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Subject of the research. Statistical models and algorithmic techniques for processing bearing-

measurement datasets with the goal of detecting and filtering anomalous values. Object of the research. 

Methods for handling outliers in bearing-measurement datasets. Purpose of the work. To develop a 

method that improves the reliability of determining the direction to a radio-emission source in a single-
station radio direction-finding system. 

The article proposes a method for detecting anomalous measurements by analysing the histogram of 

their probability-density distribution. Propagation characteristics of very-high-frequency radio waves 
complicate radio direction finder operation, producing both random and systematic anomalies. The 

approach examines bearing-density histogram intervals rather than individual measurements, enabling 

an integrated assessment of sample structure and anomaly identification. 
The method’s performance was assessed on bearing datasets of 100, 500 and 1000 measurements at 

confidence levels of 80–95 %. The evaluation of the method’s robustness was made for small and large 

arrays. The study analysed the influence of systematic and random anomalies on histogram construction 

and confidence-interval determination. Key metrics were bearing-estimation accuracy, root-mean-
square error and method stability across varying confidence levels. 

Results show the method minimises the impact of anomalous measurements at the tails and within 

the main cluster. Experiments demonstrate a reduced root-mean-square error and a consistent rise in 
direction-finding accuracy after anomaly removal. These findings confirm the technique’s potential for 

further development and integration into synthesised radio direction-finding systems, where bearing 

reliability and precision are critical. 
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1. Introduction 
Current circumstances clearly demonstrate the importance of utilizing the radio-frequency spectrum 
to address a broad range of radio monitoring tasks. Notably, one of the principal objectives is to 

determine the coordinates of sources of radio-frequency emission (SRFE). One approach to achieving 
this goal involves the use of radio-direction-finding systems (RDFS) operating in the very-high-
frequency (VHF) band (30–300 MHz). Owing to its short wavelength (1–10 m), this band enables 

high-precision bearing measurements to SRFE. 
At the same time, despite its widespread application in modern radio monitoring systems, the 

VHF band presents numerous challenges arising from its physical characteristics. For example, 

multipath propagation, limited line-of-sight conditions, elevated background-noise levels, and 
pronounced sensitivity to weather effects lead to various types of anomalous measurements (AM) 
that reduce the accuracy of SRFE bearing determination. By contrast, such AM are not as prevalent 
in the high-frequency band. 
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Therefore, the propagation characteristics of the VHF band significantly complicate the 

operation of RDFS and promote the occurrence of AM. Improving the accuracy of SRFE bearing 

determination underscores the need to develop reliable methods for detecting these anomalies. 

Ongoing investigation into statistically grounded, sample-efficient techniques for detecting and 

filtering anomalous VHF bearing measurements is indispensable for ensuring dependable radio-

direction finding in today’s increasingly congested spectrum and will remain a critical research 

priority in the foreseeable future. 

The relevance of this study stems from the need to improve the reliability of estimating 

directions to SRFE amid an increasingly congested spectrum and rising accuracy demands in radio 

monitoring. The problem addressed is the development of a statistically grounded and sample-

efficient method for the automatic detection and filtering of anomalous bearing measurements in 

small- to medium-sized datasets. Solving this problem will reduce coordinate-estimation errors and 

enhance the robustness of single-station RDFS. Accordingly, the proposed approach aims to eliminate 

a critical limitation of existing methods, which either require large training datasets or lack sufficient 

sensitivity to strong in-sample anomalies. 

 

2. Literature review and problem statement 

The problem of detecting AM belongs to the general class of anomaly detection problems. 

Classical statistical anomaly detection algorithms encompass various approaches, including anomaly 

filtering, Bayesian statistics, cluster analysis, and central tendency methods [1–5]. In general, these 

traditional algorithms operate as follows: construct a model for the data distribution, compute the 

distance of the observations from the center of the distribution or the primary cluster, and label as 

anomalous any values that exceed a specified threshold distance. The main drawbacks of these 

approaches are their dependence on prior distribution assumptions, limited applicability to small 

sample sizes, and poor detection of anomalies in both the tails and the center of the data distribution. 

Traditional statistical filters, Kalman-type estimators and machine-learning outlier detectors 

only partially address this challenge: many rely on large training datasets, assume specific noise 

models or struggle with small, rapidly acquired bearing batches. 

Consequently, devising robust, data-economical techniques for detecting and compensating 

AM, especially in small samples, remains an open scientific and engineering problem that directly 

affects operational reliability, regulatory compliance and public safety. 

Recent research proposes algorithms [6–8] that rely on constructing data distribution 

histograms and analysing deviations within the resulting intervals such as Histogram-based Outlier 

Score, The Adjusted Histogram-Based Outlier Score, Relative Kernel Density-Based Outlier Score. 

The general idea involves selecting a predefined number of intervals for the histogram, normalizing 

their values using a specific criterion, and computing an integral anomaly score. Although this 

approach allows for simultaneously capturing various segments of the distribution, it is primarily 

aimed at evaluating individual data points. 

To enhance the reliability of AM analysis, it is advisable to focus not on individual values but 

on entire intervals within the distribution histogram. This generalized approach evaluates density and 

deviations within each interval instead of examining every single measurement in detail. As a result, 

it reduces the influence of both random and systematic anomalies, which may emerge in the 

distribution tails as well as at its center. 

Accordingly, employing the distribution histogram to assess entire intervals – rather than 

individual measurements – can significantly enhance the method’s consistency with real-world 

observation conditions. This approach ensures robustness against random errors and facilitates 

reliable detection of systematic disturbances. Ultimately, such modelling offers the prospect of more 

accurate detection of AM and, consequently, improved overall detection system performance. 

This allows us to argue that it is advisable to conduct a study dedicated to the development of 

a statistically grounded, sample-efficient method for detecting and mitigating AM in VHF RDFS, 

integrating histogram-based analysis. 
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3. The aim and objectives of the study 

The purpose of the study is to develop a method for detecting AM by analysing the distribution 
histogram. This will address the shortcomings identified above and enhance analytical robustness 
against various types of errors without compromising the efficiency of the detection process. 

To achieve this goal, the following tasks were defined: 

– develop and validate a histogram-based method for assessing measurement anomalies at the 
histogram interval level. 

– experimentally verify the effectiveness of the proposed method using model data. 

 

4. The study materials and methods 

4.1. The study materials and methods of anomaly detection 

As part of this study, the processes related to bearing signal processing are not considered. The 
input information consists of bearing data for SRFE, which have already been generated using 
primary processing algorithms. It is assumed that, over a short stationary interval – during which 
spatial orientations remain unchanged – RDFS can collect between 100 and 1000 bearing 

measurements, forming a statistically representative sample. This volume of data is sufficient for the 
subsequent application of methods for bearing measurement and assessment, including determining 
the specific SRFE to which the bearing belongs. 

A dual RDFS uses triangulation to determine the coordinates of the SRFE. RDFS positioned at 
points A (DF1) and B (DF2) measure the bearing angles θ1 and θ2, which are referenced to true north 
as shown in Figure 1, a. The intersection of these directions determines the position of the SRFE at 

point E. The accuracy of determining the coordinates at point E is heavily dependent on the precision 
of the bearing measurements. In an ideal scenario, where bearing measurements are error-free, the 
coordinates of SRFE can be calculated with high accuracy. However, under real-world conditions, 
errors arise due to both random and systematic AM. 

The operation of RDFS in the presence of anomalous bearings is illustrated in Figure 1, b. 
RDFS located at points A (DF1) and B (DF2) determine the directions to SRFE at point E. However, 
due to measurement errors Δθ1 and Δθ2, the actual position of SRFE falls within an uncertainty 

region shown in grey. Bearing lines are depicted with dashed lines to indicate possible deviations, 
while the grey region represents the potential location of the SRFE based on the measurement 
accuracy of each RDFS. 

 

  
a b 

 

Fig. 1. Principle of RDFS operation under different conditions: a – error-free environment; b – real-

world environment. 
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A sample of bearing measurements obtained from the observation process can be represented 

either as a polar plot or as a histogram of their distribution, thereby allowing assessment of how the 
bearing angles are distributed. Under ideal conditions, the bearings exhibit a normal distribution 
centered around the true angle. However, the presence of anomalous values can significantly affect 
the outcome. 

The polar plot of the collected bearings is illustrated in Figure 2a, where RDFS is positioned at 
the center, and the lines represent the measured bearing values. Although the true bearing angle is set 
at 15, the observed measurements show considerable variability. The bearing angles are unevenly 

distributed, displaying a higher concentration around the true value, while also exhibiting substantial 
deviations attributable to AM. 

A histogram of the obtained bearings is depicted in Figure 2b, allowing an evaluation of their 

frequency distribution. The horizontal axis marks bearing angles ranging from 0° to 360°, while the 
vertical axis indicates the number of measurements in each interval. 

 

 

 

a b 

 

Fig. 2. Bearings distribution: a – polar plot; b – histogram. 

 

The main aim and objectives are addressed at three levels: model, algorithm, and technology. 

 

4.2. Adaptive model for detecting and filtering anomalous bearing measurements 
A histogram of the data distribution enables shifting the focus from individual values to the 

frequency characteristics of the sample, thus streamlining the analysis and enhancing its statistical 
stability. This approach is particularly crucial for small samples, in which individual anomalous 
values can have a significant impact on the distribution. 

Assume that during the RDFS observation process targeting an SRFE, a dataset in the form of 
a bearing distribution is obtained: 
 

 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛}, (1) 
 

where, 𝑛 – number of measurements. 
In general, it is assumed that the obtained sample is primarily affected by anomalies that are 

normally distributed, which can be classified into two main types: AM1 and AM2. Anomalies of the 
first type (AM1) typically arise from random noise or interference of natural or man-made origin, 
leading to minor deviations from the expected bearing values. Anomalies of the second type (AM2) 
are caused by malfunctions or errors in the measurement equipment and usually produce more 

substantial deviations, which can critically affect the accuracy of subsequent estimates. 
Next, the bearing values are represented as a data distribution histogram, where each interval is 

characterized by a frequency fm and a center cm. In general form, such a histogram can be expressed as: 

 ℎ𝑖𝑠𝑡 = {(𝑐1, 𝑓1), (𝑐2, 𝑓2),… , (𝑐𝑚 , 𝑓𝑚)}, (2) 

where, m – number of intervals. 
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Selecting the optimal number of intervals is challenging. Many intervals can lead to a noisy 

distribution, where anomalous values stand out as significant elements. Conversely, an excessively 

small number of intervals results in over-smoothing, causing the loss of critical features, such as the 

main cluster of measurements. 

Various heuristic methods are employed to achieve an appropriate balance between detail and 

generalization in statistical analysis. These methods consider sample characteristics such as sample 

size, data bounds (min/max), standard deviation, or interquartile range. They help determine the width 

of each interval in a way that balances sensitivity to anomalous values with the retention of the most 

significant distribution features. 

In this article, the Freedman-Diaconis rule is used to determine the histogram bin width (number 

of intervals). The choice of this method is guided by the Shannon entropy measure, which quantifies 

the degree of disorder in a distribution. Maximizing the entropy helps select several intervals that best 

capture the data’s structure, preserving both the bulk of the sample’s distribution and its local features. 

The next step is to determine confidence intervals for the histogram values, considering the 

sample size. This is accomplished via the cumulative distribution function (CDF), which helps form 

intervals that encompass a specified proportion of the dataset at a chosen confidence level. The 

method retains an interval around the central values of the distribution, recognizing that AM are 

scattered within the main body of data; this reduces their influence on the interval boundaries. 

Consequently, the selected interval covers the central portion of the data distribution while excluding 

extreme values likely arising from AM1 or AM2 anomalies. By adopting this approach, one can 

establish a statistically justified range that captures the primary data cluster while minimizing the 

impact of individual outliers. 

A confidence interval for a random variable represented by a histogram can be established by 

computing the CDF and identifying the bounds corresponding to a specified confidence level. 
 

 ℎ = {ℎ1, ℎ2, … , ℎ𝑛}, (3) 
 

where, hn – histogram frequency values. 
 

 𝑒 = {𝑒1, 𝑒2, … , 𝑒𝑘}, (4) 
 

where, ek – histogram interval boundaries. 

First, the total number of observations is calculated: 
 

 𝑁 = ∑ ℎ𝑖
𝑛
𝑖=0 , (5) 

 

where, hi – number of observations in the i–th interval. 

The probability of a random variable falling into the i interval is defined as: 
 

 𝑝𝑖 =
ℎ𝑖

𝑁
, (6) 

 

CDF determines the cumulative probability that the value of a random variable will be less than 

or equal to the limit ei: 
 

 𝐹(𝑒𝑖) = ∑ 𝑝𝑗
𝑛
𝑗=0 , (7) 

 

For a given confidence level 𝛾, the parameter 𝛼 is calculated as: 
 

 𝛼 = 1 − 𝛾, (8) 
 

Then the lower bound of the confidence interval corresponds to the quantile of the level a over 

two, and the upper limit is the quantile of the level one minus a over two. 
 

 𝑖𝑙𝑜𝑤 = 𝑚𝑖𝑛 {𝑖: 𝐹(𝑒𝑖) ≥
𝛼

2
}, (9) 

 

 𝑖ℎ𝑖𝑔ℎ = 𝑚𝑖𝑛 {𝑖: 𝐹(𝑒𝑖) ≥ 1 −
𝛼

2
}, (10) 
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The boundaries of the confidence interval are determined by the corresponding values of the 

interval limits: 
 

 [𝑒𝑖𝑙𝑜𝑤 , 𝑒𝑖ℎ𝑖𝑔ℎ], (11) 
 

The final step in computing the probabilistic bearing is determining the weighted average of the 

histogram interval centers that lie within the chosen confidence interval. First, each interval center is 

calculated as the midpoint of its bin, providing a representative value for that interval. Next, only 

those centers falling within the previously defined confidence interval are retained. Each selected 

center is assigned a weight corresponding to the frequency of values in its interval. The weighted 

average is then computed by summing the products of these centers and their frequencies and dividing 

by the total frequency of all data within the confidence interval. 

The central value of the interval is determined by the formula: 
 

 𝑐𝑖 =
𝑒𝑖−1+𝑒𝑖

2
, (12) 

 

 

The weighted average value is calculated by the formula: 
 

 𝑐 =
∑ 𝑐𝑖
𝑛
𝑖=0 ×ℎ𝑖

∑ ℎ𝑖
𝑛
𝑖=0

, (13) 

 

This approach accounts not only for the positions of values in the distribution but also for their 

density, thereby ensuring that the computed average remains representative. By giving greater weight 

to intervals with higher data density (which most likely encompass the true bearing), the method 

ensures these dense intervals have a stronger influence on the result. 

Using a certain confidence level allows the method to incorporate a larger portion of the data 

distribution, which is crucial for robust results in the presence of anomalies. However, increasing the 

confidence level to very high values (95% or above) can lead to the inclusion of extreme values. 

Conversely, lowering the confidence level to around 80–85% may exclude too much representative 

data, adversely affecting accuracy. Therefore, controlling the confidence level is important not only 

for achieving an optimal root mean square error (RMSE) and high accuracy. It is also crucial for 

ensuring the stability and consistency of the computed bearing in the presence of AM1 and AM2 

anomalies. Considering this, it is important to investigate how RMSE and accuracy change with the 

confidence level and to determine an optimal range that balances the inclusion of representative data 

against the exclusion of anomalies. 

Controlling the confidence level is important not only to achieve optimal root mean square error 

(RMSE) and high method accuracy, but also to ensure the stability and consistency of the computed 

bearing in the presence of AM1 and AM2 anomalies. Thus, it is important to investigate how RMSE 

and accuracy change with confidence level and to determine the optimal range that balances inclusion 

of representative data and exclusion of anomalies. 

An adaptive model for detecting and removing AM has been developed. Its main differences, 

advantages, and defining features are as follows. First, the model can dynamically determine the 

number of histogram intervals based on an entropy criterion, thereby balancing the retention of the 

central measurement cluster against the isolation of anomalies. Second, the algorithm involves 

constructing confidence intervals via CDF, which facilitates the formation of the main dataset, while 

providing the ability to exclude tail intervals. Third, the method readily accommodates modifications: 

by adjusting the confidence level and optimizing the number of intervals, it can be tailored to different 

sample sizes. Because the model does not require ongoing prior knowledge about the nature of 

anomalies, it can be easily integrated into RDFS to enhance bearing accuracy. Consequently, the 

proposed approach preserves statistical stability and analytical flexibility, while substantially 

mitigating the influence of measurement errors on determining the location of SRFE. 
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4.3. Algorithm for detecting and filtering anomalous bearing measurements 

Summarizing the model described above, the algorithm can be outlined in the following steps: 

– Obtain a sample of bearing measurements E. 

– Generate a distribution histogram from this sample. 

– Compute the CDF for the sample’s histogram. 

– Determine the boundaries of the desired confidence interval. 

– Calculate the centers of the histogram bins that lie within this confidence interval. 

– Compute the weighted average of these selected bin centers. 

– Output the results of the weighted average calculation. 

 

4.4. Technology for detecting and filtering anomalous bearing measurements 

The technology for detecting and filtering AM refers to the practical implementation of the 

synthesized model and its algorithm within a software system architecture. This implementation is 

illustrated by the structural diagram of the algorithm in Figure 3. 

The input file (dataset.csv) contains a single column labelled “azimuth” and comprises a total 

of 1000 bearing values, as shown in Figure 4. The algorithm is implemented in Python, utilizing the 

NumPy and Pandas libraries. 

 

 
 

Fig. 3. Structural diagram of the algorithm 

 

 

 
 

Fig. 4. Input azimuth sample dataset.csv 
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The algorithm illustrated in Figure 3 carries out the detection and filtering of AM sequentially, 

following the developed model and algorithm. At the first stage (block 1), the CSV file is parsed and 

the sample E (bearing measurements from the RDFS) is loaded into a DataFrame. An example of a 

histogram of the input data’s distribution is presented in Figure 5a. At the second stage (block 2), a 

histogram of the bearing data is generated using the chosen number of intervals. An example 

histogram obtained at this stage is shown in Figure 5b. During the third stage (block 3), CDF is 

computed according to the specified confidence level. This CDF accumulates the frequency in each 

histogram bin, reflecting the probability that a random bearing value does not exceed that interval 

boundary. Next, the lower and upper limits of the confidence interval are determined. These limits 

exclude the most extreme measurements, retaining the central portion of the sample that most likely 

represents the true bearing. An example of the data distribution histogram after the calculations in 

block 3 is displayed in Figure 5c. 

 
Fig. 5 (а). Distribution of azimuth measurements: of input dataset 

 
Fig. 5 (b). Distribution of azimuth measurements: with calculated optimal number of intervals 
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Fig. 5 (c). Distribution of azimuth measurements: after applying CDF with defined confidence level 

 

Next (block 4), the centers of the intervals within the defined confidence range are computed, 

followed by the calculation of their weighted average value. According to the step-by-step algorithm 

described above, this weighted average constitutes a probabilistic bearing estimate that maximizes 

consideration of the data’s frequency density while minimizing the impact of AM. The final step 

(block 5) is to output the final probabilistic bearing value, which represents the direct result of the 

algorithm and can be integrated into RDFS to enhance the accuracy of locating SRFE. 

 

5. Results of investigating the anomaly evaluation algorithm at histogram intervals 

5.1. Overview of experimental setup and evaluation metrics 

To verify the method, samples of sizes n = 100, n = 500, and n = 1000 were used. The 

confidence level varied from 80% to 95% in 1% increments. The main analysis metrics were accuracy 

(Δ) and RMSE, which were employed to assess how the confidence level and sample size affect the 

algorithm’s stability and accuracy. 

 

5.2. Method for anomaly assessment in measurements 

Within the scope of the first objective, an algorithm was developed for evaluating measurement 

anomalies at the histogram interval level. The core of this approach lies in establishing a certain 

confidence level for the measured data sample. Following this, anomalous intervals (e.g., those with 

abnormally high or low frequencies) are either excluded or assigned a reduced weight. 

The method relies on two primary parameters: 

– Confidence level, which defines cut-off intervals for anomalous values. 

– Variance-based assessment, used to identify intervals with anomalous values. 

For each confidence level accuracy and RMSE are calculated for the respective samples. This 

approach enables control over the volume of excluded data, striking a balance between two opposing 

effects: excessive removal of valid measurements (reducing the completeness of the analysis) and the 

inclusion of anomalies (reducing accuracy). 

 

5.3. Experimental Results 

To achieve the second objective, we conducted a series of experiments using model datasets of 

various sizes. The confidence level varied from 80% to 95% in 1% increments. Based on the 
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experimental results, six plots were created to illustrate the relationships between accuracy and RMSE 

in respective confidence levels as shown in Figures 6–8. Each data point on the graphs represents the 

computed results for a particular confidence level, while the solid lines show the overall trend of how 

the metrics change. 

For the sample of size n = 100, Figure 6a. shows how accuracy depends on the confidence level. 

The accuracy ranges from 0.60 to 0.64, indicating fewer stable results for smaller datasets. The 

dependence of RMSE on the confidence level is presented in Figure 6b. The minimum value 

(about  0.36) occurs at a 92% confidence level. These graphs exhibit some fluctuations, reflecting the 

algorithm’s sensitivity to small sample sizes and the impact of anomalies.  

 
a 

 
b 

 

Fig. 6. Dependence of accuracy and RMSE on the confidence level for n = 100: a – accuracy; b – 

RMSE. 
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The results for the sample of size n = 500 are shown in Figure 7. Accuracy grows more steadily 

from 80% to 94%, and RMSE decreases significantly from 0.11 to 0.05. The lines on the graphs 

display fewer fluctuations, demonstrating greater algorithmic stability as the number of data points 

increases. 

 
a 

 
b 

 

Fig. 7. Dependence of accuracy and RMSE on the confidence level for n = 500: a – accuracy; b – 

RMSE. 

 

The results for the sample of size n = 1000 are shown in Figure 8. In terms of accuracy, there 

is a slight instability between 80% and 82% confidence levels; however, starting at 88%, the accuracy 

continues to improve and reaches about 99.5% at 95% confidence. Meanwhile, RMSE is substantially 

reduced as the confidence level increases. From 90% onward, the curve trends almost linearly toward 

zero. This outcome highlights the algorithm’s capacity to mitigate the effect of anomalies and sustain 

high accuracy, even when the data exhibit variability. 
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a 

 
b 
 

Fig. 8. Dependence of accuracy and RMSE on the confidence level for n = 1000: a – accuracy; b – 
RMSE. 

 

Overall, the increasing stability of the method with larger sample sizes confirms the 
appropriateness of applying the proposed approach to more extensive datasets. Results indicate that 
a 92–95% confidence level is optimal for minimizing RMSE and achieving high accuracy across 

different sample sizes. Nonetheless, for very small samples, excessively high confidence levels can 
result in including extreme values, which lead to increasing RMSE. This finding underscores the need 
to select a confidence level based on the amount of available data. 
 

6. Discussion of results of the anomaly evaluation algorithm 
The findings confirm the effectiveness of the proposed anomaly assessment algorithm operating 

at the histogram interval level. For the smaller sample (n = 100), results exhibit greater fluctuations, 

because the algorithm is more vulnerable to individual anomalies that can substantially affect the 
overall evaluation. 

When dealing with medium and large samples (n = 500 and n = 1000), the algorithm 
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demonstrates relatively steady accuracy gains and a marked reduction in RMSE as the confidence 

level increases – an outcome attributable to enhanced data representativeness and a smaller proportion 
of anomalous values. According to the experimental data, a 92–95% confidence interval proves 
optimal for minimizing the effect of anomalies while maintaining maximum achievable accuracy. 
However, with small samples, exceedingly high confidence levels can result in including extreme 

values, thus inflating RMSE. 
Overall, the experimental investigations affirm both the novelty and the practical significance 

of the developed algorithm. Its application not only allows for monitoring anomalous intervals in a 

sample but also supports adaptive confidence level adjustment in accordance with data size and 
statistical characteristics. Future work will focus on making the method less sensitive to anomalous 
values in small samples and testing its performance on real-world datasets. 

 

Conclusions 
The first research objective was to develop an adaptive method for detecting and filtering AM 

at the histogram interval level. The method assesses frequency characteristics of the sample rather 

than individual data points, thereby enhancing statistical stability for small sample sizes. It uses the 
Freedman-Diaconis heuristic to select the number of histogram intervals, and CDF to form confidence 
intervals that exclude AM1 and AM2 anomalies. This ensures minimal distortion of the core 

measurement cluster while preserving essential density distribution features. The approach is novel 
in its ability to automatically adapt to different sample sizes and mitigating the effects of random and 
systematic measurement errors. Its practical value is evident in increased bearing accuracy and 

improved reliability of RDFS. 
The second objective was to experimentally verify the effectiveness of this method on model 

data. Tests on samples of different sizes showed that both accuracy and RMSE depend on the chosen 
confidence level. An optimal 92–95% confidence interval emerges, ensuring reduced RMSE and 

robust anomaly filtering without discarding too many representative values. Larger samples exhibit 
more stable performance, underscoring the algorithm’s ability to isolate random or systematic 
anomalies while retaining most valid measurements. By dynamically balancing interval boundaries, 

the method demonstrates significant applicability for bearing analysis in radio monitoring tasks. 
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Предметом дослідження є статистичні моделі та методи обробки вибірки вимірювань 

пеленгів з метою виявлення й фільтрації аномальних значень. Об’єктом дослідження є методи 

обробки аномальних значень у вибірках вимірювань пеленгів. Метою роботи є розробка 

методу для підвищення достовірності визначення напрямку на джерело радіовипромінювання 

у однопозиційній радіопеленгаторній системі. 

Стаття присвячена розробці методу виявлення аномальних вимірів за аналізом 

гістограми щільності їх розподілу. Природа поширення радіохвиль у діапазоні УКХ формує 

чинники, що ускладнюють роботу радіопеленгаторів і зумовлюють випадкові та систематичні 

аномалії. Підхід базується на аналізі інтервалів гістограми щільності пеленгів замість 

ізольованої обробки окремих вимірювань, що дозволяє комплексно оцінювати структуру 

вибірки і виявляти аномалії. 

Ефективність методу перевірено на вибірках пеленгів 100, 500 і 1000 вимірів у діапазоні 

довіри 80–95 %. Такий набір експериментальних умов дав змогу оцінити стійкість методу для 

малих та великих масивів. Проаналізовано вплив систематичних і випадкових аномалій на 

побудову гістограм і визначення довірчого інтервалу. Ключові метрики: точність оцінювання 

пеленгу, середньоквадратична похибка й точність методу при різних рівнях довіри. 

Результати показали, що метод мінімізує вплив аномальних вимірів на кінцях і всередині 

основного кластера. Експерименти демонструють зниження середньоквадратичної похибки та 

стабільне зростання точності визначення напряму на джерело радіовипромінювання після 

виключення аномалій. Отримані результати підтверджують перспективність подальшого 

розвитку методики й її інтеграцію у синтезовані системи радіопеленгації, де вирішальними є 

надійність і точність визначення пеленгу. 

Ключові слова: радіопеленгація, УКХ діапазон, статистичне навчання, аномалії, гістограма. 


