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Subject of the research. Statistical models and algorithmic techniques for processing bearing-
measurement datasets with the goal of detecting and filtering anomalous values. Object of the research.
Methods for handling outliers in bearing-measurement datasets. Purpose of the work. To develop a
method that improves the reliability of determining the direction to a radio-emission source in a single-
station radio direction-finding system.

The article proposes a method for detecting anomalous measurements by analysing the histogram of
their probability-density distribution. Propagation characteristics of very-high-frequency radio waves
complicate radio direction finder operation, producing both random and systematic anomalies. The
approach examines bearing-density histogram intervals rather than individual measurements, enabling
an integrated assessment of sample structure and anomaly identification.

The method’s performance was assessed on bearing datasets of 100, 500 and 1000 measurements at
confidence levels of 80-95 %. The evaluation of the method’s robustness was made for small and large
arrays. The study analysed the influence of systematic and random anomalies on histogram construction
and confidence-interval determination. Key metrics were bearing-estimation accuracy, root-mean-
square error and method stability across varying confidence levels.

Results show the method minimises the impact of anomalous measurements at the tails and within
the main cluster. Experiments demonstrate a reduced root-mean-square error and a consistent rise in
direction-finding accuracy after anomaly removal. These findings confirm the technique’s potential for
further development and integration into synthesised radio direction-finding systems, where bearing
reliability and precision are critical.
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1. Introduction

Current circumstances clearly demonstrate the importance of utilizing the radio-frequency spectrum
to address a broad range of radio monitoring tasks. Notably, one of the principal objectives is to
determine the coordinates of sources of radio-frequency emission (SRFE). One approach to achieving
this goal involves the use of radio-direction-finding systems (RDFS) operating in the very-high-
frequency (VHF) band (30-300 MHz). Owing to its short wavelength (1-10 m), this band enables
high-precision bearing measurements to SRFE.

At the same time, despite its widespread application in modern radio monitoring systems, the
VHF band presents numerous challenges arising from its physical characteristics. For example,
multipath propagation, limited line-of-sight conditions, elevated background-noise levels, and
pronounced sensitivity to weather effects lead to various types of anomalous measurements (AM)
that reduce the accuracy of SRFE bearing determination. By contrast, such AM are not as prevalent
in the high-frequency band.
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Therefore, the propagation characteristics of the VHF band significantly complicate the
operation of RDFS and promote the occurrence of AM. Improving the accuracy of SRFE bearing
determination underscores the need to develop reliable methods for detecting these anomalies.
Ongoing investigation into statistically grounded, sample-efficient techniques for detecting and
filtering anomalous VHF bearing measurements is indispensable for ensuring dependable radio-
direction finding in today’s increasingly congested spectrum and will remain a critical research
priority in the foreseeable future.

The relevance of this study stems from the need to improve the reliability of estimating
directions to SRFE amid an increasingly congested spectrum and rising accuracy demands in radio
monitoring. The problem addressed is the development of a statistically grounded and sample-
efficient method for the automatic detection and filtering of anomalous bearing measurements in
small- to medium-sized datasets. Solving this problem will reduce coordinate-estimation errors and
enhance the robustness of single-station RDFS. Accordingly, the proposed approach aims to eliminate
a critical limitation of existing methods, which either require large training datasets or lack sufficient
sensitivity to strong in-sample anomalies.

2. Literature review and problem statement

The problem of detecting AM belongs to the general class of anomaly detection problems.
Classical statistical anomaly detection algorithms encompass various approaches, including anomaly
filtering, Bayesian statistics, cluster analysis, and central tendency methods [1-5]. In general, these
traditional algorithms operate as follows: construct a model for the data distribution, compute the
distance of the observations from the center of the distribution or the primary cluster, and label as
anomalous any values that exceed a specified threshold distance. The main drawbacks of these
approaches are their dependence on prior distribution assumptions, limited applicability to small
sample sizes, and poor detection of anomalies in both the tails and the center of the data distribution.

Traditional statistical filters, Kalman-type estimators and machine-learning outlier detectors
only partially address this challenge: many rely on large training datasets, assume specific noise
models or struggle with small, rapidly acquired bearing batches.

Consequently, devising robust, data-economical techniques for detecting and compensating
AM, especially in small samples, remains an open scientific and engineering problem that directly
affects operational reliability, regulatory compliance and public safety.

Recent research proposes algorithms [6-8] that rely on constructing data distribution
histograms and analysing deviations within the resulting intervals such as Histogram-based Outlier
Score, The Adjusted Histogram-Based Outlier Score, Relative Kernel Density-Based Outlier Score.
The general idea involves selecting a predefined number of intervals for the histogram, normalizing
their values using a specific criterion, and computing an integral anomaly score. Although this
approach allows for simultaneously capturing various segments of the distribution, it is primarily
aimed at evaluating individual data points.

To enhance the reliability of AM analysis, it is advisable to focus not on individual values but
on entire intervals within the distribution histogram. This generalized approach evaluates density and
deviations within each interval instead of examining every single measurement in detail. As a result,
it reduces the influence of both random and systematic anomalies, which may emerge in the
distribution tails as well as at its center.

Accordingly, employing the distribution histogram to assess entire intervals — rather than
individual measurements — can significantly enhance the method’s consistency with real-world
observation conditions. This approach ensures robustness against random errors and facilitates
reliable detection of systematic disturbances. Ultimately, such modelling offers the prospect of more
accurate detection of AM and, consequently, improved overall detection system performance.

This allows us to argue that it is advisable to conduct a study dedicated to the development of
a statistically grounded, sample-efficient method for detecting and mitigating AM in VHF RDFS,
integrating histogram-based analysis.
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3. The aim and objectives of the study

The purpose of the study is to develop a method for detecting AM by analysing the distribution
histogram. This will address the shortcomings identified above and enhance analytical robustness
against various types of errors without compromising the efficiency of the detection process.

To achieve this goal, the following tasks were defined:

— develop and validate a histogram-based method for assessing measurement anomalies at the
histogram interval level.

— experimentally verify the effectiveness of the proposed method using model data.

4. The study materials and methods
4.1. The study materials and methods of anomaly detection

As part of this study, the processes related to bearing signal processing are not considered. The
input information consists of bearing data for SRFE, which have already been generated using
primary processing algorithms. It is assumed that, over a short stationary interval — during which
spatial orientations remain unchanged — RDFS can collect between 100 and 1000 bearing
measurements, forming a statistically representative sample. This volume of data is sufficient for the
subsequent application of methods for bearing measurement and assessment, including determining
the specific SRFE to which the bearing belongs.

A dual RDFS uses triangulation to determine the coordinates of the SRFE. RDFS positioned at
points A (DF1) and B (DF2) measure the bearing angles 01 and 62, which are referenced to true north
as shown in Figure 1, a. The intersection of these directions determines the position of the SRFE at
point E. The accuracy of determining the coordinates at point E is heavily dependent on the precision
of the bearing measurements. In an ideal scenario, where bearing measurements are error-free, the
coordinates of SRFE can be calculated with high accuracy. However, under real-world conditions,
errors arise due to both random and systematic AM.

The operation of RDFS in the presence of anomalous bearings is illustrated in Figure 1, b.
RDFS located at points A (DF1) and B (DF2) determine the directions to SRFE at point E. However,
due to measurement errors AB1 and A62, the actual position of SRFE falls within an uncertainty
region shown in grey. Bearing lines are depicted with dashed lines to indicate possible deviations,
while the grey region represents the potential location of the SRFE based on the measurement
accuracy of each RDFS.

a b

Fig. 1. Principle of RDFS operation under different conditions: a — error-free environment; b — real-
world environment.
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A sample of bearing measurements obtained from the observation process can be represented
either as a polar plot or as a histogram of their distribution, thereby allowing assessment of how the
bearing angles are distributed. Under ideal conditions, the bearings exhibit a normal distribution
centered around the true angle. However, the presence of anomalous values can significantly affect
the outcome.

The polar plot of the collected bearings is illustrated in Figure 2a, where RDFS is positioned at
the center, and the lines represent the measured bearing values. Although the true bearing angle is set
at 15, the observed measurements show considerable variability. The bearing angles are unevenly
distributed, displaying a higher concentration around the true value, while also exhibiting substantial
deviations attributable to AM.

A histogram of the obtained bearings is depicted in Figure 2b, allowing an evaluation of their
frequency distribution. The horizontal axis marks bearing angles ranging from 0° to 360°, while the
vertical axis indicates the number of measurements in each interval.
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a b
Fig. 2. Bearings distribution: a — polar plot; b — histogram.
The main aim and objectives are addressed at three levels: model, algorithm, and technology.

4.2. Adaptive model for detecting and filtering anomalous bearing measurements
A histogram of the data distribution enables shifting the focus from individual values to the
frequency characteristics of the sample, thus streamlining the analysis and enhancing its statistical
stability. This approach is particularly crucial for small samples, in which individual anomalous
values can have a significant impact on the distribution.
Assume that during the RDFS observation process targeting an SRFE, a dataset in the form of
a bearing distribution is obtained:

E ={ej ey, .., ey}, (1)

where, n — number of measurements.

In general, it is assumed that the obtained sample is primarily affected by anomalies that are
normally distributed, which can be classified into two main types: AM1 and AM2. Anomalies of the
first type (AML) typically arise from random noise or interference of natural or man-made origin,
leading to minor deviations from the expected bearing values. Anomalies of the second type (AM2)
are caused by malfunctions or errors in the measurement equipment and usually produce more
substantial deviations, which can critically affect the accuracy of subsequent estimates.

Next, the bearing values are represented as a data distribution histogram, where each interval is
characterized by a frequency fm and a center cm. In general form, such a histogram can be expressed as:

hist = {(Cli fl); (CZJ fZ); ey (CmJ fm)}a (2)

where, m — number of intervals.
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Selecting the optimal number of intervals is challenging. Many intervals can lead to a noisy
distribution, where anomalous values stand out as significant elements. Conversely, an excessively
small number of intervals results in over-smoothing, causing the loss of critical features, such as the
main cluster of measurements.

Various heuristic methods are employed to achieve an appropriate balance between detail and
generalization in statistical analysis. These methods consider sample characteristics such as sample
size, data bounds (min/max), standard deviation, or interquartile range. They help determine the width
of each interval in a way that balances sensitivity to anomalous values with the retention of the most
significant distribution features.

In this article, the Freedman-Diaconis rule is used to determine the histogram bin width (number
of intervals). The choice of this method is guided by the Shannon entropy measure, which quantifies
the degree of disorder in a distribution. Maximizing the entropy helps select several intervals that best
capture the data’s structure, preserving both the bulk of the sample’s distribution and its local features.

The next step is to determine confidence intervals for the histogram values, considering the
sample size. This is accomplished via the cumulative distribution function (CDF), which helps form
intervals that encompass a specified proportion of the dataset at a chosen confidence level. The
method retains an interval around the central values of the distribution, recognizing that AM are
scattered within the main body of data; this reduces their influence on the interval boundaries.
Consequently, the selected interval covers the central portion of the data distribution while excluding
extreme values likely arising from AM1 or AM2 anomalies. By adopting this approach, one can
establish a statistically justified range that captures the primary data cluster while minimizing the
impact of individual outliers.

A confidence interval for a random variable represented by a histogram can be established by
computing the CDF and identifying the bounds corresponding to a specified confidence level.

h = {hll th ey hn}, (3)
where, hn — histogram frequency values.
e = {ell ez, ey ek}, (4)

where, ex — histogram interval boundaries.
First, the total number of observations is calculated:

N =Y hi, (5)
where, hi — number of observations in the i-th interval.
The probability of a random variable falling into the i interval is defined as:

hi
pi = Nl (6)

CDF determines the cumulative probability that the value of a random variable will be less than
or equal to the limit e;:

F(e) =Xj-op), (7)
For a given confidence level y, the parameter « is calculated as:
a=1-y, (8)

Then the lower bound of the confidence interval corresponds to the quantile of the level a over
two, and the upper limit is the quantile of the level one minus a over two.

it = min {i:F(e) 2 2}, 9)

inign, = min{i: F(e) 2 1 -2}, (10)
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The boundaries of the confidence interval are determined by the corresponding values of the
interval limits:

[eilow’ eihigh]’ (11)

The final step in computing the probabilistic bearing is determining the weighted average of the
histogram interval centers that lie within the chosen confidence interval. First, each interval center is
calculated as the midpoint of its bin, providing a representative value for that interval. Next, only
those centers falling within the previously defined confidence interval are retained. Each selected
center is assigned a weight corresponding to the frequency of values in its interval. The weighted
average is then computed by summing the products of these centers and their frequencies and dividing
by the total frequency of all data within the confidence interval.

The central value of the interval is determined by the formula:

6 = (12)

The weighted average value is calculated by the formula:

n
Di=o Cixhy

Trohi ] (13)

g =

This approach accounts not only for the positions of values in the distribution but also for their
density, thereby ensuring that the computed average remains representative. By giving greater weight
to intervals with higher data density (which most likely encompass the true bearing), the method
ensures these dense intervals have a stronger influence on the result.

Using a certain confidence level allows the method to incorporate a larger portion of the data
distribution, which is crucial for robust results in the presence of anomalies. However, increasing the
confidence level to very high values (95% or above) can lead to the inclusion of extreme values.
Conversely, lowering the confidence level to around 80-85% may exclude too much representative
data, adversely affecting accuracy. Therefore, controlling the confidence level is important not only
for achieving an optimal root mean square error (RMSE) and high accuracy. It is also crucial for
ensuring the stability and consistency of the computed bearing in the presence of AM1 and AM2
anomalies. Considering this, it is important to investigate how RMSE and accuracy change with the
confidence level and to determine an optimal range that balances the inclusion of representative data
against the exclusion of anomalies.

Controlling the confidence level is important not only to achieve optimal root mean square error
(RMSE) and high method accuracy, but also to ensure the stability and consistency of the computed
bearing in the presence of AM1 and AM2 anomalies. Thus, it is important to investigate how RMSE
and accuracy change with confidence level and to determine the optimal range that balances inclusion
of representative data and exclusion of anomalies.

An adaptive model for detecting and removing AM has been developed. Its main differences,
advantages, and defining features are as follows. First, the model can dynamically determine the
number of histogram intervals based on an entropy criterion, thereby balancing the retention of the
central measurement cluster against the isolation of anomalies. Second, the algorithm involves
constructing confidence intervals via CDF, which facilitates the formation of the main dataset, while
providing the ability to exclude tail intervals. Third, the method readily accommodates modifications:
by adjusting the confidence level and optimizing the number of intervals, it can be tailored to different
sample sizes. Because the model does not require ongoing prior knowledge about the nature of
anomalies, it can be easily integrated into RDFS to enhance bearing accuracy. Consequently, the
proposed approach preserves statistical stability and analytical flexibility, while substantially
mitigating the influence of measurement errors on determining the location of SRFE.
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4.3. Algorithm for detecting and filtering anomalous bearing measurements
Summarizing the model described above, the algorithm can be outlined in the following steps:
— Obtain a sample of bearing measurements E.

— Generate a distribution histogram from this sample.
— Compute the CDF for the sample’s histogram.

— Determine the boundaries of the desired confidence interval.
— Calculate the centers of the histogram bins that lie within this confidence interval.
— Compute the weighted average of these selected bin centers.
— Output the results of the weighted average calculation.

4.4. Technology for detecting and filtering anomalous bearing measurements
The technology for detecting and filtering AM refers to the practical implementation of the
synthesized model and its algorithm within a software system architecture. This implementation is

illustrated by the structural diagram of the algorithm in Figure 3.

The input file (dataset.csv) contains a single column labelled “azimuth” and comprises a total
of 1000 bearing values, as shown in Figure 4. The algorithm is implemented in Python, utilizing the
NumPy and Pandas libraries.

1. Parsing the
input azimuth file

2. Calculating the
histogram with the
optimal number of bins

3. Calculating the
CDF at the defined

confidence level

4. Calculating the
weighted average
of the bin centers

Y

5. Integrated value
of the probabilistic
bearing

Fig. 3. Structural diagram of the algorithm
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Fig. 4. Input azimuth sample dataset.csv
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The algorithm illustrated in Figure 3 carries out the detection and filtering of AM sequentially,
following the developed model and algorithm. At the first stage (block 1), the CSV file is parsed and
the sample E (bearing measurements from the RDFS) is loaded into a DataFrame. An example of a
histogram of the input data’s distribution is presented in Figure 5a. At the second stage (block 2), a
histogram of the bearing data is generated using the chosen number of intervals. An example
histogram obtained at this stage is shown in Figure 5b. During the third stage (block 3), CDF is
computed according to the specified confidence level. This CDF accumulates the frequency in each
histogram bin, reflecting the probability that a random bearing value does not exceed that interval
boundary. Next, the lower and upper limits of the confidence interval are determined. These limits
exclude the most extreme measurements, retaining the central portion of the sample that most likely
represents the true bearing. An example of the data distribution histogram after the calculations in
block 3 is displayed in Figure 5c.
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Fig. 5 (a). Distribution of azimuth measurements: of input dataset
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Fig. 5 (b). Distribution of azimuth measurements: with calculated optimal number of intervals
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Fig. 5 (c). Distribution of azimuth measurements: after applying CDF with defined confidence level

Next (block 4), the centers of the intervals within the defined confidence range are computed,
followed by the calculation of their weighted average value. According to the step-by-step algorithm
described above, this weighted average constitutes a probabilistic bearing estimate that maximizes
consideration of the data’s frequency density while minimizing the impact of AM. The final step
(block 5) is to output the final probabilistic bearing value, which represents the direct result of the
algorithm and can be integrated into RDFS to enhance the accuracy of locating SRFE.

5. Results of investigating the anomaly evaluation algorithm at histogram intervals
5.1. Overview of experimental setup and evaluation metrics
To verify the method, samples of sizes n =100, n =500, and n=1000 were used. The
confidence level varied from 80% to 95% in 1% increments. The main analysis metrics were accuracy
(A) and RMSE, which were employed to assess how the confidence level and sample size affect the
algorithm’s stability and accuracy.

5.2. Method for anomaly assessment in measurements

Within the scope of the first objective, an algorithm was developed for evaluating measurement
anomalies at the histogram interval level. The core of this approach lies in establishing a certain
confidence level for the measured data sample. Following this, anomalous intervals (e.g., those with
abnormally high or low frequencies) are either excluded or assigned a reduced weight.

The method relies on two primary parameters:

— Confidence level, which defines cut-off intervals for anomalous values.

— Variance-based assessment, used to identify intervals with anomalous values.

For each confidence level accuracy and RMSE are calculated for the respective samples. This
approach enables control over the volume of excluded data, striking a balance between two opposing
effects: excessive removal of valid measurements (reducing the completeness of the analysis) and the
inclusion of anomalies (reducing accuracy).

5.3. Experimental Results
To achieve the second objective, we conducted a series of experiments using model datasets of
various sizes. The confidence level varied from 80% to 95% in 1% increments. Based on the
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experimental results, six plots were created to illustrate the relationships between accuracy and RMSE
in respective confidence levels as shown in Figures 6—8. Each data point on the graphs represents the
computed results for a particular confidence level, while the solid lines show the overall trend of how
the metrics change.

For the sample of size n = 100, Figure 6a. shows how accuracy depends on the confidence level.
The accuracy ranges from 0.60 to 0.64, indicating fewer stable results for smaller datasets. The
dependence of RMSE on the confidence level is presented in Figure 6b. The minimum value
(about 0.36) occurs at a 92% confidence level. These graphs exhibit some fluctuations, reflecting the
algorithm’s sensitivity to small sample sizes and the impact of anomalies.
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Fig. 6. Dependence of accuracy and RMSE on the confidence level for n = 100: a — accuracy; b —
RMSE.
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The results for the sample of size n = 500 are shown in Figure 7. Accuracy grows more steadily
from 80% to 94%, and RMSE decreases significantly from 0.11 to 0.05. The lines on the graphs
display fewer fluctuations, demonstrating greater algorithmic stability as the number of data points
increases.
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Fig. 7. Dependence of accuracy and RMSE on the confidence level for n = 500: a — accuracy; b —
RMSE.

The results for the sample of size n = 1000 are shown in Figure 8. In terms of accuracy, there
is a slight instability between 80% and 82% confidence levels; however, starting at 88%, the accuracy
continues to improve and reaches about 99.5% at 95% confidence. Meanwhile, RMSE is substantially
reduced as the confidence level increases. From 90% onward, the curve trends almost linearly toward
zero. This outcome highlights the algorithm’s capacity to mitigate the effect of anomalies and sustain
high accuracy, even when the data exhibit variability.
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Fig. 8. Dependence of accuracy and RMSE on the confidence level for n = 1000: a — accuracy; b —
RMSE.

Overall, the increasing stability of the method with larger sample sizes confirms the
appropriateness of applying the proposed approach to more extensive datasets. Results indicate that
a 92-95% confidence level is optimal for minimizing RMSE and achieving high accuracy across
different sample sizes. Nonetheless, for very small samples, excessively high confidence levels can
result in including extreme values, which lead to increasing RMSE. This finding underscores the need
to select a confidence level based on the amount of available data.

6. Discussion of results of the anomaly evaluation algorithm
The findings confirm the effectiveness of the proposed anomaly assessment algorithm operating
at the histogram interval level. For the smaller sample (n = 100), results exhibit greater fluctuations,
because the algorithm is more vulnerable to individual anomalies that can substantially affect the
overall evaluation.
When dealing with medium and large samples (n =500 and n=1000), the algorithm
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demonstrates relatively steady accuracy gains and a marked reduction in RMSE as the confidence
level increases —an outcome attributable to enhanced data representativeness and a smaller proportion
of anomalous values. According to the experimental data, a 92-95% confidence interval proves
optimal for minimizing the effect of anomalies while maintaining maximum achievable accuracy.
However, with small samples, exceedingly high confidence levels can result in including extreme
values, thus inflating RMSE.

Overall, the experimental investigations affirm both the novelty and the practical significance
of the developed algorithm. Its application not only allows for monitoring anomalous intervals in a
sample but also supports adaptive confidence level adjustment in accordance with data size and
statistical characteristics. Future work will focus on making the method less sensitive to anomalous
values in small samples and testing its performance on real-world datasets.

Conclusions

The first research objective was to develop an adaptive method for detecting and filtering AM
at the histogram interval level. The method assesses frequency characteristics of the sample rather
than individual data points, thereby enhancing statistical stability for small sample sizes. It uses the
Freedman-Diaconis heuristic to select the number of histogram intervals, and CDF to form confidence
intervals that exclude AM1 and AM2 anomalies. This ensures minimal distortion of the core
measurement cluster while preserving essential density distribution features. The approach is novel
in its ability to automatically adapt to different sample sizes and mitigating the effects of random and
systematic measurement errors. Its practical value is evident in increased bearing accuracy and
improved reliability of RDFS.

The second objective was to experimentally verify the effectiveness of this method on model
data. Tests on samples of different sizes showed that both accuracy and RMSE depend on the chosen
confidence level. An optimal 92-95% confidence interval emerges, ensuring reduced RMSE and
robust anomaly filtering without discarding too many representative values. Larger samples exhibit
more stable performance, underscoring the algorithm’s ability to isolate random or systematic
anomalies while retaining most valid measurements. By dynamically balancing interval boundaries,
the method demonstrates significant applicability for bearing analysis in radio monitoring tasks.
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[IpenMerom AOCHIKEHHS € CTaTUCTUYHI MOJENI Ta METOAN 0OpoOKH BHUOIpKM BUMIPIOBAaHb
TIEJICHTIB 3 METOIO BUSBJICHHS 1 (DUTHTpaIlii aHOMaTbHUX 3HaueHb. 00’ €KTOM JTOCIHIIKEHHS € METOIN
00poOKM aHOMaJbHHX 3HA4Y€Hb Yy BHOIpKax BHUMIPIOBaHb MeJieHTiB. Meroio poOoTH € po3polka
METO/1y /Ul MIJBUIIEHHS JOCTOBIPHOCTI BU3HAUEHHS HANIPSIMKY Ha JKEPEso palloOBUIPOMIHIOBAHHS
Y OJTHOTIO3UIIIAHINA PaiOTeIEHTaTOPHINA CUCTEMI.

CrarTs mpucBSYEHAa PO3pOOII METOMYy BHSBICHHS aHOMAJIbHUX BHUMIPIB 3a aHAII30M
ricTorpaMu MIUTLHOCTI iX po3noxauty. [Ipupona nommpenns pagioxBuib y aianazoni YKX dopmye
YUHHUKH, 0 YCKJIAJIHIOIOTh pOOOTY paaiorneeHraToOPiB 1 3yMOBIIIOIOTh BUTIAAKOBI Ta CHCTEMATHYH1
anomanii. Iligxim Oa3yeTbcs Ha aHami3l IHTEpBAIIB TICTOTPAMH IIUILHOCTI TIEJCHTIB 3aMICTh
130J1b0BaHOT OOpPOOKH OKPEMHUX BHUMIPIOBAaHb, IO JO03BOJISIE KOMIUIEKCHO OIIHIOBATH CTPYKTYPY
BHOIPKH 1 BUSIBIIATA aHOMAJTII.

EdexTuBHicTh MeTOTy TIepeBipeHO Ha BuOipkax mesneHriB 100, 500 1 1000 BumipiB y aiana3oHi
nosipu 80—95 %. Takuii HaOip eKCIIEpUMEHTAIBHUX YMOB JIaB 3MOT'Y OLIIHUTH CTIHKICTh METOAY LIS
MajMX Ta BEJMUKUX MacuBiB. [IpoaHanizoBaHO BIUIMB CUCTEMaTHYHHMX 1 BUMAJKOBHX aHOMAaJid Ha
moOyI0BY TiCTOTpaM 1 BU3HAYEHHS JOBIpUYOTO iHTEepBany. KiIFoUOB1 METPUKH: TOYHICTH OIIHIOBAHHS
TMIeJIeHTY, CEPEeTHbOKBAPAaTUYHA MOXUOKA i TOYHICTh METOY MPHU PI3HUX PIBHAX TOBIPH.

Pe3ynbraTn nmokasanu, 1o MeTo ] MiHIMI3y€e BIUIUB aHOMAaJILHUX BUMIPIB Ha KIHIIAX 1 BCepEearH1
OCHOBHOTO KJlacTepa. EkcriepuMeHTH JeMOHCTPYIOTh 3HIKEHHS CepeHbOKBAIPATHUHOT TOXUOKY Ta
cTaOuTbHE 3pPOCTAaHHS TOYHOCTI BU3HAUEHHS HAIpPsIMYy Ha JDKEPENO PaliOBUIIPOMIHIOBAHHS MIiCIsSA
BUKIIIOUEHHSI aHoMmanmid. OTpuMaHi pe3ynbTaTd MiATBEPIKYIOTh MEPCHEKTUBHICTh MOJANBIIOTO
PO3BUTKY METOJIMKHU i 1 IHTETpallifo y CHHTE30BaH1 CUCTEMHU paioNeNeHrallii, e BUPIIIaIbHUMHU €
HAJIMHICTD 1 TOYHICTh BUSHAYCHHS TETICHTY.

Knrouosi cnoBa: pagionenenraiis, YKX mgiana3oH, cTaTUCTUYHE HABYaHHS, aHOMaJTii, TiCTOTpamMa.



