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Graphics Processing Units (GPUs) play a significant role in high-end computations, including
artificial intelligence. However, the GPU hardware is often underloaded. This forces an increased
volume of GPU hardware to maintain a high throughput for task execution. The low loading of the
GPU resources remains an actual problem and it needs to be solved now. Therefore, it is essential to
seek methods that enhance GPU loading.

The research object is computational processes in modern processors, especially in GPUs. The
purpose of this study is to review the software pipelining approach, its advantages and disadvantages,
the techniques that can be used in it, including both instruction-level and decoupled versions, and to
assess the effectiveness of this approach for the GPU.

To satisfy the requirements, different analysis methods were used. First, the architectural
requirements to apply software pipelining were reviewed. Second, the original formulation and
historical development of the approach were examined. Third, different levels of parallelisation to
implement software pipelining were explored. Finally, C-slowing was proposed as an optimisation
technique to overcome the adversities of the underutilisation of computational resources.

The research has revealed the abundance of proper software pipelining for GPU implementations.
Whereas existing works review the possibilities of this technique, they are often overlooked in
contrast to simpler multi-threading techniques. However, investigated researchers have defined the
crucial limiting factor to computational resources as a constraint by memory overloading, specifically
the pipelining registers. To address this, the C-slowing approach was suggested and theoretically
evaluated. It demonstrated a possible increase of over 30% in GPU loading for the analysed algorithm,
proving its applicability.

In conclusion, the software pipelining approach shows decent potential to optimise GPU
algorithms, requiring further investigation. C-slowing could be utilised to handle the problem of
underutilisation of computation.

Keywords: software pipelining, Graphic Processing Unit, C-slowing, retiming, synchronous
dataflow.

1. Introduction
Graphics Processing Units (GPUs) play a significant role in high-end computations, including
artificial intelligence. However, the GPU hardware is often underloaded. This fact forces an
increased volume of GPU hardware to maintain a high throughput for task execution. Therefore, it
is essential to seek methods that enhance GPU loading.

Although applying the pipelining approach utilizes the various resources of the highly
pipelined architecture of the GPU, the pressure on one particular type of resource is higher, thus
bottlenecking the overall performance of the program. The pipeline buffer registers’ usage becomes
a crucial part of the optimisation process as the problem of memory storage and loading between
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the stages creates delays [1]. Registers handle data storage and instantly load every stage transition,
creating a register overflow. This problem is often addressed to the scientists, and efforts are made
to solve it, including those in [2], where technique redirects register spilling from the device
memory to the faster shared memory. Another idea is to use the resources of the idle GPU cores,
which is also viable [3].

Nevertheless, the mentioned proposals neglect the idea of register usage optimisation, and
other resources are applied to compensate for it instead. Despite the visible improvements, the
proposed solutions could meet limitations from different types of resources, such as under-utilising
the registers due to a short circuit length.

The low loading of the GPU resources remains an actual problem and it needs to be solved
now.

This paper overviews the software pipelining approach and programming methods based on
it. Their analysis helped to propose a new method of C-slow retiming as a method of software
pipelining which helps to program the parallel tasks in GPU and other architectures, and therefore,
is able to increase the GPU throughput.

2. Literature review and problem statement
2.1. Software pipelining

Software pipelining is based on instruction execution parallelisation to increase single-core
processor performance. The RISC architecture instructions provide the implementation of data
reading, their calculation, and result storing at very different points in time. Memory access
instructions are further divided into memory loading and storing. Software pipelining allows three
kinds of instructions overlap: loading, computing, and storing. This feature is the most beneficial
for sequential tasks, including loops. Every loop goes through several cycles with the same
structure: load data, wait for the loading, compute data, wait for the computation, store data, wait
for the storing, increment the loop counter, and check the exit condition. Therefore, every loop
cycle could be pipelined and executed without waiting: load data, compute and cycle control, and
store data. Eliminating this type of latency made software pipelining one of the most successful
instruction-level parallelism techniques for its time and is used to this day [4].

An example of a loop without software pipelining optimisation is shown in Figure 1. The task
performs a sum of two arrays element-by-element, noted A and B. The resulting array is stored in
array C. The code is written using a microprocessor with AArch64 assembly language, which is
typical for ARM architecture as a descendant of RISC. The data allocation section, which includes
data allocation and wrapper syntax, is omitted. The examined block starts with the start section,
which loads the addresses of the arrays used and initiates loop-carrying registers. The loop starts by
loading the current index input elements and incrementing the pointers. It then proceeds with the
computational operation, stores the result, and handles the loop.

_start:
ldr x0, =A // Load base address of A
ldr x1, =B // Load base address of B
ldr x2, = // Load base address of C
mov x3, #5 // Loop counter

loop:
ldr w4, [x0], #4 // Load A[i], inc. x0 by 4
ldr w5, [x1], #4 // Load B[i], inc. x1 by 4
add w6, w4, w5 // Compute sum of A[i] and B[i]
str w6, [x2], #4 // Store sum in C[1], inc.
subs x3, x3, #1 // Decrement loop counter
bne loop // If not zero, repeat

Fig. 1: Loop without software pipelining
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Given loop implementation is typical for assembly language programming or high-level
language compilation results.. Figure 2 shows an example of code using the software pipelining
technique. The example starts initiating variables and setting up counter registers. However, that is
not the only list of operations done before the loop begins; it includes the pre-loading instructions
for the first elements of the input arrays. Therefore, the computational instruction does not need to
wait for the input data to load but proceeds with the next iteration’s input value loading. The next
iteration starts with the input data loaded during the previous one, and the cycle continues. Utilising
simultaneous logic is beneficial for performance, making software pipelining essential for effective
programs.

_start:
ldr x0, =A // Load base address of A
ldr x1, =B // Load base address of B
ldr x2, =C // Load base address of C
mov x3, #5 // Loop
1dr w4, [x0], #4 // Preload A[0]
ldr wb, [x1], #4 // Preload B[O0]
subs x3, x3, #1 // Decrement counter

beqg last iteration

loop pipelined:

1dr w7, [x0], #4 // Load A[i+1]

ldr w8, [x1], #4 // Load B[i+1]

add w6, w4, w5 // Compute C[i]=A[1i]+B[1i]
str w6, [x2], #4 // Store C[1i]

subs x3, x3, #1 // Decrement loop counter
mov w4, w7 // Move preloaded A[i+1]
mov w5, w8 // Move preloaded B[i+1]

bne loop pipelined

last iteration:

add wé, w4, w5 // Compute last iteration
str w6, [x2], #4 // Store last result

// Exit the program
mov x8, #93 svc #0 // syscall: exit

Fig. 2: Loop with software pipelining

The following assumptions are made to measure the performance gains using the theoretical
approach: both code pieces are run on the same RISC processing unit, with the arithmetic
instructions, branching, and moving data between registers taking one cycle to complete, whereas
memory operations require four cycles.

Table 1 presents a workflow of this loop with the software pipelining technique used. Rows
represent instructions, whereas columns represent processor cycles. As shown, operations overlap
beginning with the third cycle: the addition instruction is executed, whereas loading A and B is still
not finished. The computation operation would need to wait for the loading operations to complete
without a software pipelining application.

Therefore, due to the technique, the length of the loop body is eight cycles. In comparison, the
length would be 12 cycles without the technique usage. Thus, speed up could be calculated as 12/8
= 1.5 times. The superscalar processing unit could improve this number if it performs branch
prediction.

Software pipelining is a technique known from the 1970s as part of Fortran compilers on the
time's supercomputers [5]. Despite that, the technique was mostly manually applied by the less
powerful machine programmers. An engineer was required to reorder the instructions of the code to
utilise memory and arithmetic logic parallelisation.
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Table 1. Pipelining cycles

Cycle No 1 [ 2]3]4]5] 6 [ 7 [8]9]10]11]1213[14]15]16
Load A Ali] Ali+1]

Load B B[i] B[i+1]
ADD
Store Cli-1] Cli]
Reg. movings Ali] | Bli]
Loop counter.
Branch

As many programs were still written in Assembly languages, primitive instruction reordering
was the only solution to increase the performance of the RISC machines. However, the more high-
level languages, including C, were developing and spreading, hiding the possibility of manual
optimisations behind the compiler. Therefore, a need for non-manual instruction retiming began to
rise, requiring compilers to adopt software pipelining as a part of them [6].

Considering such a tendency, instruction-level parallelism became greatly utilised, allowing
the loop iterations' executions to overlap, optimising all sorts of tasks processors would execute. On
the other hand, the compiler’'s hidden optimisation greatly contributed to software pipelining being
forgotten as a technique, at least on the instruction level. Another reason is the low popularity of
Assembly language, so hardly any engineer is required to optimise the instructions manually.

With the modern level of processors, the software pipelining technique is not limited to the
RISC architecture only. Similarly, an approach could be utilised on the thread level, opening it to
another optimisation level utilising multi-core architectures, including the highly promising GPU.
Its level of parallelisation could benefit from the software pipelining optimisation on the level of
threads.

2.2. Decoupled Software Pipelining

Software pipelining increases the productivity of repetitive algorithms on the hardware level
for a single core. However, the utilisation of a higher level of parallelisation became mandatory for
practical algorithms. Considering this, software pipelining was adopted to the multi-threaded
environment as a new approach, called Decoupled Software Pipelining (DSWP). DSWP allows
dividing complex computational operations inside the loop to be executed on separate threads [7].

The general idea of the DSWP technique could be expressed as follows: it partitions the loop
body into several parts called stages. A thread executes a single pipeline stage and communicates to
neighbouring stages via a queue buffer (QB). Every stage receives dependent data from the
previous stage and then sends dependent data to the following stage. The absence of dependence
cycles is the main requirement for this kind of pipeline. Buffering stage communication in a queue
ensures the pipeline stages are decoupled and insulated from stalls in other stages.

This technique implements the DOPIPE approach of parallelisation. It contrasts with the other
tactics: DOALL and DOACROSS. The former is used in the conditions of a loop having steps fully
independent from each other’s result, which maximises performance, utilising all the available
threads it requires. However, iteration dependencies are typical for the vast amount of application
code. And even the code transformations cannot guarantee DOALL applicability [8]. The
DOACROSS is applied to the loops with partial dependency. Despite having inter-step
dependencies to some extent, it produces partially parallelised execution, resulting in performance
gains. Opposing these approaches, DOPIPE is used for the entirely dependent loops. The
dependency of actions inside the iteration makes another use case for the DOPIPE approach.

Figure 3 shows an example of code written in the C language, which handles inter-iteration
dependencies with pipelining. The context of the function call, including the main function, is
omitted. Firstly, the code checks the input values and then proceeds with the loop. The body of the
loop consists of several function calls that depend on the result of one another, consequently in the
given order: ’input — a — b — ¢ — output”.



Method for Software Pipelining on Graphical Processing Units 31

void calculate(const int* input, size t size, int*

output)
{
if (input == NULL || output == NULL || sise == 0)
return;
for (size t i = 0; 1 < size; i++) {
int currentElement = inputl[il];
int resultA = a(currentElement):;
int resultB = b(resulth);
int resultC = c(resultB);

output[i] = resultC;

Fig. 3: Code for DSWP

Code dependencies for DSWP are commonly visually presented via a Program Dependence
Graph. It is a directed graph containing two types of dependencies, which are data and control,
illustrated by the edges. The nodes represent operations, including calculations, variable
assignments, function calls, conditional operations, and loop continuation operations. Firstly, DSWP
groups instructions that have a significant inter-dependence into Strongly Connected Components
(SCCs), typically illustrated by a Directed Acyclic Graph of SCCs (DAGSCC). The most crucial
limitation of the efficiency of the pipeline is the slowest stage, which stalls the whole execution.
Thus, the second (dynamic) grouping phase is performed, forming clusters of nodes of the
DAGSCC, where another one-to-one relation is created between a cluster and a thread.

DSWP performs load-balancing during clustering, so none of the threads overflows with
work. Meanwhile, the cycle inspections should be run on the new graph so that no cluster cycles
persist, preventing correctness and performance issues [8]. Another way to visually present DSWP
is a table. Table 2 contains pipeline iteration details for the code in Figure 3. Its columns represent
operations executed on its stage on a separate thread. Rows represent iterations, theoretically having
equal execution time, in which every operation gets completed for the given input element. The row
means a pipeline step whose direct dependency on the loop iteration is not required. Every cell
contains the input element handled in the corresponding operation at the given iteration time; cells
representing the same element have the same colouring.

Table 2: DSWP iterations

Load Function A Function B Function C Store
Iteration O input[0]
Iteration 1 input[1] input[0]
Iteration 2 input[2] input[1] input[0]
Iteration 3 input[3] input[2] input[1] input[0]
Iteration 4 input[4] input[3] input[2] input[1] input[0]
Iteration 5 input[5] input[4] input[3] input[2] input[1]
Iteration 6 input[5] input[4] input[3] input[2]
Iteration 7 input[5] input[4] input[3]
Iteration 8 input[5] input[4]
Iteration 9 input[5]

The DOPIPE approach shows in this example, that every DSWP stage (thread) is specialised
in its instruction, allowing optimisation for the corresponding task, including further parallelisation
for complex tasks. Another advantage of pipelining is the static number of threads independent from
the input data size, as the number of threads is defined by the operation amount, which is static for
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the SIMD approach. In the given example, DSWP would handle any array with only five threads,
whereas DOALL would require six threads to be optimal.

However, the problem of the DSWP is a potential imbalance of the stage execution time, as
operations are different; as a result, the right load-balancing technique becomes significant for the
overall performance. Regarding communication instructions, DSWP requires more instructions than
DOACROSS [9]. In contrast, DSWP keeps all the threads active, unlike waiting states often
encountered in DOACROSS implementations.

In conclusion, DSWP is an effective method of parallelisation, being a performance-efficient
implementation of DOPIPE, which is advantageous to both DOALL and DOACROSS in terms of
flexibility and keeping threads active if properly implemented. DSWP is an elegant adaptation of
software pipelining to the processing units with several threads. With the increase in GPU
performance and usage, DSWP could be used to utilise the resources.

2.3. Software Pipelining in GPU

GPU is currently widely used in different fields of science and engineering. Artificial
intelligence and machine learning are among the most popular use cases. Modern GPUs with
appropriate algorithms could handle various tasks, including scheduling issues [10] and showing
high rates of operations per second [11]. Provided that GPU optimisation is crucial, this comes to
the question of multi-threading algorithm optimisation because it relies on multi-core at its base,
with modern GPUs having thousands of cores able to run thousands of threads in parallel.

GPU is divided into units called streaming multiprocessors in Nvidia terminology. Streaming
multiprocessor essentially has a RISC-like architecture. It has a small set of instructions executed in
one clock cycle in pipelined mode. The hundreds of registers provide effective local variable
storing. Moreover, support for automatic array indexing and loop execution is also present.
Regarding computational units, streaming multiprocessors comprise GPU cores grouped into warps,
further grouped into thread blocks. Warps perform parallelising with a Single Instruction Multiple
Data (SIMD) principle, where every thread performs the same operation on different data chunks.
However, warps can perform different operations under the same streaming multiprocessor [12].

Streaming Multiprocessors comprise not only computational units but also memory of
different levels. Fast-access memory is extensively used for pipelining, starting with the global
memory allocated for the whole GPU and continuing with Streaming Multiprocessor registers. The
shared memory exists for the less significant operations within a thread block, which is slower than
the registers but still faster than global memory. Local memory is a thread-specific subdivision of
global memory [13]. Delays in memory access in case of insufficient usage could limit the
computational possibilities of the GPU. The frequent context switching between threads is
supported by hardware register bank switching.

This level of parallelisation provides possibilities for both instruction-level pipelining and
thread-level pipelining. GPU frameworks exist to access these resources, namely CUDA and
OpenML conveniently. They opened the possibility for GPU to be effective [14] despite not
providing all the solutions required [15], including instruction-level pipelining possibility, as the
infrastructure provided by the manufacturers limit low-level parallelisation controls.

2.4. Pipelining Approaches

Despite the high effectiveness of adapting CPU-oriented software pipelining approaches to the
GPU, many techniques have been developed for optimising pipelining on the GPU. Examining the
\ersaPipe [16], the library written specifically for the GPU, combining high-level and low-level
control to reach up to 2.7x performance increase compared to the baseline. Another library is
GOPIPE [17], which is built on top of VersaPipe. It encompasses automatic granularity adjustment
for the given task, providing a 1.39x increase in performance over the previous solution.

Furthermore, there are several problems with the current GPU design that limit its potential,
comprising GPU hardware being agnostic to the thread block specialisation from the software
perspective, the transfers of memory between global memory and shared memory are coarse-
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grained and lack of fine-grained memory access limits pipelining possibilities, the requirement of
complex manual optimisation by the developer in CUDA, limiting warp specialisation usage. The
article [18] presented a WASP system containing architecture and compiler utilising warp
specialisation for the GPU. The compiler provides a 10% performance improvement, whereas its
usage with an augmented WASP GPU provides 47% better performance than the baseline on
average.

Nevertheless, the mentioned techniques are not based on software pipelining, which could
improve performance in operations running on the GPU. Unfortunately, the existing scientific base
lacks GPU-specific research, primarily focusing on general software pipelining adoption to
superscalar architectures [19, 20].

Despite that, there is research regarding implementing software pipelining on the discrete GPU
to optimise rasterization problem solving in [21]. However, it does not present task-independent
optimisation for the GPUs. This work still showcases an efficient software pipelining utilisation.

2.5. StreamlIt: a Model for Streaming Programs

The stream-oriented programs consist of a theoretically endless stream of data handled the
same way for every chunk, fitting perfectly into the category where data parallelisation could be
used effectively for optimisation. As the GPU is set to handle data parallelism, stream-oriented
programs are one of the fields in which it can be used. An instrument was developed to effectively
use parallel resources for streaming programs: a model and a corresponding programming language
named Streamlt. Whereas exploiting it on the CPU with 16 cores gives up to 11.2 times faster than
single-core performance [22], the GPU’s potential takes another level.

Streamlt is a programming model where a user specifies data transformations with the help of
the filters concept. Filters can pop any number of elements from the input, process the value, and
then push it to the output. In some implementations, it could also have a peek operation that allows
looking at the input value without removing it, unlike pop, which removes the element from the
input. Such behaviour reminiscents the DSWP technique. The developer has several actions to take
to write a program using Streamlt. Firstly, he needs to define the rate of pushed and popped amount
of the elements. Secondly, choosing how to combine filters could be done in split-join, feedback
loop, or pipelining. Nesting these components is possible, but the input and output limits are one for
both [23]. Thirdly, the operations performed for every filter must be specified.

In general, Streamlt is intended only for the CPU systems. Adopting it to the GPU platform is
a task that needs to be performed. The work [24] investigates the possibility of using this language
to make GPU-oriented programs. Running Streamlt on the GPU required compiler manipulations,
making the output a CUDA code. This process was followed by problems with the correct
versioning and configuration so that each filter could get the necessary number of threads and
register to work.

This method was tested in the framework with tasks like discrete cosine transform, and
blocked matrix multiplication. The optimised software pipelining solution increased performance
from 1.87x up to 36.83x compared to the single-threaded CPU, depending on the benchmark setup.
This examples shows the perspectives of the software pipelining in GPU.

2.6. Modulo Scheduling technique

Software pipelining could effectively handle loops with small and large operation counts for
their bodies. However, time is spent in either saturation or decay states for the latter, and the
program execution becomes longer, limiting the method's effectiveness. A technique called modulo
scheduling is used to address the problem. It takes more control over the operation ordering and
optimises the pipelining schedule. Compared to plain software pipelining, modulo scheduling adds
the possibility to increase predicted optimisation, reducing the impact of the unexpected latencies
on the overall performance outcome [4].

One of the basic algorithmic components of modulo scheduling is loop unrolling. This
technique transforms an original loop into a loop with a complex body, decreasing the number of
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iterations by the given factor of N. This transformation is done by putting the N of original iterations
in a single iteration of the complex body, resulting in more operations that could be pipelined.

The step of modulo scheduling is crucial as it rearranges the cycles for the operation before
trying to organise them in a schedule. It builds a graph of data and logic dependencies of the loop.
Then, the graphs of the consequent iterations connected due to unrolling are linked in a bigger
graph divided into smaller M graphs. The M is for modulo in modulo scheduling. Therefore,
iterations get retimed to have at most M operations in each, optimising the algorithm’s execution for
the required number of software pipelining stages.

Despite the length of the loop after unrolling, modulo scheduling performs the next step,
which schedules operations inside the loop body. The essential parameter used in modulo
scheduling is the initiation interval, which defines the number of cycles between the iterations. The
lower bound of it is computed first and is called the Minimum Initiation Interval (MII). The lower
the initiation interval, the better parallelisation can be utilised. The initiation interval is highly
dependent on the critical path, which is the longest route in the graph that cannot be separated
without violating dependencies.

The name Flat Modulo Scheduling (FMS) is used for the algorithm that passes through the
loop only once. Nevertheless, as it is easy to implement, it leaves much potential for modulo
scheduling performance optimisation underutilised. The more advanced version with MII, which
has passed through the loop, is called Iterative modulo scheduling and provides more adjustments
after the first partial schedule is defined.

Several more complex implementations of modulo scheduling include backtracking,
increasing the initiation interval, slack modulo scheduling, and integrated register-sensitive iterative
software pipelining improve an average ratio of initiation interval to MII [25].

The Hierarchical Modulo Scheduling (HMS) solves the significant problem of the number of
operations to schedule, being better at extracting the potential of the multiple cores of the GPU. As
every primitive operation of computation, branching, or assignment gets scheduled, the number of
operations to process for the modulo scheduling becomes significant and requires grouping. It is
performed by transforming the original graph into DAGSCC and scheduling the newly formed
groups rather than individual operations. This technique is often used in DSWP. Nevertheless, the
most performance-effective approach of IMS and HMS s still debatable [26].

2.7 CPU and GPU combination

The software pipelining in the systems of the homogeneous processing units (PUs) is
considered above. However, modern systems have CPU and GPU on the same chip, sharing a
memory pool and cache. Examples of such a system are AMD Ryzen 5 3400G, NVIDIA Tegra X1,
and many others. Therefore, investigation of combined GPU-CPU systems is essential to estimate
the software pipelining potential, especially on less powerful devices where optimisation is crucial.
This type of architecture has separate first-level caches for each PU, and the level two or three
cache is shared via the unified memory architecture. Thus, exchanging data between CPU and GPU
could be done similarly to simply exchanging memory between different threads inside the single
PU [27].

There are three main optimisation possibilities with promising prospects for the CPU-GPU
heterogeneous systems. Firstly, fine-grained communication and DSWP approach can decrease the
temporal distance between the consumer and the producer. Second, the amount of memory access
contention can be limited through effective access modulation, optimising cache usage. Third, the
number of underused PU cores that require data-independence detection and task delegation to the
idle threads should be decreased.

The investigation of such possibilities [28] has shown a significant performance increase for
some common algorithms. The combined systems have possibilities to increase performance: using
the shared memory and DSWP approach has a 2.1x increase compared to the baseline, further
parallelisation of the CPU and GPU computing gives 3.1x speedup, and utilising cache increases the
number to the 4.4x level [29].
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Software pipelining has proven to be a potent technique for instruction-level pipelining, later
being reintroduced for the multi-core architecture in the decoupled form. However impactful
software pipelining was for other architectures, it lacked productive implementations for the GPU.
The efforts to use it for rasterization gave a plausible result, but it has not received enough attention
and development. Another promising research field is applying software pipelining to the integrated
CPU-GPU circuits, shared memory eliminates most delays, allowing faster task communication and
the possibility of computation offloading on the stale CPU cores. Such systems have not
significantly increased performance, limited by cache insufficiency. So, the additional investigations
at the field of software pipelining concerning GPU.

3. The aim and objectives of the study

The object of the study is the software pipelining technique applied to the GPU.

The purpose of this study is to review the software pipelining approach, its advantages and
disadvantages, the techniques that could be used in it, including both instruction-level and
decoupled versions, and to find out the effectiveness of this approach for the GPU. To achieve this
aim, the following tasks are set:

— Reviewing the software pipelining technique principles and measurements.

— Estimating the existing software pipelining optimisation technique’s efficiency.

— Setting up the theoretical background for applying the C-slowing technique to increase
software pipelining performance.

4. The study materials and methods of investigation

The object of the study is parallel computational processes in the parallel programmable
computers. These computers can have superscalar, SIMD or MIMD architectures.

The problem is that the modern GPU usually could not be programmed in assembly language
by the user due to the policy of the GPU manufacturers. However, such programming is needed for
the highest loading of processing units of this GPU.

The hypothesis is that using new approach to the GPU programming based on the software
pipelining using the transformations of Synchronous DataFlow (SDF) can provide more effective
programs for GPU designed by the usual programmer in the high level language.

5. Results of C-slow retiming investigation

The overviewed software pipelining implementations and techniques, including modulo
scheduling, prioritising initiation, and interval minimisation, are considered a primary optimisation
approach. However, a lower initiation interval leads to higher register pressure, thus limiting the
performance of the pipeline. Moreover, the dense data dependencies between algorithm iterations
limit the software pipelining effectiveness. Integrating the C-slowing approach into software
pipelining is proposed to overcome this adversity. Analysing this technique via the synchronous
dataflow model is shown below.

SDF is the graph model for dataflow algorithm representation. SDF is a graph whose nodes
represent the operators and edges represent the dataflows. The edge can have either zero delay or a
delay, like the FIFO buffer. These algorithms are distinguished because they perform cyclic
calculations when the number of processed data in each iteration is stable [30]. Note that SDF or its
modifications can represent most of the algorithms implemented in the GPU.

The algorithm represented by the folded SDF performs the same calculations as the original
SDF but with a reduced number of nodes [31]. A specific situation of SDF folding occurs when C
equal SDFs are combined in a single folded SDF. This method is called C-slow retiming or C-
slowing. This method is widely used in hardware design [32]. However, SDF is a multipurpose
model. Therefore, C-slowing can be effectively implemented in GPU programming.

Consider the following loop nest, which is programmed for a single GPU processing unit
(PU), as in Figure 4.
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for (1 = 0; 1 < N; i++;) {
rl = 0;
for (j = 0; j < M; j++) {

rl = c*rl + ali,jl;
bli,j] = rl;
Fig. 4: Loop example

The program presented in Figure 4 performs a simple filtering algorithm. Here, N filters are
executed in parallel. SDF in Figure 5 represents this algorithm.

Fig. 5. SDF of the filtering algorithm

The directed edge of SDF represents a dataflow. The bar that loads the edge represents a delay
to a single algorithm period. This period in the example is equal to one iteration execution time. So,
it represents a register that stores the variable r1. The bold point and the point in a circle represent
the input and output nodes. The data aijand b;;are inputted and outputted through this SDF, respec-
tively. The nodes marked by plus and asterisk mean the addition and multiplication operators,
respectively. Such a node outputs its result immediately when the data are present at its inputs.

According to the SDF theory, the critical path of this model goes through the cycle containing
the operations nodes and delays [33]. This critical path causes delays in loading and storing the
variable si = ¢'sj + aijand delays in addition and multiplication. The iterative loop of the program
contains additional delays in loading and storing the data ai; and bi; However, the program
pipelining and the hardware pipelined memory access in the GPU partially hide the latent data
loading and storing delays.

Consider the algorithm loop period T and PU loading ratio Q estimation for this algorithm.

T = max(de, dw + nrw— 1 — audc), 1)

where dc is the instruction number in the loop core after compilation, i.e., the approximated number
of clock cycles, in which calculations and control load the PU, dw is the latent delay of the memory
access, nrw is the number of accesses to memory in a single iteration, a is the fraction of the number
dc, in which the program pipelining hides the latent delay dw. Note that the value dw is the sum of
only arithmetic and transfer operation delays because of the loop control, and the array addressing is
executed by specific address generators in the GPU. Then, the PU loading ratio is equal to

Q=4dC T, )

In the example above, the variables are nrw = 2, dc = 5, o = 0.6. When data is in local
memory, the value is dw = 10 in the GPU PTX architecture. Therefore, dw > dc. As a result,
according to (1) and (2), the iteration period and the PU loading for this example are

Ti=dw+1-0.6dc=8; Q1=dc/T1=0.625. 3

C-slowing of the algorithm in Figure 5 consists of multiplying C times all delays in the SDF
edges. The modified algorithm executes C exemplars of the original algorithm in parallel but with a
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slowing in C times. This fact explains the origin of this method’s name. Consider the C-slowing
when C = 2. Then the resulting SDF is shown in Figure 6.

ry

Fig. 6. SDF of the algorithm after C-slowing

Here, the data are loaded and stored sequentially by the couples: ai+1j, aij and bi+1j, bijin a
single iteration. The accumulated result is stored in register t1 and its previous value is rewritten in
register r2 for each iteration. The respective program sketch is as in Figure 7.

for (1 = 0; i < N; 1i+=2) {
rl = 0;
r2 = 0;
for (3 = 0; j < M; j++) {

rl = ¢c*r2 + ali,J]l; r2 = rl;
bli,j] = r2;
rl = c*r2 + al[i+l,3]; r2 = rl;
b[i+l,3]=r2;
}

Fig. 7: C-slowed code

The coefficients are nrw = 4, o ~ 0.6 and dc = 12 in Figure 7. As a result of C-slowing,
according to (1) and (2), the iteration period and the PU loading for this example are T, = 12 and
Q2 = 1. So, the PU loading is increased to its maximum value, and the throughput is increased in
T:C/ T2 = 1.33 times.

6. Discussion of result

Parallel computations have garnered significant attention, provoking the development of
newer and more powerful GPUs and extending their role outside the graphics field. In order to use
GPU resources optimally, practical algorithms need to be discovered and analysed. The software
pipelining approach has been investigated to analyse the possibilities for improving GPU
throughput.

Figure 6 and Figure 7 demonstrate that the C-slowing method is rather effective one, at least,
in this example. The calculated improvements are explained below. The memory access time dw in
the GPU is longer than the register access. The example considers that PUs belong to a single warp
of GPU, and PUs do not access the common memory cells. Otherwise, the factor dw increases to
tens and hundreds, decreasing the value Q: dramatically. Therefore, the program has a short loop
core and is inefficient. Moreover, C-slowing increases this core, at least in C times, supporting the
computing of groups of C data. This aspect makes the proposed method similar to the modulo-
scheduling method described above. However, C-slowing seems to be a more formal method based
on the theory of SDF algorithms. However, these aspects need deeper investigation.
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7. Conclusion

Reviewing the software pipelining technique principles and measurements shows that the
software pipelining on the GPU lacks scientific attention. Further investigations and adjustments are
required to determine its capabilities. Future hardware improvements may also provide the
necessary changes for the approach to overcome its limitations and show significant performance
increases on the GPU.

When estimating the existing software pipelining optimisation technique’s efficiency it was
instantiated that the C-slowing technique is rather effective to optimise software pipelining. The
algorithm's theoretical evaluation has shown a significant performance improvement prospect.
However, further practical measurements are required.

The initial theoretical background for applying the C-slowing technique shows the increase of
software pipelining performance. However, the additional investigations at this field are needed. For
this purpose, the design of the framework for the GPU software pipelining for the artificial
intelligence program improvement is planned.
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I'padpiuni cniBnponecopu (GPU) BinmirpatoTe 3HauHy pojib Yy BHUCOKOIPOJYKTHMBHHUX
OOYMCIICHHSX, BKJIIOYAIOUM INTYy4yHUU IHTenekr. OpHak amaparHe 3ab6esnedeHHss GPU wacto
HemoBaHTaxeHe. Lle 3mymrye 30inbmryBatu o6csr amaparroro 3adesnedeHHss GPU st miarpuMku
BHCOKOi TIPOITYCKHOT 37aTHOCTI JiI1 BUKOHAHHS 3aBJaHb. | TOMy HW3bKE 3aBaHTaXCHHS PECYpCiB
GPU 3anmumiaeTbest akTyaJbHOIO MTPOOJIEMOIO, sIKa BUMArae BHpIMIeHHs. BakInBo mIykaTl METOMH,
110 MiIBHUINYIOTH 3aBaHTaxeHHsT GPU.

OO0'exTOM JOCHIPKEHHS € OOUMCITIOBAJIbHI MPOIIECH B Cy4aCHUX IPOIECOpax, 0COOIMBO B
GPU. Metoto 1bOT0 JOCITIKEHHS € OTJIS MIX0IB Y10 CKOHAJICHHS TPOTPAMHOTO 3a0€3MeUeHHS 3a
JIOTIOMOTOI0 TIPOTPaMHOI KOHBEEPHU3aIlii, BKIIFOUAIOUH SIK Bepcii KOHBEEpU3aIlii Ha piBHI KOMaH]I, TaK
1 Ha piBHI MPOTpaMHUX IMOTOKIB, & TAKOXK OIlIHKA e(PeKTUBHOCTI 11boTO Tiaxony mist GPU.

Byno po3misiHyTo apXiTEKTypHI BUMOTH JI0 3aCTOCYBaHHSI KOHBEEPHOT 0OPOOKH MPOTPaMHOTO
3a0€3MeUeHHsI, PO3IVITHYTO OpHUTIHATbHE (OPMYITIOBAaHHS Ta ICTOPUYHHUIN PO3BHTOK MIAXOTY, OYyII0
JNOCITIDKEHO Pi3H1 PIBHI mapajienizMy Ul peami3aiii KOHBEEPHOI OpraHizailii MpoTrpaMHOTO
3abe3nedenns. Hapemiri, Oys0 3amponOHOBaHO METO]I PECUHXPOHI3AIll 3 YITOBUILHEHHSM SIK METO]I
ONTUMI3aIii ISl TIOI0JTAHHS HETOTIKIB HEZOCTAaTHHOTO BUKOPUCTAHHS 00YMCITIOBATTLHUX PECYPCIB.

BusiBieHo JocCTaTHIO KUIBKICTH JOCHIDKEHb, TNPUCBIYCHUX KOHBEEPHOMY BHUKOHAHHIO
nporpaMmHoro 3abesmeueHHs s peanizanii Ha GPU. Xowa icHyroui poOOTH pO3IISAarOTh
MOXJIMBOCTI IIBOTO METOJy, BOHH YacTO ITHOPYIOTBCS Ha BiAMIHY BiJ MPOCTINIMX METO/IB
OaratonotokoBoi 00poOku. OpHak, B poOOTaXx BU3HAYWIM BHUPIIAIBHAUM OOMEXYBaIbHUM
(hakTOpOM OOUYHCITIOBATLHUX PECYPCiB K OOMEXKEHHS, CIPHUYMHECHE IMEePEBAHTAKECHHSM I1aM'sTi,
30KpeMa pericTpamMu KOHBEEpHOi 00poOku. s BupimeHHs 1€l mpooiemu Oyiio 3amporoHOBaHO Ta
TEOPETUYHO OI[IHEHO MiAXiJ PECUHXPOHI3AIlll 3 yINOBUIbHEHHAM. BiH IPOAEMOHCTPYBaB MOXKIIMBE
30utbIIeHHs 3aBaHTaxeHHs] GPU Ounbin Hik Ha 30% JU1s aHATI30BAaHOTO alNTOPUTMY, 11O TOBOJUTH
HOTro MepCreKTUBH 3aCTOCYBAHHS.

Ha 3aBepuieHHsi, miaxix 10 KOHBEEPHOI OOpPOOKM MPOrpaMHOTO 3a0e3MeueHHS! AEMOHCTPYE
HenmoraHui mnoTeHmian Uit omtumizauii amroputmiB g GPU, mo norpebye mMmoaaibiioro
nocnimkeHHsl. PecuHXpoHI3allis 3 YINOBUIBHEHHSM MOXe OyTH BUKOpPUCTaHa i BHUPIHICHHS
npoOieMu mpuckoperHs odunciens Ha GPU.

KntouoBi cnoBa: mporpamHa KoHBeepu3allis, rpadidyHUi CHIBIPOLECOP, PECUHXpOHi3alisd, rpad
CUHXPOHHHUX MOTOKIB IaHUX.



