
Information, Computing and Intelligent Systems, 2025, No. 6, 27 – 41

© The Author(s) 2025. Published by Igor Sikorsky Kyiv Polytechnic Institute.

This is an Open Access article distributed under the terms of the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), which permits re-

use, distribution, and reproduction in any medium, provided the original work is properly cited.

UDC 004.8 : 004.94 https://doi.org/10.20535/2786-8729.6.2025/331193

METHOD FOR SOFTWARE PIPELINING ON GRAPHICAL

PROCESSING UNITS

Artemii Vinokurov*
National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

https://orcid.org/0009-0006-7861-5138

Anatoliy Sergiyenko
National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

https://orcid.org/0000-0001-5965-1789

*Corresponding author: a.vinokurov@kpi.ua

Graphics Processing Units (GPUs) play a significant role in high-end computations, including

artificial intelligence. However, the GPU hardware is often underloaded. This forces an increased

volume of GPU hardware to maintain a high throughput for task execution. The low loading of the
GPU resources remains an actual problem and it needs to be solved now. Therefore, it is essential to

seek methods that enhance GPU loading.

The research object is computational processes in modern processors, especially in GPUs. The

purpose of this study is to review the software pipelining approach, its advantages and disadvantages,
the techniques that can be used in it, including both instruction-level and decoupled versions, and to

assess the effectiveness of this approach for the GPU.

To satisfy the requirements, different analysis methods were used. First, the architectural
requirements to apply software pipelining were reviewed. Second, the original formulation and

historical development of the approach were examined. Third, different levels of parallelisation to

implement software pipelining were explored. Finally, C-slowing was proposed as an optimisation
technique to overcome the adversities of the underutilisation of computational resources.

The research has revealed the abundance of proper software pipelining for GPU implementations.

Whereas existing works review the possibilities of this technique, they are often overlooked in

contrast to simpler multi-threading techniques. However, investigated researchers have defined the
crucial limiting factor to computational resources as a constraint by memory overloading, specifically

the pipelining registers. To address this, the C-slowing approach was suggested and theoretically

evaluated. It demonstrated a possible increase of over 30% in GPU loading for the analysed algorithm,
proving its applicability.

In conclusion, the software pipelining approach shows decent potential to optimise GPU

algorithms, requiring further investigation. C-slowing could be utilised to handle the problem of

underutilisation of computation.
Keywords: software pipelining, Graphic Processing Unit, C-slowing, retiming, synchronous

dataflow.

1. Introduction

Graphics Processing Units (GPUs) play a significant role in high-end computations, including

artificial intelligence. However, the GPU hardware is often underloaded. This fact forces an

increased volume of GPU hardware to maintain a high throughput for task execution. Therefore, it

is essential to seek methods that enhance GPU loading.

Although applying the pipelining approach utilizes the various resources of the highly

pipelined architecture of the GPU, the pressure on one particular type of resource is higher, thus

bottlenecking the overall performance of the program. The pipeline buffer registers’ usage becomes

a crucial part of the optimisation process as the problem of memory storage and loading between

28 Information, Computing and Intelligent Systems № 6, 2025

the stages creates delays [1]. Registers handle data storage and instantly load every stage transition,

creating a register overflow. This problem is often addressed to the scientists, and efforts are made

to solve it, including those in [2], where technique redirects register spilling from the device

memory to the faster shared memory. Another idea is to use the resources of the idle GPU cores,

which is also viable [3].

Nevertheless, the mentioned proposals neglect the idea of register usage optimisation, and

other resources are applied to compensate for it instead. Despite the visible improvements, the

proposed solutions could meet limitations from different types of resources, such as under-utilising

the registers due to a short circuit length.

The low loading of the GPU resources remains an actual problem and it needs to be solved

now.

This paper overviews the software pipelining approach and programming methods based on

it. Their analysis helped to propose a new method of C-slow retiming as a method of software

pipelining which helps to program the parallel tasks in GPU and other architectures, and therefore,

is able to increase the GPU throughput.

2. Literature review and problem statement

2.1. Software pipelining
Software pipelining is based on instruction execution parallelisation to increase single-core

processor performance. The RISC architecture instructions provide the implementation of data

reading, their calculation, and result storing at very different points in time. Memory access

instructions are further divided into memory loading and storing. Software pipelining allows three

kinds of instructions overlap: loading, computing, and storing. This feature is the most beneficial

for sequential tasks, including loops. Every loop goes through several cycles with the same

structure: load data, wait for the loading, compute data, wait for the computation, store data, wait

for the storing, increment the loop counter, and check the exit condition. Therefore, every loop

cycle could be pipelined and executed without waiting: load data, compute and cycle control, and

store data. Eliminating this type of latency made software pipelining one of the most successful

instruction-level parallelism techniques for its time and is used to this day [4].

An example of a loop without software pipelining optimisation is shown in Figure 1. The task

performs a sum of two arrays element-by-element, noted A and B. The resulting array is stored in

array C. The code is written using a microprocessor with AArch64 assembly language, which is

typical for ARM architecture as a descendant of RISC. The data allocation section, which includes

data allocation and wrapper syntax, is omitted. The examined block starts with the _start section,

which loads the addresses of the arrays used and initiates loop-carrying registers. The loop starts by

loading the current index input elements and incrementing the pointers. It then proceeds with the

computational operation, stores the result, and handles the loop.

_start:

 ldr x0, =A // Load base address of A

 ldr x1, =B // Load base address of B

 ldr x2, =C // Load base address of C

 mov x3, #5 // Loop counter

loop:

 ldr w4, [x0], #4 // Load A[i], inc. x0 by 4

 ldr w5, [x1], #4 // Load B[i], inc. x1 by 4

 add w6, w4, w5 // Compute sum of A[i] and B[i]

 str w6, [x2], #4 // Store sum in C[i], inc.

 subs x3, x3, #1 // Decrement loop counter

 bne loop // If not zero, repeat

Fig. 1: Loop without software pipelining

Method for Software Pipelining on Graphical Processing Units 29

Given loop implementation is typical for assembly language programming or high-level

language compilation results.. Figure 2 shows an example of code using the software pipelining

technique. The example starts initiating variables and setting up counter registers. However, that is

not the only list of operations done before the loop begins; it includes the pre-loading instructions

for the first elements of the input arrays. Therefore, the computational instruction does not need to

wait for the input data to load but proceeds with the next iteration’s input value loading. The next

iteration starts with the input data loaded during the previous one, and the cycle continues. Utilising

simultaneous logic is beneficial for performance, making software pipelining essential for effective

programs.

_start:

 ldr x0, =A // Load base address of A

 ldr x1, =B // Load base address of B

 ldr x2, =C // Load base address of C

 mov x3, #5 // Loop

 ldr w4, [x0], #4 // Preload A[0]

 ldr w5, [x1], #4 // Preload B[0]

 subs x3, x3, #1 // Decrement counter

 beq last_iteration

loop_pipelined:

 ldr w7, [x0], #4 // Load A[i+1]

 ldr w8, [x1], #4 // Load B[i+1]

 add w6, w4, w5 // Compute C[i]=A[i]+B[i]

 str w6, [x2], #4 // Store C[i]

 subs x3, x3, #1 // Decrement loop counter

 mov w4, w7 // Move preloaded A[i+1]

 mov w5, w8 // Move preloaded B[i+1]

 bne loop_pipelined

last_iteration:

 add w6, w4, w5 // Compute last iteration

 str w6, [x2], #4 // Store last result

// Exit the program

 mov x8, #93 svc #0 // syscall: exit

Fig. 2: Loop with software pipelining

The following assumptions are made to measure the performance gains using the theoretical

approach: both code pieces are run on the same RISC processing unit, with the arithmetic

instructions, branching, and moving data between registers taking one cycle to complete, whereas

memory operations require four cycles.

Table 1 presents a workflow of this loop with the software pipelining technique used. Rows

represent instructions, whereas columns represent processor cycles. As shown, operations overlap

beginning with the third cycle: the addition instruction is executed, whereas loading A and B is still

not finished. The computation operation would need to wait for the loading operations to complete

without a software pipelining application.

Therefore, due to the technique, the length of the loop body is eight cycles. In comparison, the

length would be 12 cycles without the technique usage. Thus, speed up could be calculated as 12/8

= 1.5 times. The superscalar processing unit could improve this number if it performs branch

prediction.

Software pipelining is a technique known from the 1970s as part of Fortran compilers on the

time's supercomputers [5]. Despite that, the technique was mostly manually applied by the less

powerful machine programmers. An engineer was required to reorder the instructions of the code to

utilise memory and arithmetic logic parallelisation.

30 Information, Computing and Intelligent Systems № 6, 2025

Table 1. Pipelining cycles

Cycle No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Load A A[i] A[i+1]

Load B B[i] B[i+1]

ADD

Store C[i-1] C[i]

Reg. movings A[i] B[i]

Loop counter.

Branch

As many programs were still written in Assembly languages, primitive instruction reordering

was the only solution to increase the performance of the RISC machines. However, the more high-

level languages, including C, were developing and spreading, hiding the possibility of manual

optimisations behind the compiler. Therefore, a need for non-manual instruction retiming began to

rise, requiring compilers to adopt software pipelining as a part of them [6].

Considering such a tendency, instruction-level parallelism became greatly utilised, allowing

the loop iterations' executions to overlap, optimising all sorts of tasks processors would execute. On

the other hand, the compiler's hidden optimisation greatly contributed to software pipelining being

forgotten as a technique, at least on the instruction level. Another reason is the low popularity of

Assembly language, so hardly any engineer is required to optimise the instructions manually.

With the modern level of processors, the software pipelining technique is not limited to the

RISC architecture only. Similarly, an approach could be utilised on the thread level, opening it to

another optimisation level utilising multi-core architectures, including the highly promising GPU.

Its level of parallelisation could benefit from the software pipelining optimisation on the level of

threads.

2.2. Decoupled Software Pipelining

Software pipelining increases the productivity of repetitive algorithms on the hardware level

for a single core. However, the utilisation of a higher level of parallelisation became mandatory for

practical algorithms. Considering this, software pipelining was adopted to the multi-threaded

environment as a new approach, called Decoupled Software Pipelining (DSWP). DSWP allows

dividing complex computational operations inside the loop to be executed on separate threads [7].

 The general idea of the DSWP technique could be expressed as follows: it partitions the loop

body into several parts called stages. A thread executes a single pipeline stage and communicates to

neighbouring stages via a queue buffer (QB). Every stage receives dependent data from the

previous stage and then sends dependent data to the following stage. The absence of dependence

cycles is the main requirement for this kind of pipeline. Buffering stage communication in a queue

ensures the pipeline stages are decoupled and insulated from stalls in other stages.

This technique implements the DOPIPE approach of parallelisation. It contrasts with the other

tactics: DOALL and DOACROSS. The former is used in the conditions of a loop having steps fully

independent from each other’s result, which maximises performance, utilising all the available

threads it requires. However, iteration dependencies are typical for the vast amount of application

code. And even the code transformations cannot guarantee DOALL applicability [8]. The

DOACROSS is applied to the loops with partial dependency. Despite having inter-step

dependencies to some extent, it produces partially parallelised execution, resulting in performance

gains. Opposing these approaches, DOPIPE is used for the entirely dependent loops. The

dependency of actions inside the iteration makes another use case for the DOPIPE approach.

Figure 3 shows an example of code written in the C language, which handles inter-iteration

dependencies with pipelining. The context of the function call, including the main function, is

omitted. Firstly, the code checks the input values and then proceeds with the loop. The body of the

loop consists of several function calls that depend on the result of one another, consequently in the

given order: ”input → a → b → c → output”.

Method for Software Pipelining on Graphical Processing Units 31

void calculate(const int* input, size_t size, int*

output)

{

 if (input == NULL || output == NULL || sise == 0)

 return;

 for (size_t i = 0; i < size; i++) {

 int currentElement = input[i];

 int resultA = a(currentElement);

 int resultB = b(resultA);

 int resultC = c(resultB);

 output[i] = resultC;

}

}

Fig. 3: Code for DSWP

Code dependencies for DSWP are commonly visually presented via a Program Dependence

Graph. It is a directed graph containing two types of dependencies, which are data and control,

illustrated by the edges. The nodes represent operations, including calculations, variable

assignments, function calls, conditional operations, and loop continuation operations. Firstly, DSWP

groups instructions that have a significant inter-dependence into Strongly Connected Components

(SCCs), typically illustrated by a Directed Acyclic Graph of SCCs (DAGSCC). The most crucial

limitation of the efficiency of the pipeline is the slowest stage, which stalls the whole execution.

Thus, the second (dynamic) grouping phase is performed, forming clusters of nodes of the

DAGSCC, where another one-to-one relation is created between a cluster and a thread.

DSWP performs load-balancing during clustering, so none of the threads overflows with

work. Meanwhile, the cycle inspections should be run on the new graph so that no cluster cycles

persist, preventing correctness and performance issues [8]. Another way to visually present DSWP

is a table. Table 2 contains pipeline iteration details for the code in Figure 3. Its columns represent

operations executed on its stage on a separate thread. Rows represent iterations, theoretically having

equal execution time, in which every operation gets completed for the given input element. The row

means a pipeline step whose direct dependency on the loop iteration is not required. Every cell

contains the input element handled in the corresponding operation at the given iteration time; cells

representing the same element have the same colouring.

Table 2: DSWP iterations

 Load Function A Function B Function C Store

Iteration 0 input[0]

Iteration 1 input[1] input[0]

Iteration 2 input[2] input[1] input[0]

Iteration 3 input[3] input[2] input[1] input[0]

Iteration 4 input[4] input[3] input[2] input[1] input[0]

Iteration 5 input[5] input[4] input[3] input[2] input[1]

Iteration 6 input[5] input[4] input[3] input[2]

Iteration 7 input[5] input[4] input[3]

Iteration 8 input[5] input[4]

Iteration 9 input[5]

The DOPIPE approach shows in this example, that every DSWP stage (thread) is specialised

in its instruction, allowing optimisation for the corresponding task, including further parallelisation

for complex tasks. Another advantage of pipelining is the static number of threads independent from

the input data size, as the number of threads is defined by the operation amount, which is static for

32 Information, Computing and Intelligent Systems № 6, 2025

the SIMD approach. In the given example, DSWP would handle any array with only five threads,

whereas DOALL would require six threads to be optimal.

However, the problem of the DSWP is a potential imbalance of the stage execution time, as

operations are different; as a result, the right load-balancing technique becomes significant for the

overall performance. Regarding communication instructions, DSWP requires more instructions than

DOACROSS [9]. In contrast, DSWP keeps all the threads active, unlike waiting states often

encountered in DOACROSS implementations.

In conclusion, DSWP is an effective method of parallelisation, being a performance-efficient

implementation of DOPIPE, which is advantageous to both DOALL and DOACROSS in terms of

flexibility and keeping threads active if properly implemented. DSWP is an elegant adaptation of

software pipelining to the processing units with several threads. With the increase in GPU

performance and usage, DSWP could be used to utilise the resources.

2.3. Software Pipelining in GPU

GPU is currently widely used in different fields of science and engineering. Artificial

intelligence and machine learning are among the most popular use cases. Modern GPUs with

appropriate algorithms could handle various tasks, including scheduling issues [10] and showing

high rates of operations per second [11]. Provided that GPU optimisation is crucial, this comes to

the question of multi-threading algorithm optimisation because it relies on multi-core at its base,

with modern GPUs having thousands of cores able to run thousands of threads in parallel.

GPU is divided into units called streaming multiprocessors in Nvidia terminology. Streaming

multiprocessor essentially has a RISC-like architecture. It has a small set of instructions executed in

one clock cycle in pipelined mode. The hundreds of registers provide effective local variable

storing. Moreover, support for automatic array indexing and loop execution is also present.

Regarding computational units, streaming multiprocessors comprise GPU cores grouped into warps,

further grouped into thread blocks. Warps perform parallelising with a Single Instruction Multiple

Data (SIMD) principle, where every thread performs the same operation on different data chunks.

However, warps can perform different operations under the same streaming multiprocessor [12].

Streaming Multiprocessors comprise not only computational units but also memory of

different levels. Fast-access memory is extensively used for pipelining, starting with the global

memory allocated for the whole GPU and continuing with Streaming Multiprocessor registers. The

shared memory exists for the less significant operations within a thread block, which is slower than

the registers but still faster than global memory. Local memory is a thread-specific subdivision of

global memory [13]. Delays in memory access in case of insufficient usage could limit the

computational possibilities of the GPU. The frequent context switching between threads is

supported by hardware register bank switching.

This level of parallelisation provides possibilities for both instruction-level pipelining and

thread-level pipelining. GPU frameworks exist to access these resources, namely CUDA and

OpenML conveniently. They opened the possibility for GPU to be effective [14] despite not

providing all the solutions required [15], including instruction-level pipelining possibility, as the

infrastructure provided by the manufacturers limit low-level parallelisation controls.

2.4. Pipelining Approaches

Despite the high effectiveness of adapting CPU-oriented software pipelining approaches to the

GPU, many techniques have been developed for optimising pipelining on the GPU. Examining the

VersaPipe [16], the library written specifically for the GPU, combining high-level and low-level

control to reach up to 2.7x performance increase compared to the baseline. Another library is

GOPIPE [17], which is built on top of VersaPipe. It encompasses automatic granularity adjustment

for the given task, providing a 1.39x increase in performance over the previous solution.

Furthermore, there are several problems with the current GPU design that limit its potential,

comprising GPU hardware being agnostic to the thread block specialisation from the software

perspective, the transfers of memory between global memory and shared memory are coarse-

Method for Software Pipelining on Graphical Processing Units 33

grained and lack of fine-grained memory access limits pipelining possibilities, the requirement of

complex manual optimisation by the developer in CUDA, limiting warp specialisation usage. The

article [18] presented a WASP system containing architecture and compiler utilising warp

specialisation for the GPU. The compiler provides a 10% performance improvement, whereas its

usage with an augmented WASP GPU provides 47% better performance than the baseline on

average.

Nevertheless, the mentioned techniques are not based on software pipelining, which could

improve performance in operations running on the GPU. Unfortunately, the existing scientific base

lacks GPU-specific research, primarily focusing on general software pipelining adoption to

superscalar architectures [19, 20].

Despite that, there is research regarding implementing software pipelining on the discrete GPU

to optimise rasterization problem solving in [21]. However, it does not present task-independent

optimisation for the GPUs. This work still showcases an efficient software pipelining utilisation.

2.5. StreamIt: a Model for Streaming Programs

The stream-oriented programs consist of a theoretically endless stream of data handled the

same way for every chunk, fitting perfectly into the category where data parallelisation could be

used effectively for optimisation. As the GPU is set to handle data parallelism, stream-oriented

programs are one of the fields in which it can be used. An instrument was developed to effectively

use parallel resources for streaming programs: a model and a corresponding programming language

named StreamIt. Whereas exploiting it on the CPU with 16 cores gives up to 11.2 times faster than

single-core performance [22], the GPU’s potential takes another level.

StreamIt is a programming model where a user specifies data transformations with the help of

the filters concept. Filters can pop any number of elements from the input, process the value, and

then push it to the output. In some implementations, it could also have a peek operation that allows

looking at the input value without removing it, unlike pop, which removes the element from the

input. Such behaviour reminiscents the DSWP technique. The developer has several actions to take

to write a program using StreamIt. Firstly, he needs to define the rate of pushed and popped amount

of the elements. Secondly, choosing how to combine filters could be done in split-join, feedback

loop, or pipelining. Nesting these components is possible, but the input and output limits are one for

both [23]. Thirdly, the operations performed for every filter must be specified.

In general, StreamIt is intended only for the CPU systems. Adopting it to the GPU platform is

a task that needs to be performed. The work [24] investigates the possibility of using this language

to make GPU-oriented programs. Running StreamIt on the GPU required compiler manipulations,

making the output a CUDA code. This process was followed by problems with the correct

versioning and configuration so that each filter could get the necessary number of threads and

register to work.

This method was tested in the framework with tasks like discrete cosine transform, and

blocked matrix multiplication. The optimised software pipelining solution increased performance

from 1.87x up to 36.83x compared to the single-threaded CPU, depending on the benchmark setup.

This examples shows the perspectives of the software pipelining in GPU.

2.6. Modulo Scheduling technique

Software pipelining could effectively handle loops with small and large operation counts for

their bodies. However, time is spent in either saturation or decay states for the latter, and the

program execution becomes longer, limiting the method's effectiveness. A technique called modulo

scheduling is used to address the problem. It takes more control over the operation ordering and

optimises the pipelining schedule. Compared to plain software pipelining, modulo scheduling adds

the possibility to increase predicted optimisation, reducing the impact of the unexpected latencies

on the overall performance outcome [4].

One of the basic algorithmic components of modulo scheduling is loop unrolling. This

technique transforms an original loop into a loop with a complex body, decreasing the number of

34 Information, Computing and Intelligent Systems № 6, 2025

iterations by the given factor of N. This transformation is done by putting the N of original iterations

in a single iteration of the complex body, resulting in more operations that could be pipelined.

The step of modulо scheduling is crucial as it rearranges the cycles for the operation before

trying to organise them in a schedule. It builds a graph of data and logic dependencies of the loop.

Then, the graphs of the consequent iterations connected due to unrolling are linked in a bigger

graph divided into smaller M graphs. The M is for modulo in modulo scheduling. Therefore,

iterations get retimed to have at most M operations in each, optimising the algorithm’s execution for

the required number of software pipelining stages.

Despite the length of the loop after unrolling, modulo scheduling performs the next step,

which schedules operations inside the loop body. The essential parameter used in modulo

scheduling is the initiation interval, which defines the number of cycles between the iterations. The

lower bound of it is computed first and is called the Minimum Initiation Interval (MII). The lower

the initiation interval, the better parallelisation can be utilised. The initiation interval is highly

dependent on the critical path, which is the longest route in the graph that cannot be separated

without violating dependencies.

The name Flat Modulo Scheduling (FMS) is used for the algorithm that passes through the

loop only once. Nevertheless, as it is easy to implement, it leaves much potential for modulo

scheduling performance optimisation underutilised. The more advanced version with MII, which

has passed through the loop, is called Iterative modulo scheduling and provides more adjustments

after the first partial schedule is defined.

Several more complex implementations of modulo scheduling include backtracking,

increasing the initiation interval, slack modulo scheduling, and integrated register-sensitive iterative

software pipelining improve an average ratio of initiation interval to MII [25].

The Hierarchical Modulo Scheduling (HMS) solves the significant problem of the number of

operations to schedule, being better at extracting the potential of the multiple cores of the GPU. As

every primitive operation of computation, branching, or assignment gets scheduled, the number of

operations to process for the modulo scheduling becomes significant and requires grouping. It is

performed by transforming the original graph into DAGSCC and scheduling the newly formed

groups rather than individual operations. This technique is often used in DSWP. Nevertheless, the

most performance-effective approach of IMS and HMS is still debatable [26].

2.7 CPU and GPU combination

The software pipelining in the systems of the homogeneous processing units (PUs) is

considered above. However, modern systems have CPU and GPU on the same chip, sharing a

memory pool and cache. Examples of such a system are AMD Ryzen 5 3400G, NVIDIA Tegra X1,

and many others. Therefore, investigation of combined GPU-CPU systems is essential to estimate

the software pipelining potential, especially on less powerful devices where optimisation is crucial.

This type of architecture has separate first-level caches for each PU, and the level two or three

cache is shared via the unified memory architecture. Thus, exchanging data between CPU and GPU

could be done similarly to simply exchanging memory between different threads inside the single

PU [27].

There are three main optimisation possibilities with promising prospects for the CPU-GPU

heterogeneous systems. Firstly, fine-grained communication and DSWP approach can decrease the

temporal distance between the consumer and the producer. Second, the amount of memory access

contention can be limited through effective access modulation, optimising cache usage. Third, the

number of underused PU cores that require data-independence detection and task delegation to the

idle threads should be decreased.

The investigation of such possibilities [28] has shown a significant performance increase for

some common algorithms. The combined systems have possibilities to increase performance: using

the shared memory and DSWP approach has a 2.1x increase compared to the baseline, further

parallelisation of the CPU and GPU computing gives 3.1x speedup, and utilising cache increases the

number to the 4.4x level [29].

Method for Software Pipelining on Graphical Processing Units 35

Software pipelining has proven to be a potent technique for instruction-level pipelining, later

being reintroduced for the multi-core architecture in the decoupled form. However impactful

software pipelining was for other architectures, it lacked productive implementations for the GPU.

The efforts to use it for rasterization gave a plausible result, but it has not received enough attention

and development. Another promising research field is applying software pipelining to the integrated

CPU-GPU circuits, shared memory eliminates most delays, allowing faster task communication and

the possibility of computation offloading on the stale CPU cores. Such systems have not

significantly increased performance, limited by cache insufficiency. So, the additional investigations

at the field of software pipelining concerning GPU.

3. The aim and objectives of the study

The object of the study is the software pipelining technique applied to the GPU.

The purpose of this study is to review the software pipelining approach, its advantages and

disadvantages, the techniques that could be used in it, including both instruction-level and

decoupled versions, and to find out the effectiveness of this approach for the GPU. To achieve this

aim, the following tasks are set:

— Reviewing the software pipelining technique principles and measurements.

— Estimating the existing software pipelining optimisation technique’s efficiency.

— Setting up the theoretical background for applying the C-slowing technique to increase

software pipelining performance.

4. The study materials and methods of investigation
The object of the study is parallel computational processes in the parallel programmable

computers. These computers can have superscalar, SIMD or MIMD architectures.

The problem is that the modern GPU usually could not be programmed in assembly language

by the user due to the policy of the GPU manufacturers. However, such programming is needed for

the highest loading of processing units of this GPU.

The hypothesis is that using new approach to the GPU programming based on the software

pipelining using the transformations of Synchronous DataFlow (SDF) can provide more effective

programs for GPU designed by the usual programmer in the high level language.

5. Results of C-slow retiming investigation

The overviewed software pipelining implementations and techniques, including modulo

scheduling, prioritising initiation, and interval minimisation, are considered a primary optimisation

approach. However, a lower initiation interval leads to higher register pressure, thus limiting the

performance of the pipeline. Moreover, the dense data dependencies between algorithm iterations

limit the software pipelining effectiveness. Integrating the C-slowing approach into software

pipelining is proposed to overcome this adversity. Analysing this technique via the synchronous

dataflow model is shown below.

SDF is the graph model for dataflow algorithm representation. SDF is a graph whose nodes

represent the operators and edges represent the dataflows. The edge can have either zero delay or a

delay, like the FIFO buffer. These algorithms are distinguished because they perform cyclic

calculations when the number of processed data in each iteration is stable [30]. Note that SDF or its

modifications can represent most of the algorithms implemented in the GPU.

The algorithm represented by the folded SDF performs the same calculations as the original

SDF but with a reduced number of nodes [31]. A specific situation of SDF folding occurs when C

equal SDFs are combined in a single folded SDF. This method is called C-slow retiming or C-

slowing. This method is widely used in hardware design [32]. However, SDF is a multipurpose

model. Therefore, C-slowing can be effectively implemented in GPU programming.

Consider the following loop nest, which is programmed for a single GPU processing unit

(PU), as in Figure 4.

36 Information, Computing and Intelligent Systems № 6, 2025

 for (i = 0; i < N; i++;) {

 r1 = 0;

 for (j = 0; j < M; j++) {

 r1 = c*r1 + a[i,j];

 b[i,j] = r1;

 }

}

Fig. 4: Loop example

The program presented in Figure 4 performs a simple filtering algorithm. Here, N filters are

executed in parallel. SDF in Figure 5 represents this algorithm.

Fig. 5. SDF of the filtering algorithm

The directed edge of SDF represents a dataflow. The bar that loads the edge represents a delay

to a single algorithm period. This period in the example is equal to one iteration execution time. So,

it represents a register that stores the variable r1. The bold point and the point in a circle represent

the input and output nodes. The data ai,j and bi,j are inputted and outputted through this SDF, respec-

tively. The nodes marked by plus and asterisk mean the addition and multiplication operators,

respectively. Such a node outputs its result immediately when the data are present at its inputs.

According to the SDF theory, the critical path of this model goes through the cycle containing

the operations nodes and delays [33]. This critical path causes delays in loading and storing the

variable si = c∙si + ai,j and delays in addition and multiplication. The iterative loop of the program

contains additional delays in loading and storing the data ai,j and bi,j However, the program

pipelining and the hardware pipelined memory access in the GPU partially hide the latent data

loading and storing delays.

Consider the algorithm loop period T and PU loading ratio Q estimation for this algorithm.

 T = max(dC, dM + nRW – 1 – dC), (1)

where dC is the instruction number in the loop core after compilation, i.e., the approximated number

of clock cycles, in which calculations and control load the PU, dM is the latent delay of the memory

access, nRW is the number of accesses to memory in a single iteration, α is the fraction of the number

dC, in which the program pipelining hides the latent delay dM. Note that the value dM is the sum of

only arithmetic and transfer operation delays because of the loop control, and the array addressing is

executed by specific address generators in the GPU. Then, the PU loading ratio is equal to

 Q = dC /T. (2)

In the example above, the variables are nRW = 2, dC = 5,   0.6. When data is in local

memory, the value is dM = 10 in the GPU PTX architecture. Therefore, dM > dC. As a result,

according to (1) and (2), the iteration period and the PU loading for this example are

T1 = dM + 1 – 0.6dC = 8; Q1 = dC / T1 = 0.625. (3)

C-slowing of the algorithm in Figure 5 consists of multiplying C times all delays in the SDF

edges. The modified algorithm executes C exemplars of the original algorithm in parallel but with a

Method for Software Pipelining on Graphical Processing Units 37

slowing in C times. This fact explains the origin of this method’s name. Consider the C-slowing

when C = 2. Then the resulting SDF is shown in Figure 6.

Fig. 6. SDF of the algorithm after C-slowing

Here, the data are loaded and stored sequentially by the couples: ai+1,j, ai,j and bi+1,j, bi,j in a

single iteration. The accumulated result is stored in register t1 and its previous value is rewritten in

register r2 for each iteration. The respective program sketch is as in Figure 7.

 for (i = 0; i < N; i+=2) {

 r1 = 0;

 r2 = 0;

 for (j = 0; j < M; j++) {

 r1 = c*r2 + a[i,j]; r2 = r1;

 b[i,j] = r2;

 r1 = c*r2 + a[i+1,j]; r2 = r1;

 b[i+1,j]=r2;

 }

}

Fig. 7: C-slowed code

The coefficients are nRW = 4,   0.6 and dC = 12 in Figure 7. As a result of C-slowing,

according to (1) and (2), the iteration period and the PU loading for this example are T2 = 12 and

Q2 = 1. So, the PU loading is increased to its maximum value, and the throughput is increased in

T1C/ T2 = 1.33 times.

6. Discussion of result

Parallel computations have garnered significant attention, provoking the development of

newer and more powerful GPUs and extending their role outside the graphics field. In order to use

GPU resources optimally, practical algorithms need to be discovered and analysed. The software

pipelining approach has been investigated to analyse the possibilities for improving GPU

throughput.

Figure 6 and Figure 7 demonstrate that the C-slowing method is rather effective one, at least,

in this example. The calculated improvements are explained below. The memory access time dM in

the GPU is longer than the register access. The example considers that PUs belong to a single warp

of GPU, and PUs do not access the common memory cells. Otherwise, the factor dM increases to

tens and hundreds, decreasing the value Q1 dramatically. Therefore, the program has a short loop

core and is inefficient. Moreover, C-slowing increases this core, at least in C times, supporting the

computing of groups of C data. This aspect makes the proposed method similar to the modulo-

scheduling method described above. However, C-slowing seems to be a more formal method based

on the theory of SDF algorithms. However, these aspects need deeper investigation.

38 Information, Computing and Intelligent Systems № 6, 2025

7. Conclusion

Reviewing the software pipelining technique principles and measurements shows that the

software pipelining on the GPU lacks scientific attention. Further investigations and adjustments are

required to determine its capabilities. Future hardware improvements may also provide the

necessary changes for the approach to overcome its limitations and show significant performance

increases on the GPU.

When estimating the existing software pipelining optimisation technique’s efficiency it was

instantiated that the C-slowing technique is rather effective to optimise software pipelining. The

algorithm's theoretical evaluation has shown a significant performance improvement prospect.

However, further practical measurements are required.

The initial theoretical background for applying the C-slowing technique shows the increase of

software pipelining performance. However, the additional investigations at this field are needed. For

this purpose, the design of the framework for the GPU software pipelining for the artificial

intelligence program improvement is planned.

8. Funding

This research was supported in part by the National Research Foundation of Ukraine (NRFU),

grant 2025.203/0100.

References

[1] G. Huang et al. “ALCOP: Automatic Load-Compute Pipelining in Deep Learning Compiler for

AI-GPUs”. In: Proceedings of Machine Learning and Systems. Ed. by D. Song, M. Carbin, and

T. Chen. Vol. 5. Curan, 2023, pp. 680–694. https://doi.org/10.48550/arXiv.2210.16691.

[2] P. Sakdhnagool, A. Sabne, and R. Eigenmann, “RegDem: Increasing GPU performance via

shared memory register spilling,” arXiv preprint arXiv:1907.02894, 2019,

https://doi.org/10.48550/arXiv.1907.02894.

[3] S. Darabi et al. “Morpheus: Extending the last-level cache capacity in GPU systems using idle

GPU core resources”. In: 2022 55th IEEE/ACM International Symposium on Microarchitecture

(MICRO). IEEE. 2022, pp. 228–244, URL: https://doi.org/10.1109/MICRO56248.2022.00029.

[4] V. H. Allan, R. B. Jones, R. M. Lee, S. I. Allan. “Software pipelining.” ACM Computing

Surveys (CSUR), Vol. 27, No. 3, pp. 367 – 432. https://doi.org/10.1145/212094.212131.

[5] P. Faraboschi, J. Fisher, C. Young. “Instruction scheduling for instruction-level parallel

processors”. In: Proceedings of the IEEE, V. 89 (Dec. 2001), pp. 1638–1659.

https://doi.org/10.1109/5.964443.

[6] K. Ebciŏglu. “A compilation technique for software pipelining of loops with conditional jumps”.

In: Proceedings of the 20th annual workshop on Microprogramming. 1987, pp. 69–79.

https://doi.org/10.1145/255305.255317.

[7] Y. Zhang et al. “Clustered Decoupled Software Pipelining on Commodity CMP”. In:

Department of Information Science, Graduate School of Engineering, Utsunomiya University,

Japan (2008). https://doi.org/10.1109/ICPADS.2008.113.

[8] E. Raman et al. “Parallel-stage decoupled software pipelining”. In: Proceedings of the 6th

Annual IEEE/ACM International Symposium on Code Generation and Optimization. CGO ’08.

Boston, MA, USA: Association for Computing Machinery, 2008, pp. 114–123.

https://doi.org/10.1145/1356058.1356074.

[9] D. C. S. Lucas, G. Araujo. “The Batched DOACROSS loop parallelization algorithm”. In: 2015

International Conference on High Performance Computing & Simulation (HPCS). 2015,

pp. 476–483. https://doi.org/10.1109/HPCS.2015.47.

[10] A. Zou et al. “RTGPU: Real-Time GPU Scheduling of Hard Deadline Parallel Tasks With Fine-

Grain Utilization”. In: IEEE Transactions on Parallel and Distributed Systems V.34. No5 (2023),

pp. 1450–1465. https://doi.org/10.1109/TPDS.2023.3235439.

[11] Y. E. Wang, G-Y. Wei, D. Brooks. “Benchmarking TPU, GPU, and CPU Platforms for Deep

Learning”. 2019. arXiv: 1907.10701 [cs.LG]. https://doi.org/10.48550/arXiv.1907.10701.

Method for Software Pipelining on Graphical Processing Units 39

[12] Z. Jia et al. “Dissecting the NVIDIA Volta GPU Architecture via Microbenchmarking”. 2018.

arXiv: 1804.06826[cs.DC]. https://doi.org/10.48550/arXiv.1804.06826.

[13] C. M. Wittenbrink, E. Kilgariff, A. Prabhu. “Fermi GF100 GPU architecture”. In: IEEE Micro

31.2 (2011), pp. 50–59. https://doi.org/10.1109/MM.2011.24.

[14] J. Ghorpade. “GPGPU Processing in CUDA Architecture”. In: Advanced Computing: An

International Journal 3.1 (Jan. 2012), pp. 105–120. https://doi.org/10.5121/acij.2012.3109.

[15] L. Hu, X. Che, S-Q. Zheng. “A Closer Look at GPGPU”. In: ACM Comput. Surv. Vol. 48. No.

4 (Mar. 2016). https://doi.org/10.1145/2873053.

[16] Z. Zheng et al. “VersaPipe: A Versatile Programming Framework for Pipelined Computing on

GPU”. In: 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO). 2017, pp. 587–599. https://doi.org/10.1145/3123939.3123978.

[17] C. Oh et al. “GOPipe: A Granularity-Oblivious Programming Framework for Pipelined Stencil

Executions on GPU”. In: Proceedings of the ACM International Conference on Parallel

Architectures and Compilation Techniques. Association for Computing Machinery,

2020.https://doi.org/10.1145/3410463.3414656.

[18] N. C. Crago et al. “WASP: Exploiting GPU Pipeline Parallelism with Hardware-Accelerated

Automatic Warp Specialization”. In: 2024 IEEE International Symposium on High-Performance

Computer Architecture (HPCA). 2024, pp. 1–16.

https://doi.org/10.1109/HPCA57654.2024.00086.

[19] S. Raskar et al. “Implementation of Dataflow Software Pipelining for Codelet Model”. In:

Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering.

ICPE ’23. Coimbra, Portugal: Association for Computing Machinery, 2023, pp. 161–172.

https://doi.org/10.1145/3578244.3583734.

[20] H. Wei et al. “Minimizing communication in rate-optimal software pipelining for stream

programs”. In: Proceedings of the 8th Annual IEEE/ACM International Symposium on Code

Generation and Optimization. CGO ’10. Toronto, Ontario, Canada: Association for Computing

Machinery, 2010, pp. 210–217. https://doi.org/10.1145/1772954.1772984.

[21] S. Laine, T. Karras. “High-performance software rasterization on GPUs”. In: Proceedings of

the ACM SIGGRAPH Symposium on High Performance Graphics. HPG ’11. Vancouver, British

Columbia, Canada: Association for Computing Machinery, 2011, pp. 79–88.

https://doi.org/10.1145/2018323.2018337.

[22] M. Gordon, W. Thies, S. Amarasinghe. “Exploiting Coarse-Grained Task, Data, and Pipeline

Parallelism in Stream Programs”. In: ASPLOS XII: Proceedings of the 12th international

conference on Architectural support for programming languages and operating systems. Oct.

2006, pp. 151–162. https://doi.org/10.1145/1168857.1168877 .

[23] R. G. Singh, C. Scholliers. “Gaiwan: A size-polymorphic typesystem for GPU programs”. In:

Science of Computer Programming Vol. 230 (2023), p. 102989.

https://doi.org/10.1016/j.scico.2023.102989.

[24] A. Udupa, R. Govindarajan, M. J. Thazhuthaveetil. “Software Pipelined Execution of Stream

Programs on GPUs”. In: 2009 International Symposium on Code Generation and Optimization.

2009, pp. 200–209. https://doi.org/10.1109/CGO.2009.20.

[25] J. M. Codina, J. Llosa, A. Gonz´alez. “A comparative study of modulo scheduling techniques”.

In: ICS ’02. New York, USA: Association for Computing Machinery, 2002, pp. 97–106.

https://doi.org/10.1145/514191.514208.

[26] P. Pfahler, G. Piepenbrock. “A comparison of modulo scheduling techniques for software

pipelining”. In: Compiler Construction. Ed. by Tibor Gyim´othy. Berlin, Heidelberg: Springer,

1996, pp. 18–32. https://doi.org/10.1007/3-540-61053-7_50.

[27] A. Marongiu, V. Nelis, P. Yomsi. “Manycore Platforms”. In: High Performance Embedded

Computing. 2022, pp. 15–32. https://doi.org/10.1201/9781003338413-2.

[28] J. Hestness, S. W. Keckler, D. A. Wood. “GPU Computing Pipeline Inefficiencies and

Optimization Opportunities in Heterogeneous CPU-GPU Processors”. In: 2015 IEEE

40 Information, Computing and Intelligent Systems № 6, 2025

International Symposium on Workload Characterization. 2015, pp. 87–97.

https://doi.org/10.1109/IISWC.2015.15.

[29] D. Gerzhoy, D. Yeung. “Pipelined CPU-GPU Scheduling to Reduce Main Memory Accesses”.

In: Proceedings of the International Symposium on Memory Systems. MEMSYS ’21. Washington

DC, USA: Association for Computing Machinery, 2023.

https://doi.org/10.1145/3488423.3519319.

[30] E. A. Lee and D. G. Messerschmitt. “Static Scheduling of Synchronous Data Flow Programs

for Digital Signal Processing”. In: IEEE Transactions on Computers. Vol. C-36. No.1 (Jan.

1987), pp. 24–35. https://doi.org/10.1109/TC.1987.5009446.

[31] K. K. Parhi, C. Y. Wang, and A. P. Brown. “Synthesis of control circuits in folded pipelined

DSP architectures”. In: IEEE Journal of Solid-State Circuits. Vol. 27. No. 1, Jan. 1992,

pp. 29–43. https://doi.org/10.1109/4.109555.

[32] A. Sharma, C. Ebeling, and S. Hauck. “PipeRoute: a pipelining-aware router for reconfigurable

architectures”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems. Vol. 25. No. 3, Mar. 2006, pp. 518–532. https://doi.org/10.1109/TCAD.2005.853691.

[33] K. K. Parhi. “Algorithm transformation techniques for concurrent processors”. In: Proceedings

of the IEEE. Vol. 77. No. 12, Dec. 1989, pp. 1879–1895. https://doi.org/10.1109/5.48830.

Method for Software Pipelining on Graphical Processing Units 41

УДК 004.8 : 004.94

МЕТОД ПРОГРАМНОЇ КОНВЕЙЄРИЗАЦІЇ ДЛЯ ГРАФІЧНИХ

СПІВПРОЦЕСОРІВ

Артемій Вінокуров
Національний технічний університет України

«Київський політехнічний інститут імені Ігоря Сікорського», Київ, Україна

https://orcid.org/0009-0006-7861-5138

Анатолій Сергієнко
Національний технічний університет України

«Київський політехнічний інститут імені Ігоря Сікорського», Київ, Україна

https://orcid.org/0000-0001-5965-1789

Графічні співпроцесори (GPU) відіграють значну роль у високопродуктивних

обчисленнях, включаючи штучний інтелект. Однак апаратне забезпечення GPU часто

недовантажене. Це змушує збільшувати обсяг апаратного забезпечення GPU для підтримки

високої пропускної здатності для виконання завдань. І тому низьке завантаження ресурсів

GPU залишається актуальною проблемою, яка вимагає вирішення. Важливо шукати методи,

що підвищують завантаження GPU.

Об'єктом дослідження є обчислювальні процеси в сучасних процесорах, особливо в

GPU. Метою цього дослідження є огляд підходів удосконалення програмного забезпечення за

допомогою програмної конвеєризації, включаючи як версії конвеєризації на рівні команд, так

і на рівні програмних потоків, а також оцінка ефективності цього підходу для GPU.

Було розглянуто архітектурні вимоги до застосування конвеєрної обробки програмного

забезпечення, розглянуто оригінальне формулювання та історичний розвиток підходу, було

досліджено різні рівні паралелізму для реалізації конвеєрної організації програмного

забезпечення. Нарешті, було запропоновано метод ресинхронізації з уповільненням як метод

оптимізації для подолання недоліків недостатнього використання обчислювальних ресурсів.

Виявлено достатню кількість досліджень, присвячених конвеєрному виконанню

програмного забезпечення для реалізацій на GPU. Хоча існуючі роботи розглядають

можливості цього методу, вони часто ігноруються на відміну від простіших методів

багатопотокової обробки. Однак, в роботах визначили вирішальним обмежувальним

фактором обчислювальних ресурсів як обмеження, спричинене перевантаженням пам'яті,

зокрема регістрами конвеєрної обробки. Для вирішення цієї проблеми було запропоновано та

теоретично оцінено підхід ресинхронізації з уповільненням. Він продемонстрував можливе

збільшення завантаження GPU більш ніж на 30% для аналізованого алгоритму, що доводить

його перспективи застосування.

На завершення, підхід до конвеєрної обробки програмного забезпечення демонструє

непоганий потенціал для оптимізації алгоритмів для GPU, що потребує подальшого

дослідження. Ресинхронізація з уповільненням може бути використана для вирішення

проблеми прискорення обчислень на GPU.

Ключові слова: програмна конвеєризація, графічний співпроцесор, ресинхронізація, граф

синхронних потоків даних.

