UDC 004.8: 004.94 https://doi.org/10.20535.2786-8729.5.2024/318795

CIl/CD INTEGRATION TOOLS FOR AUTOMATED CODE
DEPLOYMENT AND VERIFICATION FOR TRAINING
PURPOSES

Viktoriia Babenko *

National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
https://orcid.org/0009-0008-1762-6671

Viktoriia Taraniuk
GlobalLogic Sweden AB, Gothenborg, Sweden
https://orcid.org/0000-0001-9044-1499

Valentyna Tkachenko

National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute” Kyiv, Ukraine
https://orcid.org/0000-0002-1080-5932

Iryna Klymenko

National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute” Kyiv, Ukraine
https://orcid.org/0000-0001-5345-8806

*Corresponding author: babenko.viktoriia@Ill.kpi.ua

The article is devoted to the study and application of modern tools for Continuous Integration and
Continuous Deployment (CI/CD) in the educational field. Automating the processes of software
deployment and testing is a relevant task for both improving the educational process and developing
DevOps skills among students. Significant attention is given to studying the core principles of CI/CD,
including automated testing, code quality monitoring, and integration with source code repositories.

Popular CI/CD platform such as Jenkins is utilized to automate the educational process and train
students. This tool enables the creation and deployment of applications using Docker technologies,
which allow real-world scenarios to be modeled. A significant emphasis is placed on the scalability and
adaptability of solutions, which enhance the efficiency of resource usage.

A methodology for implementing CI/CD into an educational course is proposed, including
integration with project management platforms and version control systems such as Git, with Gitea as
an example. The main stages include setting up automated builds, testing, and deployment, which enable
students to practice the principles of continuous integration and delivery. From the perspective of
improving the efficiency of the educational process, the proposed methodology allows for the
automation of assignment verification. The problems of Gitea and Jenkins integration are considered. A
way for integrating these tools through locally installed Jenkins and Gitea with private code repositories
has been proposed. Recommendations are provided for organizing the educational process through
practical and laboratory work focused on real-world scenarios of software deployment and test
automation.

The results of the study confirm the effective use of CI/CD tools for educational purposes,
ensuring the development of competencies required for working in modern IT teams. The use of CI/CD
increases awareness of cybersecurity and optimizes DevOps processes.

Key words: CI/CD, DevOps, Jenkins, Git, Gitea, automated testing, pipeline.

1. Introduction
In today's world, automation permeates all spheres of activity, including software development.
CI/CD technologies such as Gitlab CI/CD, Github Actions, Jenkins, and TeamCity make it much

© The Author(s) 2024. Published by Igor Sikorsky Kyiv Polytechnic Institute.
This is an Open Access article distributed under the terms of the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), which
permits re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

easier for developers to ensure continuous integration and deployment of software. This allows you
to automate the deployment and code verification processes, which reduces the risk of errors and
increases the quality of the product. The relevance of the article lies in addressing the growing demand
for automation tools in education to prepare students for real-world challenges in software
development.

The introduction of these technologies into the educational process not only shortens the time
of checking tasks, but also contributes to the development of relevant skills among students of IT
specialties. CI/CD tools help automate routine tasks such as building, testing, and deploying software
that develop DevOps skills. Visualization of results with the help of dashboards allows you to
evaluate achievements more effectively, and working with the Git version control system teaches you
how to collaborate effectively in a team.

The problems of Gitea and Jenkins integration are considered. The article presents the
architectural concept of automated task verification in the Gitea remote repository and proposes a
training system for automated software code verification. The purpose of the development is to create
an infrastructure for teamwork on educational projects, to ensure professional competence in the use
of C1/CD tools, as well as quick and objective access to the results of educational tasks, especially in
the distance learning format.

2. Analysis of literary sources and statement of the problem

Integrating Gitea and Jenkins is an urgent task in today's DevOps environment, where
automation of software development and deployment processes becomes critical. As a lightweight
and easy-to-use code storage and management service, Gitea is popular among small teams and
projects. Jenkins, in turn, is one of the most common tools for automating C1/CD processes, providing
flexibility and scalability. The problem is that without proper integration of these two systems, it is
difficult to achieve a smooth and continuous development process that includes code version control,
automated testing and deployment.

One of the main challenges is to ensure a reliable and uninterrupted data exchange between
Gitea and Jenkins, which will allow CI/CD processes to be automatically started when changes are
made to the code. This requires setting up webhooks, properly managing authentication and
authorization, and taking into account the specifics of each tool. Improper integration can lead to
disruptions in the development process, delays in deployment, and an increased risk of code errors,
highlighting the importance of proper planning and execution of this process.

Automated testing is a key element of modern software development practices. In a significant
number of modern works [1, 2, 3] the wide use of CI/CD tools for solving various automation tasks
is considered. In general, the technology involves the use of specialized tools to automate the testing
process, including execution, verification and analysis of results [4].

Regardless of the used methodologies (Agile, Scrum, Kanban, etc.) and development
technologies, CI/CD integration allows useful adapting to any workflow, while ensuring high
flexibility and team efficiency. It also improves collaboration between developers, testers, and other
project participants, as everyone has access to up-to-date information on the project's status and can
make the necessary adjustments in real-time.

This study will further review various architectural concepts of automated commit verification
systems and various hosting services for git. In each system, the main concepts and principles of
automation will be analyzed in detail and revealed. Such automation systems would be Jenkins, Gitlab
CI/CD, and Github Actions. Regarding hosting services - Github, Gitea. Gitlab CI/CD and Github
Actions offer built-in automation solutions described in [5, 6, 7] allowing easy configuration,
integration and deployment processes directly within the hosting platform. This reduces the need for
additional infrastructure and makes it easier to set up automated workflows.

Jenkins and TeamCity are powerful tools that can be integrated separately using plugins. They
offer a wide range of possibilities for customization and expansion of functionality, making them
ideal for complex and scalable projects. These tools allow creating customized pipelines for building,

testing and deploying software, providing high flexibility and adaptability to different project
requirements.

Unit testing improves code quality, simplifies development, and improves software stability.
Test automation gives developers the freedom to integrate new technologies. The Git version control
system is widely used for code management, and services such as GitHub, GitLab, and others provide
convenient publishing and collaboration tools, as described in [8, 9].

Gitea is a cross-platform service based on Git, created on the basis of the Gogs project. It
supports bug tracking, wiki usage, and code review, the use of which is described in the article [10].

There are many frameworks for unit testing in different programming languages, such as CTest,
Google Test for C++. Automated testing increases efficiency, repeatability, functional coverage,
reliability and reduces future testing costs.

CI/CD toolkit — Jenkins. Jenkins is one of the most popular services for integration with
repository hosts. It has an extensive plugin system, making it a versatile and widely used software
development tool. According to the above, it is necessary to investigate the possibilities of introducing
automated testing into the educational process to improve the quality of the software being developed.
The relevance of using CI/CD is described in [11, 5, 9]. The problem of ensuring the security and
integrity of educational projects in the context of integrated local repositories is especially relevant.

Based on the performed review of modern technologies and the analysis of publications in
literary sources on the use of these technologies, a general conclusion can be drawn that the use of
automation technologies, such as GitLab CI/CD, GitHub Actions, Jenkins and TeamCity, contributes
to increasing the efficiency of developers' work, ensuring a smooth process software development,
testing and deployment. The use of these technologies in integration with joint project management
systems requires the development of methods of integration and adaptation to specific target tasks.

Jenkins provides the most functionality among all tools and has a clear interface that makes it
possible to easily integrate services and conduct testing.

In the context of this study, the problem of ensuring the security and integrity of data in local
repositories of educational institutions was identified, which requires the development of special tools
for the integration of access control and project management in student teamwork. In the context of
the advantages of use in educational institutions, a conclusion should be drawn about the relevance
and expediency of developing tools for testing automation and version control, which will increase
the quality of the educational process and contribute to better preparation of students for the real
conditions of software development.

Thus, the identified problem area indicates the need to develop an educational system
architecture for automating task verification processes in Gitea repositories, which will provide a
convenient tool for effective interaction between teachers and students. Main goals:

— improving communication;

— acceleration of verification;

— reduction of the teacher's workload,;

— development DevOps-skills.

3. The purpose and objectives of the study

The purpose of the study is to develop an approach and tools for automated testing of software
code for a remote repository storage system, using Gitea as an example. The implementation of the
research goal is aimed at increasing the effectiveness of the educational process in various formats of
the educational process, expanding the range of technologies that students use in their work,
accelerating the updating of monitoring of completed tasks and saving time resources.

To achieve the goal, the following tasks were set:

— to develop an architectural concept of a system of automated verification of software code
and a set of software tools with the possibility of integration into educational and methodical
complexes of educational institutions of higher education that train specialists in the field of modern

IT technologies, which is capable of providing effective training in the use of CI/CD tools and
automation of monitoring the performance of educational tasks;

— to implement the architectural concept and means of integration of automated testing of
completed tasks based on Gitea, develop a set of software tools that will ensure continuous integration
and delivery of completed tasks in the remote Gitea repository to Jenkins.

4. Development of the architectural concept of the automated
software code verification system
4. 1. Justification of the choice of means for joint project management

Git was used as the primary tool for version control and project collaboration. Git provides
efficiency through collaboration, version management, branch creation and merging, and merge
conflict resolution. In addition, Git allows working on versions of a project locally without a constant
Internet connection, which is especially useful for educational projects. This makes it ideal for
university environments where data security and copyright control are important, as open repositories
can increase the risk of academic misconduct.

Gitea is chosen as a stand-alone Git service that provides local hosting and code control. Its
advantages over other hosting platforms include:

— Full control: Gitea allows universities to create their own private repositories to protect
copyright and avoid plagiarism.

— Simplicity and ease: Gitea consumes minimal resources and is easily configurable across
platforms.

— Self-hosted: The ability to install the system on its own server allows the university to have
full control over storage and data.

— Integration with CI/CD: Although Gitea does not have built-in CI/CD tools, the ability to
integrate via web hooks allows connecting external services for automation, such as GitLab CI,
Jenkins, or GitHub Actions.

For Windows, Git Bash was used as a lightweight tool for working with Git on the command
line, and for Linux and macOS, Git was installed through the terminal, which ensured a unified
operation regardless of the operating system.

Gitea is a versatile and user-friendly Git hosting solution that allows hosting Git repositories
and collaborate on code with team. It offers many of the features available in the larger Git hosting
platforms, but is lightweight and easy to set up.

As for continuous integration tools support, there are no built-in plugins. But the advantages
of using it are quite significant, so the article has developed a way of interaction between Jenkins and
Gitea.

4.2. Rationale for choosing tools for CI/CD integration

Tools such as Gitea and Jenkins were used to implement the continuous integration and delivery
system within the project. These tools provide efficient automation of software development, testing
and deployment processes. Let's consider in more detail how exactly they were applied. Gitea — a
stand-alone platform for hosting Git repositories — was chosen for repository management and code
version control. It was used to store student projects, which provides:

— Data privacy: Gitea allows creating private repositories, which is important to preserve
copyright and protect information.

— Ease of use: Students can easily upload their work, and teachers can easily track progress and
review changes through version control.

After creating the repository, the student must initialize the local repository and upload the
project to the remote repository on Gitea. After creating a repository, user need to generate a
repository access token in Jenkins to integrate with Jenkins. This token entitles continuous integration
tools to monitor repositories.

To automate the continuous integration (Cl) and delivery (CD) processes, Jenkins was used,
which allowed to create an automated process of code verification and testing:

— Integration with Gitea: Using web hooks enabled tests to be automatically run in Jenkins after
each commit in the Gitea repository. This speeds up project review and allows teachers to get results
faster.

— Automated testing: Jenkins automatically ran tests after changes were made to the code. This
made it possible to detect errors at an early stage and ensure high quality code before deployment.

— Automatic deployment: After successful tests, Jenkins automatically deployed the software,
which greatly simplified the process and reduced the number of errors during manual deployment.

As a result, the following architectural concept, see Figure 1, of the system was developed:

1. Users work on their projects locally and store code in Gitea repositories.

2. Gitea sends web hooks to Jenkins for every new commit or change in the repository.

3. Jenkins runs a pipeline that executes:

4. Automatic assembly of the project.

5. Automatic testing.

6. Generation of reports.

7. If the build and tests pass, Jenkins automatically deploys to a server or cloud platform.

&

i Commit&Push

Web hooks
/ N\ Gitea

User

reports

(=

sen

Jenkins \'
Building

Testing l«—— Fipeline
Feporting

past app

Cloud Services

Fig. 1. Architectural concept of the system

A pipeline, also known as a build script, is an automation mechanism in Jenkins that allows a
developer to describe and manage the sequence of steps that must be performed during the
development, testing, and deployment of software. Using Jenkins Pipeline allows creating structured
and repeatable build processes.

Jenkins Pipeline syntax can be expressed in two formats: declarative and scripted (Scripted
Pipeline) [12]. Both formats describe a sequence of steps to automate the process of building, testing,
and deploying software.

xUnit is a Jenkins plugin that provides the ability to visualize test run reports on the Dashboard.
Integrating a project build with this plugin is quite easy, as it supports the execution results of Google
Test, Junit, MSTest, UnitTest++, Boost Test Library [13, 14] etc. The plugin provides an opportunity
for creating a convenient infographic of completed tests and quickly processes report files, which
improves the functionality of the system.

MSBuild plugin is a project build tool built into Visual Studio. The plugin uses XML-like
project files to define project structure and build tasks. MSBuild is responsible for building,
compiling, packaging, and deploying software.

The MSBuild plugin for Jenkins is a Jenkins extension that adds support for using MSBuild to
build projects. This plugin usually uses MS Build to compile and build software during continuous
integration/continuous deployment process in Jenkins. It provides the ability to configure build
options, set the path to the MSBuild project file, and control the build process.

Using the MSBuild plugin for Jenkins, developers can integrate MSBuild project builds into
their continuous integration and continuous deployment processes, automate software builds and
testing, and import build information into Jenkins to analyse and monitor the build process.

5. The results of the research of CI/CD integration tools for the system of automated
verification of software code
5.1. Implementation of the architectural concept of the system of automated verification of
software code

In accordance with the developed materials and selected technological means for the
implementation of the architectural concept, it is possible to make the transition to the creation of the
software part of the automated task verification system in the Gitea remote repository. In order to
make the automation architecture as flexible as possible, it is necessary to describe the main parts of
the system'’s functionality - program blocks, the main scenarios of project assembly.

According to the given problem, the following implementation of the architectural concept was
carried out in the form of a template repository for the fork and detailed instructions for using
frameworks and Jenkins.

The project directory allows students to work with an already configured framework with unit
tests. Developer only need to work with the raw code in the main project directory. In order to create
such a project, a project in Visual Studio Google Test for C++ needs to be created. After fully
initializing the project and adding the main raw files, the student should get a standard project
structure. To automate the process of checking tasks, a task for working with pointers has been
selected.

In addition, the Google Test tool is already loaded in Visual Studio in this project configuration.
This avoids errors when connecting the test tool directly. This framework is attached via pch.cpp and
pch.h files.

For educational purposes, code blocks were replaced with comments for further educational
work. Comments in these files can be replaced by student developers with their own solutions. In
fact, by modelling such template files, the teacher provides the student with the opportunity for his
own implementation of tasks with his creativity.

After running the unit tests in Visual Studio, the results of the Google Test handler are displayed
as shown in Figure 2.

Test Explorer [X
»» -G’ A:|@c[@o] R-@O - o-
Test run finished: 8 Tests (8 Passed, 0 Failed, O Skipped) run in 4.4 sec & 0 Wamings € 0 Errors
Test Duration Traits Error Message Group Summary
(] test_repos (8) <1ms test_repos
49 <Empty Namespace> (8) <1ms Tests in group: 8
> @ QuickSortTest (5) <1ms Outcomes
b @ StringProcessorTest (2) <1ms ® 8Passed
@ SwapTest (1) <1ms

Fig. 2. Test Explorer

In order to receive an .xml file with the results of the test framework in the project, user
need to adjust the Debug process. To do this, use Project Properties and set the appropriate
environment variables, as in Figure 3.

Configuration: All Configurations v Platform: Al Platforms : Configuration Manager...

4 Configuration Properties Debugger to launch:

Cenera

Local Windows Debugger

Debugging
VC++ Directories - ~
Command $(TargetPath)
p C/C++
b [YT Type your arguments here
Linker . =
2 Working Directory $(ProjectDir)
pr Manifest Tool 2
Attach No
XM cument Gener:
P XML Document Generat Debugger Type Auto
p Browse Information g "
Environment
b Build Events Merge Environment Yes
b Custom Build Step SQL Debugging No
b

Code Analysis Amp Default Accelerator

Fig. 3. Fixing Debug process in Visual Studio

Debug provides the generation of a valid .xml file that can easily be processed by the
xUnit plugin to publish test results to the server.

5.3. How to integrate Jenkins and Gitea

Jenkins was chosen as the continuous integration and continuous delivery tool. This tool
provides an opportunity to openly monitor both private and public repositories, organizations, and
various branches in the repositories. The architecture of the project is based on the fact that every
student should have his own private repository - this will reduce cases of plagiarism.

To run Jenkins via localhost, the Jenkins service must first be started through Services on
Windows. After the service is successfully started, Jenkins Server can be started on localhost. After
completing the previous steps, the Jenkins Server would be able to work with Gitea repositories.

To work with Gitea as a repository, the Git plugin is installed in Jenkins

When building the project, the MSBuild plugin was used, in order for the plugin to work
correctly, it needs to be configured. This option is performed by specifying the path to the directory
with the MSBuild.exe executable file.

MSBuild provides the ability to build Visual Studio solutions on a Jenkins server.

The xUnit plugin is used to publish test results. xUnit works by parsing an *.xml file that
describes the results of executing unit tests. Mandatory components of such a file should be <testsuit>
and <testcase> tags.

Thanks to the use of xUnit, it is possible to configure the interface for displaying the test results
in Jenkins, which is an advantage for the quick processing of the student's work results.

5.4. Build script configuration
In order for the project assembly to be executed serially-parallel on the Jenkins server, a script
or pipeline should be attached to the repository to be monitored.
Each pipeline has its own "steps" of assembly according to the business logic of the project,
one of the implementation methods is shown in the steps of the scenario, which can be considered in
follow script:

pipeline {
agent any
stages {
stage('Checkout') {

steps {
git url: 'https://git.comsys.kpi.ua/victoria_babenko/repos_test.qgit', credentialsid:
‘jenkins-gitea-test'
by
by
stage('Build") {
steps {
bat 'VS_pr_build test_repos.sin /p:Configuration=Release'
by
by
stage('Test') {
steps {
bat 'x64/Debug/test_repos.exe --gtest_output="xml:x64/Debug/
by
by
stage('Publish Test Results") {
steps {
junit 'x64/Debug/test_repos.exe.gta.testdurations'

}

b
by
b

Ussually this file is called Jenkinsfile and is added to the root directory of the repository.

The main stages of the scenario are presented below:

— The first stage is responsible for performing a "Checkout™ operation in the Jenkinsfile to clone
the repository from the specified URL using Git

— The second stage in the project build — "stage" in the Jenkinsfile performs the "Build"
operation for the project using the “bat' command (assuming that the job is running on a Windows
platform).

— The third stage (stage) in the Jenkinsfile performs the "Test™ operation for the project using
the bat command. This stage allows developers to run the tests and save the results in XML format
for further use in Jenkins, for example to analyse the results, generate reports or integrate with other
Jenkins plugins;

— The fourth post stage in the Jenkinsfile uses the gtest/xUnit plugin to publish Google Test test
results. In this post step, the command gtest (testResults: 'test report.xml’) is executed, where
test_report.xml is the path to the Google Test results file.

In order for Jenkins to run a build using a pipeline, a new item should be created.

After performing this operation, user need to name the item and choose the item — pipeline
configuration. The next step is setting the item. Next, it is necessary to specify the pipeline source —
a pipeline script from SCM (Source Control Management), where SCM is Git. In this case, the
repository address and the access token configured in the Git plugin settings in the global settings
must be specified.

After that, the branch in the project to execute the build and the path in the repository directory
from the Jenkinsfile must be specified. Once these settings are completed, the project can be
successfully built with completed tasks on Gitea.

6. Visualization and discussion of results
Demonstration of system operation. This section of the work will consider the visualization of
the work of the system, which is built on the architectural concept of checking tasks in a remote
repository.

The client-server part starts on port 8080 at the address http://localhost:8080. After going to
this address, the main Jenkins interface is displayed. After that, after completing all the settings
described in the previous section, the project builds from the repository. To do this, developer should
click on the green triangle next to the required project or click on the project and get a window like
in Figure 4 and click on Build now.

Dashboard mkr_vs_test_pipeline

B status Pipeline mkr_vs_test_pipeline

<[> Changes
Run now
Settings
Delete Pipeline

Move

L P B & V

Full Stage View

Fig. 4. Start project build

After running the build, in a view that is convenient for visual monitoring, each stage of the
pipeline starts to run in the Jenkinsfile, as shown in Figure 5.

Stage View
Declarative: Checkout Build Test Declarative:
eckou ui es
Checkout SCM Post Actions
Average stage times: 3s 25 1s 1s 1s

—

(Average full run time: ~15s)

Fig. 5. Running pipeline stages

When hovering over each of the stages, the console log and stage status are displayed to user.

After successful completion of all stages, a graphic diagram of test execution is presented to
developer. This diagram shows a graph of the dependence on the number of performed tests and the
number of launched project builds. The diagram is shown in Figure 6.

With the help of the developed architecture, it is possible to view changes in the repository
without monitoring directly in Gitea. The "Changes" tab should be opened, and a window with
changes will appear.

CI/CD integration tools for automated code deployment and verification for training purposes 181

lpadi Kk pesyneTaTiB TECT B

Passed Skpped Failed {21
,E "
&
4
2
0 4 T T T T 1
=10 x22 #20 =40 =57 #38

Fig. 6. Diagram of automated testing results

These commits are duplicated on the server through Gitea API interaction.

It is important for any student to have information about exactly where the project "breaks”, so
for this they can look at the build console output, a fragment of which is shown in Figure 7. In fact,
this project is built through a script, so the console output is generated in a sequential script.

Running main() from D:\a_work\1l\s\ThirdParty\googletest\googletesti\srcigtest_main.cc
[==========] Running & tests from 3 test cases.

[s=========] Global test envircnment set-up.

[s=========] 5 tests from QuickSortTest

QuickSortTest.SortsArrayInAscendingOrder

0K] QuickSortTest.SortsArrayInAscendingOrder (8 ms)
RUMN QuickSortTest.SingleElementArray
QuickSortTest.SingleElementArray (@ ms)
QuickSortTest.SortedArray

QuickSortTest.SortedArray (8 ms)

OK
RUN

OK
RUMN QuickSortTest.ReverseSortedArray
0K] QuickSortTest.ReverseSortedArray (@ ms)
RUMN QuickSortTest.RandomArray
QuickSortTest.RandomArray (8 ms)

[s=========] & tests from QuickSortTest (1 ms total)

Fig. 7. Fragment of console output

If debugging or changes are made in the project, this system provides an opportunity to perform
the assembly not from the beginning, but from a specifically specified stage. To do this, developer
need to go to the Restart from Stage tab and select the appropriate stage from the pipeline and start
the assembly.

The Test Results window usually shows the most detailed analysis of the test execution. This
window shows a list of all builds, execution time, successful/failed test executions, as in Figure 8.

History ~
Passed Skipped alleg

8

6

0 . . . y

#10 #22 #29 #40 #57 #58
Build Description Duration Fail Skip Total
mkr_vs_test_pipeline #58 1ms 0 0 8
mkr_vs_test_pipeline #57 1ms 0 0 8

Fig. 8. Infographic of tests execution

If a teacher or student wants to view the structural execution of a pipeline, open Pipeline Steps.
In the specified window, the steps of the build script will be described in detail by the server and it
will be clear where exactly the problems occurred if the student or teacher is not able to parse the
console output.

By comparing the results of execution through the Jenkins server with the results shown in
Figure 2, it can be concluded that the results coincide, indicating the successful execution of the
project.

7. Conclusions

In the study, the main goal was to implement an architecture of automated task verification in
the Gitea remote repository, which would speed up the code verification process for educational
purposes, to develop a stable system with a clear interface for educational purposes.

An overview of existing solutions was carried out, a detailed description of their architectures
was carried out, and a comparative description of the most popular CI/CD instruments was carried
out. The selection of a set of technologies for the implementation of the architectural concept of
automation for tasks written in the C language was analyzed and performed. Namely, the toolkit for
each stage of software development was analyzed — work in a local repository, writing and local
launch of unit tests, work in a remote repository and automation processes of building, testing and
visualizing software results through continuous delivery and integration tools.

A detailed description of the implementation of the system of automated verification of tasks
based on Gitea was carried out. The optimal development environment, plug-ins, project structure
were selected, the debugging processes of the project assembly in the local repository were adjusted.
Moved to remote repository on Gitea. Configured access through continuous delivery tools and
integration with remote repositories. Processes of script development for project assembly and
debugging, as well as test execution infographics, are shown. This concept makes it possible to speed
up verification, reduce the cost of human resources, and provides students with the opportunity to
acquire new skills in debugging their solutions to tasks.

A demonstration of all the capabilities of the system, which is built on this architectural concept,
was performed. Functionality of the sequence of execution of the script at each stage is checked both
through the visual version and in the console output. The performance of each stage of the project
development, starting from the repository check, ending with the execution schedule of unit tests on
the Jenkins server, is demonstrated. An analytical study of the further development of the project was
carried out. The architectural concept can be modified for different development environments and
programming languages. The toolkit used in the implementation of the system is available and long-
term supported by the developers. System operations and details can be improved using a variety of
technologies and tools.

References

[1] P. Shen, X. Ding, W. Ren and C. Yang, “Research on Software Quality Assurance Based on
Software Quality Standards and Technology Management,” 2018 19th IEEE/ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD), pp. 385-390, Busan, Korea (South), 2018,
https://doi.org/10.1109/SNPD.2018.8441142.

[2] S. Ibarra and M. Mufioz, “Support tool for software quality assurance in software development,”
2018 7th International Conference On Software Process Improvement (CIMPS), pp. 13-19,
Guadalajara, Mexico, 2018, https://doi.org/10.1109/CIMPS.2018.8625617.

[3] Y. Zhao, Y. Hu and J. Gong, “Research on International Standardization of Software Quality and
Software Testing, “2021 IEEE/ACIS 20th International Fall Conference on Computer and
Information Science (ICIS Fall), pp. 56-62, Xi'an, China, 2021,
https://doi.org/10.1109/ICISFall51598.2021.9627426.

[4] L. Bhaskar, R. B. Natak and R. Ranjith, “Unit Testing for USB Module Using Google Test
Framework,” 2020 11th International Conference on Computing, Communication and Networking
Technologies (ICCCNT), pp. 1-3, Kharagpur, India, 2020,
https://doi.org/10.1109/ICCCNT49239.2020.9225528.

[5] C. Cowell, N. Lotz and C. Timberlake, “Automating DevOps with GitLab CI/CD Pipelines: Build
efficient CI/CD pipelines to verify, secure, and deploy your code using real-life examples,” Packt
Publishing Ltd, 2023, 328 p.

[6] R. Leszko, “Continuous delivery with Docker and Jenkins: Create secure applications by building
complete CI”, Packt Publishing Ltd, 2022, 374 p.

[7] L. Qiao “Continuous Delivery 2.0: Business-leading DevOps Essentials”, CRC PRESS, 2021,
332 p.

[8] J. Fairbanks, A. Tharigonda and N. U. Eisty, “Analysing the Effects of CI/CD on Open Source
Repositories in GitHub and GitLab,” 2023 IEEE/ACIS 21st International Conference on Software
Engineering Research, Management and Applications (SERA),” pp. 176-181, Orlando, FL, USA,
2023, https://doi.org/10.1109/SERA57763.2023.10197778.

[9] R. Aiello, “Hands-On DevOps for Architects: Implementing continuous delivery through
automation”, Packt Publishing, 2018, 345 p.

[10] A. S. Manasa Venigalla and S. Chimalakonda, “DocMine: A Software Documentation-Related
Dataset of 950 GitHub Repositories,” 2023 IEEE/ACM 20th International Conference on Mining
Software Repositories (MSR), pp. 407411, Melbourne, Australia, 2023,
https://doi.org/10.1109/MSR59073.2023.00062.

[11] M. Labouardy, “Pipeline as Code: Continuous Delivery with Jenkins, Kubernetes, and
Terraform,” Manning, 2021, 141 p.

[12] MSBuild, Microsoft Documentation, 2023, [online] Available: https://learn.microsoft.com/ru-
ru/visualstudio/msbuild/msbuild?view=vs-2022.

[13] xUnit, Jenkins Documentation, 2022, [online] Available: https://plugins.jenkins.io/xunit/.

[14] Sonya Moisset, "Open Source Software Security Handbook — Best Practices for Securing Your
Projects"”, freecodecamp, 2023, [online] Awvailable: https://www.freecodecamp.org/news/oss-
security-bestpractices/.

VIK 004.8: 004.94

3ACOBU CI/CD IHTEIPAHOII JOJ1 ABTOMATHU30BAHOI'O
PO3IOPTAHHSI TA MNEPEBIPKH IPOIPAMHOI'O KOAY JJIA
HABYAJBHUX HIJIEN

BikTopis BabeHko

HamnionansHuii TEXHIYHUN yHiBEpCHTET Y KpaiHu

«KuiBcpkuit monitexHiuHmiA iHCTUTYT iMeHi [ropst Cikopcebkoroy», Kuis, Ykpaina
https://orcid.org/0009-0008-1762-6671

BikTopisa TapaHiok
GlobalLogic Sweden AB, I'ere6opr, [lIBemis
https://orcid.org/0000-0001-9044-1499

BaneHTuHa TkauyeHkKo
HamnionansHuii TeXHIYHUH yHiBepcHTET Y KpaiHu
«KuiBchkuit nonitexHiuHMA iHCTHTYT iMeHi [ropst Cikopcbkoro», Kuis, Ykpaina

https://orcid.org/0000-0002-1080-5932

IpunHa KnumeHko
HanionansHuii TeXHIYHHN yHIBEpCUTET Y KpaiHu
«KuiBcpkuit monitexHiuyHMiA iHCTUTYT iMeHi [rops Cikopebkoroy», Kuis, Ykpaina

https://orcid.org/0000-0001-5345-8806

CrarTsa mpuCBsYEHA BUBYCHHIO Ta 3aCTOCYBAHHIO B OCBITHIX TaTy3sIX Cy4aCHHUX 3acC001B
Oe3mepepBHoi iHTerpaiii ta posropranss koxay (CI/CD, Continuous Integration/Continuous
Deployment). ApTomaTH3amis MpOIECIB PO3rOpTaHHS Ta IEPEBIPKA IPOTPAMHOTO
3a0e3TeUeHHs € aKTYaTbHOIO 33]1a4ero K JUIsl BAOCKOHAJICHHS HABYAIBHOTO MPOIIECY TaK 1 st
po3BUTKY HaBH4OK DevOps y crynmeHTIiB. 3Ha4yHa POJb BIIBOAWUTHCS BUBYCHHIO TOJIOBHHUX
npuniunie CI/CD: aBToMaTi4HOTO TECTyBaHHS, MOHITOPHHIY SIKOCTI KOJY Ta IHTerpartii 3i
CXOBHILAMH BHUXITHOTO KOJTY.

Jlnst aBTomMaTtu3aliii HaB4aJIbHOTO IPOIECY Ta HaBYaHHS CTY/ACHTIB BUKOPUCTOBYETHCS
nonyisipHa miatdopma CI/CD, taka sik Jenkins. L{eit iHCTpyMeHTapiil J03BOJISIE CTBOPEHHS Ta
PO3ropTaHHs JI0IaTKIB 3a IOMOMOTOk0 TexHouorii Docker, 1110 103BosIsie MOIETIOBATH peabHi
crieHapii. 3HaUHUM aKIEHT HaJaHO MUTAHHSAM MacITabOBaHOCTI Ta aJalITUBHOCTI PIIlICHb, SKi
MIABUINYIOTh €(EKTUBHICTh BUKOPUCTAHHSI PECYPCIB.

3anponoHoBaHo MeToomoris BTiieHHs: CI/CD B ocBiTHII Kypc, BKIIIOUAIOYH IHTErpallito
3 mathopMaMu YIpaBIliHHs IPOEKTaMK Ta KOHTpoJieM Bepciit Git, 3okpema Ha npukiiani Gitea.
OcHOBHI eranu sKOI BKIIOYAIOTh HAJAIITyBaHHS aBTOMATHYHOI 30IpKH, TECTYBaHHS Ta
PO3ropTaHHs, IO JO3BOJISIE CTYJACHTAM MPAKTUKYBATH MPUHIMIK Oe3NepepBHOT iHTErparlii Ta
JOCTaBKU. 3 TOYKH 30Dy IIIBUIICHHS €(PEKTHBHOCTI HABYAJIHHOTO IPOIIECY, 3aIPOIIOHOBAaHA
METOJIOJIOTIST JI03BOJISIE AaBTOMATH3yBaTH IEPEBIPKY HABYAIBHHX 3aBJaHb. PO3rIsSHYTO
npobnemu iHTerpamii Gitea Tta Jenkins. Bymo 3ampononoBaHO crocid iHTerparii IHux
IHCTpYMEHTIB 4epe3 JIoKalbHO BcTaHoBieHI Jenkins 1 Gitea 3 MPpUBAaTHUMHU CXOBUIAMU KOAY.
Po3pobneHo pekomenaalii 010 oprasizanii HaBYaJIbHOTO MPOLECY IIISXOM BIPOBAIKEHHS
NPAaKTUYHUX 1 Ja0opaTOpHUX pOOIT, OPIEHTOBAHMX HA peajbHI CIEHapii pPO3ropTaHHS
IIPOrpaMHOro 3a0e3MeUYeHHs Ta aBTOMaTH3allil TECTYBaHHS.

PesynpraTi gocmimpKeHHs MiATBEPAXKYIOTh epekTUBHE BUKopHucTaHHs 3aco0iB CI/CD B
OCBITHIX LIIAX, 3a0e3nedyroun (GopMyBaHHS KOMIIETEHIIH, HEOOXITHMX I poOOTH B
cydacHux IT-komannax. Bukopucranus CI/CD ninBuiiye piBeHb OOI3HAHOCTI B NMHUTAHHIX
kibepOesneku Ta ontumizallii mporecis DevOps.

Key words: CI/CD, DevOps, Jenkins, Git, Gitea, aBTomaTu3oBane TecTyBaHHs, pipeline.

