveness of two different techniques of creating
hybrid quantum-classical neural networks for solving image classification problem:

— Utilizing quantum device as one of the hidden layers of HNN. This approach is described in a
detail in section 4.3.

— Utilizing quantum device as a first quantum convolutional layer of HNN. This approach is
described in a detail in section 4.4.

In order to research the effectiveness of the aforementioned approaches, it is crucial to define
metrics that will be used for comparisons of the approaches. Since the research has an important
limitation — a quantum computing simulator was used for emulating quantum processes on classical
hardware, it is impossible to compute the time complexity of each approach. So, instead of measuring
time, it was decided to measure the number of quantum operations (number of executions of quantum
circuits) required for training and operating the model and comparatively measure the complexity of a
classical part HNNs. The number of required quantum operations is an important metric because
quantum hardware is much more expensive, and access to it is much more restricted compared to
classical hardware. Additionally, standard metrics such as maximal model accuracy on validation data
subset, number of epochs needed for model training and minimal value of loss function during model
training were used. So, a comprehensive list of effectiveness metrics used in the research is the
following:

— maximal accuracy demonstrated by a model on validation data subset;

— number of epochs needed for model training;

— number of quantum operations needed for model training;

— number of quantum operations needed for producing single model prediction;

— comparative complexity of classical part of the model,

All the results were assessed and compared to an advanced model of VGG-16 architecture,
which is widely used in the field of image classification and has standard pyramidal CNN architecture
[6]. This classical architecture is used as a reference model for analyzing the feasibility of HNNs
application for solving actual image classification problem.

4.1. Quantum circuits
In this work, the proposed HNN was based on Ry quantum circuits with four qubits. Ry quantum
circuit has one trainable parameter per qubit and consists of a Hadamard gate [7] followed by a Ry
gate. A diagram of the Ry quantum circuit, which was used for the experiments, is shown in Figure 1.
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Fig. 1. Diagram of Ry quantum circuit used in a research.

As it can be seen from a diagram, number of inputs and number of outputs of the circuit is equal
and corresponds to a number of qubits used in a circuit. This architecture was chosen because it proved
to be the best fit for assembling HNNs based on our previous research [8].

4.2. Datasets

In this research two datasets were used:

— CIFAR10;

— Satellite Images of Hurricane Damage;

The CIFAR1O0 dataset is a widely used dataset in machine learning and computer vision. It
consists of 60000 color images, each with a resolution of 32x32 pixels, divided into 10 mutually
exclusive classes [9, 10]. Each class contains 6000 images, making the dataset balanced and
representative for classification tasks. The dataset is split into 50000 training images and 10000 test
images. A sample of the CIFAR10 dataset is demonstrated in Figure 2.
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Fig. 2. Sample of CIFAR10 dataset.
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The "Satellite Images of Hurricane Damage" dataset contains 23000 256x256 pixels RGB
pictures of damaged and undamaged buildings taken from a satellite [11]. This dataset consists of
images taken in Greater Houston area affected by 2017 Hurricane Harvey. The research used a subset
of this dataset, which contains 2000 training and 200 validation images. The subset used in the research
is balanced and contains an equal amount of images of damaged and undamaged buildings. A sample
of the "Satellite Images of Hurricane Damage" dataset is demonstrated in Figure 3.
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Fig. 3. Sample of “Satellite Images of Hurricane Damage” dataset.

From the samples shown, it can be seen that the images from both datasets are quite diverse.
While the CIFAR10 contain diverse pictures of 10 different classes in low resolution, the Hurricane
Damage dataset contains higher-resolution images of only 2 classes, featuring different buildings in a
similar setting.

4.3. Quantum circuit as a hidden layer of HNN

The first approach to building HNNs investigated in this research is using a quantum device as
part of a HNN that acts as one of the hidden layers of a neural network. This approach is based on the
assumption that encapsulating part of the required computations within a quantum circuit will enable
making the classical part of the network less deep and perform a portion of the necessary computations
on the quantum device with a significant acceleration, compared to the unmodified classical part of
the network.

A high-level architecture diagram of the approach is demonstrated in Figure 4.



Effectiveness of Hybrid Quantum-Classical and Quanvolutional Neural Networks for image classification 73

Classical
Xy Xy X3
Quantum l

7 | Il Measurement 1

Some specified

input state
|(//.,> R Measurement 2

Classical D [:]
= a(wshy + wghy)

Fig. 4. Diagram of HNN that use a quantum device as one of the hidden layers [12].

The investigated HNN architecture is based on the backbone architecture [12] that consists of
three convolutional layers, two linear layers and a quantum Ry circuit with four qubits. Convolutional
layers transform the image into a flat vector of elements. Three linear layers reduce the dimensionality
of the data to the number of qubits in a quantum layer. All layers apart from the last one use ReLU
[13] activation function, while the last one utilizes tanh activation function. The tanh activation
function is used because it transforms the value of parameters to the interval (-1; 1). Before entering
the quantum circuit, all values are multiplied by © because the quantum circuit operates on qubit shifts,
which are measured with their rotation angles. Moreover, the final operation consists of the usage of
sigmoid [14] activation function on the outputs of the quantum layer.

4.4, Quantum-convolutional HNN

The second approach of building HNNs investigated in the research is based on using a quantum
device that acts as the first quantum convolutional layer of HNN. The structure of the quantum
convolutional layer corresponds to a single quanvolutional operation proposed by Maxwell Henderson
[15]. A detailed description of this concept can be found in its founding paper. In order to avoid
confusion, this approach will be referenced as a quanvolutional neural network (QNN).

A high-level architecture diagram of the approach is demonstrated in Figure 5. This research
used the VGG-16 model architecture as a classical part of HNN.
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Fig. 5. Architecture diagram of HNN that uses quanvolutional layer [16].
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This approach was initially proposed in our previous research [16]. The main distinguishing
feature of the approach is that the result of the quanvolutional operation is used as multiple variations
of the same image. The process of preparing the model can be described by the following algorithm:

1. Quantum processing of the original dataset using quanvolutional operation.

2. The results of the quantum processing are transformed into a new training dataset, which
contains n times more images than the original dataset, where n equals the number of channels
produced by the quanvolutional operation.

3. The new training dataset is then used to train the classical part of the model.

Thus, as a result of performing preliminary quantum data processing, a new training dataset is
created, consisting of n variations of each input image. As mentioned, the value of n corresponds to
the number of channels in the output of the quanvolutional operation, which depends on the number
of qubits in the quantum circuit used for the quantum preprocessing of the images. The algorithm for
training the classical part of the hybrid model does not differ significantly from the training process of
any conventional artificial intelligence model. However, the use of the trained model has a key
difference: since the quanvolutional layer of the hybrid neural network (unlike a classical
convolutional operation) produces multiple images, the classical part of the hybrid model must process
and classify all produced images. Therefore, to obtain the final prediction from the hybrid quantum-
classical neural network, the last step involves aggregating the predictions for each variation of the
processed image. Many different approaches and algorithms can be used for this aggregation step,
depending on the context of the specific task. One such method is the majority voting algorithm. This
introduces a certain level of flexibility into the process of determining the final prediction of the hybrid
network, which can be helpful in many practical applications.

A more in-depth description of the approach and the reasoning behind it can be found in its
founding paper, which is our previous piece of research [16].

5. Experimental results
Two sets of experiments were conducted. Additional research based on our previous work [16,
17] yielded new and better results, described in the current article as a result of miscellaneous
improvements and enhancements. Figure 6 and Figure 7 demonstrate charts of models' accuracy during
the training process until they reach their max values of accuracy on CIFAR10 and Hurricane Damage
datasets, respectively. On both charts, the results of HNN are indicated in blue, the results of QNN are
indicated in red, and the results of the reference model are in brown.
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Fig. 6. Models accuracy on CIFAR10 dataset.
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Comparison of Model Accuracy on Hurricane Damage
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Fig. 7. Models accuracy on Hurricane Damage dataset.

Number of quantum operations needed for HNN model preparation can be described using the
following formula:

Noc = epoch * Nergin 1)

where,

Nqc— number of quantum operations for model training;

epoch — number of epochs needed for model training;

N¢rain — Number of elements in training dataset.

This comes to 20 * 3000 = 60000 quantum operations for HNN preparation on the CIFAR10
dataset. And to 17 * 2000 = 34000 quantum operations for HNN preparation on the Hurricane Damage
dataset.

For producing a single prediction, HNN needs just 1 quantum operation.

For QNN, number of quantum operations needed for model preparation does not depend on
number of epochs needed for training and can be described using the following formula:

Noc = imagep, * image,, * (qubits * 3 + 1) * Nipqin 2

where,

Nqc— number of quantum operations for model training;

imagen — heights of images in dataset;

imagew — wight of images in dataset;

qubits — number of qubits in quantum circuit;

N¢rain — Number of elements in training dataset.

This comes to 32 * 32 * (4 * 3 + 1) * 3000 = 39936000 quantum operations for QNN model
preparation on the CIFAR10 dataset. And to 128 * 128 * (4 * 3 + 1) * 2000 = 425984000 quantum
operations for QNN model preparation on the Hurricane Damage dataset (the size of the original
images was scaled from 256x256 pixels to 128x128 pixels).

For producing a single prediction, QNN needs number of quantum operations that can be
described using the following formula:
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Noc = imagey, * image,, * (qubits * 3 + 1), (3)

where,

Nqc— number of quantum operations for model training;

imagen — heights of images in dataset;

imagew — wight of images in dataset;

qubits — number of qubits in quantum circuit;

This comes to 32 * 32 * (4 * 3 + 1) = 13312 quantum operations for processing single image of
the CIFAR10 dataset. And to 128 * 128 * (4 * 3 + 1) = 212992 quantum operations for processing
single image of the Hurricane Damage dataset.

6. Discussion
6.1 Accuracy results analysis

According to the results shown in Figure 6 and Figure 7, the following observations can be made:

1. QNN demonstrated superior accuracy results for both datasets, with a result of 65.12%
accuracy on the CIFAR10 dataset and 98.1% accuracy on the Hurricane Damage dataset. QNN
outperformed HNN by a large margin in both experiments (23% higher accuracy on the Hurricane
Damage dataset and 9% higher accuracy on the CIFAR10 dataset). QNN also outperformed the
reference model by a smaller margin (1.6% higher accuracy on the Hurricane Damage dataset and 3%
on the Hurricane Damage dataset).

2. HNN demonstrated significantly lower performance compared to a reference model and QNN
on both datasets, with a resulting accuracy of 56.8% on the CIFAR10 dataset and 75% on the Hurricane
Damage dataset.

3. HNN requires more epochs to finish the training process to reach the highest level of accuracy.
On the other hand, the training process of QNN is the shortest (in terms of epochs required) for a less
complex Hurricane Damage dataset and just slightly longer compared to a reference model.

6.2 Computation complexity analysis

According to the results of computing the number of quantum operations required for preparing
and operating, the following observations can be made:

1. Despite the fact that QNN needs to process every image of the training dataset only once, it
requires a significant number of quantum operations to prepare the model — 39.49 million operations
for model training on the CIFAR10 dataset and 425.984 million operations for model training on the
Hurricane Damage dataset.

2. The number of operations needed to produce a single prediction of the QNN model also
requires a significant number of quantum operations — 13312 quantum operations for processing a
single image of the CIFAR10 dataset and 212992 quantum operations for processing a single
downscaled (to size of 128x128pixels) image of Hurricane Damage dataset.

3. The number of quantum operations required for preparing and operating the QNN model
linearly depends on the number of pixels in the dataset's original images, which makes the application
of QNN much more expensive for solving problems that require analysis of high-resolution images.

4. The number of quantum operations required for preparing HNN is several orders of magnitude
lower compared to QNN — 60000 quantum operations for training a model on the CIFAR10 dataset
and 34000 quantum operations for training a model on the Hurricane damage dataset. The number of
quantum operations needed to produce a single prediction is constant and equal to 1 for all cases. This
makes HNNs a lot (orders of magnitude) cheaper compared to QNNs in terms of quantum computing.

5. The complexity of the classical part of QNN is 4 times higher compared to a reference model
and more than 4 times higher compared to the HNN model. This is because each image of a dataset
requires the processing of 4 variations produced by a quantum layer, which directly translates to 4
times increased processing time by a classical part of a hybrid neural network.
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6.3 General discussion
It should be noted that all experiments were conducted using the Qiskit quantum simulator [18]
due to a very limited availability and very high cost of quantum hardware, which made it impossible
to conduct experiments on actual quantum computer.
All source code and data are provided for open access on GitHub and Kaggle [19-22].

7. Conclusion

Based on the results of the study, the following conclusions can be drawn:

1. The results of the experiments proved that hybrid neural networks based on quanvolutional
operation are able to achieve a superior level of accuracy compared to a reference classical model.
However, at the same time, QNNSs require a very significant number of quantum operations for both
preparation and operating a model and also require 4 times more compute time of classical hardware
because it needs to process 4 times more data compared to alternative approaches discussed in this
research. This renders the approach much more expensive compared to alternatives.

2. The results of the experiments also indicated that hybrid neural networks built upon a quantum
device that acts as one of the hidden layers of the neural network may be a feasible approach, even
though it demonstrates a significantly lower accuracy compared to alternative approaches. The
feasibility of this approach is attributed to a relatively low cost in terms of quantum operations number
and decreased complexity of the classical part of the neural network, which may be highly beneficial
in terms of increasing the speed of computations of the model by making a classical part of the model
less deep and utilizing quantum device instead of dropped layers of the neural network.

3. QNN architectures proved to be a feasible and effective solution for critical practical tasks
that require higher levels of accuracy of the model and, at the same time, can tolerate higher processing
time and significantly increased costs due to a high number of quantum operations required.

4. HNN architectures proved to be a feasible solution for time-critical practical tasks that require
higher processing speed and can tolerate slightly decreased model accuracy.
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CraTTss mpHUCBSYEHA JIOCHIIKEHHIO €(QEKTHUBHOCT1 JBOX PI3HUX apXITEKTyp TiOpUIHUX
HeripoHHux Mepexx (HNN) ans BupilieHHs npakTUYHMX 3ajad Kiacugikaiii 300paxkenp. [lepmnii
X1, 0 PO3TIISAAETHCS B JOCTIDKEHH] — II€ TeXHiKa T10puan3allii, sKa J03BOJISIE CTBOPIOBATH
riOpuHy HEHpPOHHY MEpeKy Ha OCHOBI KJIACMYHOI HEWPOHHOI MEepekl IUIAXOM 3aMIHU IEBHOI
KUIBKOCTI MPUXOBAHUX IIapiB HEHPOHHOI Mepeki Ha BapialliiiHy KBaHTOBY cxemy. Lle no3Bouisie
3MEHIINTH CKJIQJHICTh KIIACHYHOI YaCTHHU HEMPOHHOT MEpPEKi Ta MEPEHECTH YaCTHHY OOUNCIIEHb Ha
KBaHTOBMI MPUCTPIi, 110 3abe3neuye MpUCKOpPeHHS oO0uMcieHb. Jpyruil miaxix IpyHTYEThCS Ha
BUKOPUCTaHHI KBAHBOJIIOLUIMHUX omepauniil st oOpoOku 300pa’keHb SK MEPIIOro KBAaHTOBOTO
3TOPTKOBOTO MIapy TiOpUAHOT HEHPOHHOI MEPEki, CTBOPIOIOYM TAKUM UYHWHOM KBAaHBOJIOIIHHY
ueiiporny Mepexy (QNN). QNN BHKOpPHCTOBYE KBaHTOBI SIBHINA I TOJIMIICHHS IPOIECY
BWJIYUYCHHS O3HAK, IO JI03BOJIIE MOJIEII JOCATAaTH BUINMX IMOKA3HUKIB TOYHOCTI MOPIBHAHO 3 ii
KJIJACUYHUM aHAJIOTOM.

EdexTuBHicTh 000X apxiTekTyp Oymna mepeBipeHa Ha KUTBKOX 3amavax Kiacudikarii
300pakens. [lepia 3amaya — 11e kiracuyHa 3a1ava kinacudikarii 300paxenb CIFAR10, sika mmpoko
BUKOPHUCTOBYETHCSA SIK €TAJIOH JIJIsl PI3HUX 3aBJIaHb, OB’ s13aHUX 13 300paxeHHsAMHU. Jlpyra 3a1a4a, 1110
BUKOPHUCTOBYBAJIACH JJIsl AOCTIKEHHS €(PEeKTUBHOCTI, CTOCY€EThCS aHallizy reo-aanux. [pyra 3agaua
MIpeJICTaBJIsI€ peaJbHUI BUMIAJJOK BUKOPUCTAHHS, JIe 3aCTOCYBAaHHS KBAHTOBUX O0UHCIICHb MOXKeE OyTH
Jy’Ke TIePCIEKTUBHUM y MarOyTHhoMy. [l mocnimkeHHs e€heKTUBHOCTI OyJIo CTBOPEHO KUIbKa
Mozenel: riopuany HeHPOHHY MEPEKY 3 KBAHTOBUM MIPUCTPOEM, KU 3aMIHIOE OJIMH 13 TPUXOBAHUX
mapiB HEHPOHHOT MEpeXi; KBAaHBOJIIOIIIHY HEHPOHHY MEpPEKY, 3aCHOBaHY Ha KBAHBOJIIOIIMHIN
omeparii 3 apxirektyporo VGG-16 sk KIacUYHOI YACTMHOIO MOJENi; a TaKoX HeMOoAu(]iKOoBaHY
VGG-16 sax pedepeHTHy MoAenb. byao MpoBeneHO €KCIIEPUMEHTH JUIS BUMIPIOBAHHS KIFOYOBHUX
MeTpUK e(heKTUBHOCTI MOJIENIeH: MaKCUMAIbHOT TOYHOCTI, CKJIaIHOCT1 KBAHTOBOT YACTHMHU MOJIENI Ta
CKJIQIHOCT1 KJIACHYHOI YaCTUHU MOJETI.

Pesynpratu AOCHIMKEHHS MIATBEPIWIM AOUUIBHICT 000X MIIXOMAIB s BUPILICHHS
3alpornoHOBaHUX 3agad  kiuacudikamii 300paxenb. Pesynpratu Oynaum mpoaHami3oBaHi IS
BU3HAUEHHS TEpeBar 1 HEAOMIKIB KOXHOTO 3 MIAXOMIB 32 OOpaHMMHU KIIOYOBUMH METPUKAMH.
ExcnepumenTtu nokasanu, mo apxitekrypu QNN BusiBUIMCS TOUUIBHUM Ta €PEKTUBHUM PILIEHHAM
JUISL KPUTUYHO BAKIIUBUX MPAKTUYHHX 33]1a4, K1 MOTPeOyIOTh BUCOKOTO PIBHSA TOYHOCTI poOOTH Ta
MOJKYTh JIONYCKaTH sIK 30UTbIIEHHS yacy 0OpOOKH, Tak 1 3HaYHE 3pOCTaHHs BapTOCTI Yepe3 BEIUKY
KUTBKICTh HEOOXIAHMX KBAHTOBUX omepaniid. TakoX pe3ynbTaTh eKCIEePUMEHTIB MOKa3ald, IO
apxitTektypu HNN € mominbHUM pillieHHAM 7 MPAKTUYHHUX 337a4, /1€ KPUTUYHOK € MIBUAKICTD
00poOKH, 1 TOMyCTUME HE3HAYHE 3HIKEHHS! TOYHOCTI MOJIEI.

KnrouoBi cnoBa: HelipoHHI Mepexi, KBaHTOB1 00UMCIIEHHS], TOpU/IHI KBAHTOBO-KJIACHYHI HEMPOHHI1
Mepexi, Kiracugikalis 300paxeHb.



