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Uncrewed aerial vehicle (UAV) swarms provide superior scalability, reliability, and efficiency 

compared to individual UAVs, enabling transformative applications in search and rescue, precision 

agriculture, environmental monitoring, and urban surveillance. However, their dependence on Global 

Navigation Satellite Systems (GNSS) and wireless communication introduces vulnerabilities like signal 

loss, jamming, and scalability constraints, particularly in GNSS-denied environments. This study 

advances swarm robotics by developing a novel neighbor selection method for occlusion-resilient, 

vision-based coordination of UAV swarms in three-dimensional (3D) environments, addressing the 

problem of visual occlusions that disrupt decentralized flocking. Unlike prior research focusing on 

planar settings or communication-dependent systems, we model swarm coordination as an artificial 

potential field problem. Additionally, we evaluate performance through metrics like minimum nearest 

neighbor distance (collision avoidance), alignment (velocity synchronization), and union (cohesion). 

Using simulations in point mass and realistic quadcopter dynamics (Gazebo with PX4) environments, 

we assess swarm behavior across dense, default, and sparse configurations. Our findings reveal that 

occlusions degrade alignment (below 0.9) and distances (below 0.5 m) in dense swarms exceeding 70 

agents, increasing collision risks. Our novel method, incorporating metric, topographic, and Delaunay 

strategies, mitigates these effects. Topographic selection achieves high alignment (above 0.9) in small 

swarms (up to 50 agents), while Delaunay ensures perfect cohesion (union = 1) and robust alignment 

across all swarm sizes. Validation in simulations confirms these results. Furthermore, our method 

enables communication-free coordination that matches or surpasses communication-enabled 

performance, with topographic selection outperforming (alignment above 0.9 vs. 0.85) in small swarms 

and Delaunay excelling in larger ones. This result eliminates the need for inter-agent communication, 

enhancing resilience and bandwidth efficiency. These findings establish a scalable, infrastructure-

independent framework for UAV swarms, with practical value for autonomous operations in complex, 

occlusion-prone environments. 

Keywords: UAV swarm, vision-based localization, formation control, decentralized coordination, 

artificial potential field. 

 

1. Introduction 

Swarm robotics, a dynamic field within autonomous systems, focuses on coordinating multiple robots 

to achieve collective goals, drawing inspiration from natural systems like bird flocks and fish schools. 

Uncrewed aerial vehicles (UAVs) have evolved significantly since their conceptual origins in the 

early 20th century. Initial developments focused on military applications, such as reconnaissance and 
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target practice, with mass production emerging mid-century. Advancements in electronics enabled 

the integration of compact, lightweight components, facilitating sophisticated sensors and 

communication systems for long-distance remote control and real-time data transmission. The advent 

of powerful computing units marked a crucial change, allowing UAVs to follow preprogrammed paths 

autonomously. Breakthroughs in materials science introduced lightweight, durable composites, 

enhancing flight endurance and enabling diverse applications. Examples of these applications include 

agriculture, infrastructure inspection, environmental monitoring, disaster management, humanitarian 

aid, logistics, and entertainment, reflecting the growing relevance of aerial robotics in addressing 

modern problems. 

UAV swarms, defined as groups of UAVs operating cooperatively to achieve shared objectives, 

represent a significant leap beyond individual UAV capabilities. Swarms use collective behavior to 

enhance efficiency, offering advantages such as scalability, expanded area coverage, improved 

reliability, and the ability to execute complex tasks at reduced costs. In swarm robotics, this 

decentralized approach, where each UAV observes its local environment to perform localized tasks, 

contributes to global goals, making swarms ideal for dynamic, real-world applications requiring 

robust coordination. This distributed approach enables swarms to adapt dynamically to changing 

conditions, underscoring their potential in scenarios like disaster response and precision agriculture, 

where adaptability and scalability are important. 

The scientific problem addressed in this study lies in achieving robust coordination in UAV 

swarms using vision-based localization, particularly under visual occlusions in three-dimensional 

(3D) environments. The versatility of UAV swarms has driven their adoption across numerous 

domains. In agriculture, swarms provide high-resolution aerial imagery for crop monitoring and 

precision farming, optimizing resource use over vast areas. In construction and mining, they enable 

progress tracking and 3D mapping, improving planning and safety. Infrastructure inspection benefits 

from swarms’ ability to navigate and assess complex structures autonomously. For healthcare and 

humanitarian aid, swarms deliver medical supplies and support emergency responses in remote or 

disaster-affected regions. Public safety and security operations utilize swarms for search and rescue 

missions and enhanced surveillance in challenging terrains. In logistics, swarms facilitate last-mile 

delivery solutions, particularly in regions with limited infrastructure. Telecommunications use 

swarms as aerial networks for temporary coverage, while disaster mitigation employs them for 

environmental monitoring and hazard detection, highlighting the topic’s relevance to modern societal 

needs [1, 2]. 

Despite these advancements, decentralized UAV swarms face significant problems in 

navigation and coordination, particularly in achieving occlusion-resilient vision-based localization. 

Most current implementations rely heavily on the Global Navigation Satellite System (GNSS), such 

as the Global Positioning System (GPS), for localization and navigation. These systems are 

susceptible to positional inaccuracies, signal jamming, and spoofing, which can disrupt swarm 

operations. Additionally, wireless inter-agent or base station communication introduces scalability 

constraints and vulnerabilities, limiting swarms’ effectiveness in GNSS-denied environments like 

indoor spaces or cluttered urban settings. The problem of visual occlusions – where neighboring 

agents or environmental obstacles block line-of-sight – further complicates vision-based localization, 

as it restricts the detection of nearby UAVs, important for maintaining cohesive swarm behavior. 

This study addresses the pressing need for occlusion-resilient, infrastructure-independent UAV 

swarm coordination, a topic of growing importance in swarm robotics due to increasing demands for 

autonomous systems in complex, dynamic environments. Vision-based localization, using onboard 

cameras and computer vision algorithms, enables UAVs to estimate neighbor positions and 

orientations without GNSS or extensive communication, offering a solution for decentralized 

flocking. However, occlusions in dense formations reduce the effectiveness of visual sensing, 

necessitating innovative methods like neighbor selection to ensure robust performance. The relevance 

of this scientific topic stems from its potential to enable scalable, autonomous swarm deployments. 

Such swarms could be utilized in various domains, ranging from disaster response to urban 

surveillance, where traditional navigation systems falter. In conclusion, studying occlusion-resilient 
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vision-based swarm coordination addresses modern problems in automation, resilience, and 

infrastructure independence across diverse fields. 

 

2. Literature review and problem statement 

UAV swarms have become a center of interest in robotics research due to their ability to perform 

complex tasks cooperatively, such as environmental monitoring, disaster response, and infrastructure 

inspection. Traditional swarm navigation relies heavily on the GNSS, such as GPS, to provide 

positional data for localization and coordination. However, GNSS signals are prone to inaccuracies, 

especially in dense formations where small positional errors can lead to misalignment or collisions. 

These signals are also susceptible to external disruptions, such as jamming or spoofing, which can 

compromise the entire swarm’s operation [3]. Furthermore, decentralized swarms depend on wireless 

communication for inter-agent coordination or base station interaction, introducing significant time 

lags. These lags stem from a combination of GNSS’s low update rates, control loop latency, and 

communication delays, which can destabilize swarm motion, causing oscillations and increasing the 

likelihood of collisions in dense configurations [3]. As the number of drones in a swarm increases, 

the volume of data transmitted for coordination grows quadratically, potentially oversaturating 

communication channels and leading to data loss or delays [4]. While advanced hardware, such as 

high-bandwidth transceivers or more precise GNSS receivers, can partially mitigate these issues, such 

solutions increase drone weight or cost, reducing flight duration and operational efficiency. 

To address these limitations, researchers have explored alternative sensory modalities for 

localization, with vision-based approaches emerging as a promising solution. Vision-based 

localization enables UAVs to estimate the position and orientation of neighboring agents using 

onboard cameras and computer vision algorithms, eliminating the need for external infrastructure like 

GNSS. This method supports fully decentralized coordination, allowing swarms to operate 

autonomously in GNSS-denied environments, such as indoor spaces, urban canyons, or cluttered 

outdoor settings. By relying on onboard sensing, vision-based systems reduce dependence on wireless 

communication, enhancing resilience against signal interference or loss [5]. Vision-based localization 

can leverage various spectral bands, including infrared (IR), ultraviolet (UV), and visible light. For 

example, researchers have developed systems using active IR-coded emitters mounted on drones to 

facilitate localization [5]. These emitters allow drones to identify neighbors through unique IR 

patterns, but their effectiveness is limited outdoors during daylight due to solar radiation interference 

across the IR spectrum. 

An alternative approach, the Ultraviolet-based Visual Localization System (UVDAR), utilizes 

the UV spectrum to enable communication-free swarm coordination without reliance on GNSS or 

radio communication [6, 7]. UVDAR’s use of the UV band, which is largely free from natural 

interference, makes it suitable for outdoor operations at any time of day, unlike IR-based methods. 

Experimental results have demonstrated UVDAR’s ability to maintain robust localization in various 

environments, supporting applications like search and rescue or agricultural monitoring [6]. However, 

UVDAR requires specialized hardware, including UV markers and sensors, which add weight to 

drones, reducing flight endurance and limiting scalability for large swarms. To overcome this, a fully 

vision-based system using omnidirectional cameras and convolutional neural networks (CNNs) has 

been proposed, eliminating the need for additional markers [8]. This system processes visual data to 

estimate neighbor positions, demonstrating resilience under diverse lighting conditions and complex 

backgrounds in outdoor experiments. Such advancements highlight the potential of vision-based 

localization for autonomous, infrastructure-independent swarm operations. 

Despite these advances, vision-based localization introduces the issue of visual occlusions, 

where other drones or environmental obstacles block the line of sight between agents. This problem 

is particularly pronounced in dense swarms, where frequent occlusions can disrupt localization 

accuracy and swarm cohesion. Researchers have addressed this by limiting the number of neighbors 

considered for coordination, using strategies like Voronoi diagrams to select neighbors based on 

spatial proximity [9]. These strategies improve performance under occlusions by reducing 

computational complexity and focusing on relevant agents. However, these studies were conducted 
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in planar (2D) environments, which do not fully represent the spatial (3D) dynamics of most real-

world UAV swarm applications, where movement occurs within height-constrained 3D spaces. The 

optimal number of neighbors for effective flocking has been investigated, with findings suggesting 

that 7–10 neighbors provide a balance between network complexity and convergence quality [10]. 

Topological neighbor selection, where each agent interacts with a fixed number of neighbors based 

on proximity, has been shown to outperform metric-based selection, which relies on a distance 

threshold, in achieving stable flocking [11]. These studies also indicate that both topological and 

metric interactions require a threshold (e.g., neighbor count or distance) to achieve an ordered state. 

However, they do not explore whether such strategies lead to swarm fragmentation, where subgroups 

of drones lose connectivity, reducing overall cohesion. 

The body of research on UAV swarm flocking has made significant progress in addressing 

localization and coordination issues, but several limitations persist, particularly for vision-based 

systems operating in spatial environments. Most prior studies, including those employing Voronoi 

diagrams or topological neighbor selection, focus on planar (2D) environments, which simplify the 

dynamics of swarm motion. As a result, they fail to capture the complexities of real-world 

deployments where drones navigate in three-dimensional spaces, often constrained by minimum and 

maximum altitudes [9–11]. This planar focus overlooks the impact of visual occlusions in dense 3D 

formations, where drones frequently obstruct each other’s line of sight, potentially degrading 

alignment, increasing collision risks, and disrupting cohesive motion. The lack of spatial analysis 

limits the applicability of these findings to practical scenarios, such as infrastructure inspection or 

disaster response, where 3D navigation is essential. 

Additionally, existing vision-based localization systems often rely on specialized hardware, 

such as IR-coded emitters or UV markers, which increase drone weight and reduce flight endurance, 

posing scalability constraints for large swarms [5–7]. While CNN-based systems eliminate the need 

for markers, their computational complexity can hinder real-time processing, especially for resource-

constrained drones in large-scale deployments [8]. These hardware and computational demands 

highlight the need for lightweight, efficient vision-based solutions that can operate without additional 

equipment or excessive processing power. 

Another underexplored area is the impact of neighbor selection strategies on swarm cohesion 

in 3D environments. Prior work suggests that limiting neighbors to 7–10 agents balance performance 

and complexity. However, these studies do not assess whether such strategies cause swarm 

fragmentation, where subgroups of drones become disconnected, undermining collective behavior 

[10, 11]. This is particularly relevant in dense swarms, where frequent occlusions may exacerbate 

fragmentation risks. Furthermore, the role of inter-agent communication in vision-based swarms 

remains insufficiently studied. While many systems assume some level of communication for 

coordination, eliminating this dependency could free bandwidth for other tasks, such as data 

transmission for environmental monitoring, enhancing overall swarm efficiency. 

Existing occlusion models, such as those using ray casting, are computationally intensive, 

making them impractical for large swarms simulations where real-time processing is essential [9]. A 

lightweight occlusion model tailored for 3D environments could enable more efficient simulations 

and facilitate real-world deployments. Moreover, prior studies often assume idealized conditions, 

such as uniform drone shapes or simplified dynamics, which may not reflect the complexities of real 

UAVs with varied geometries or realistic flight constraints. 

Despite advancements in swarm robotics, current research often overlooks the impact of visual 

occlusions on the performance of vision-based UAV swarms in 3D environments, particularly in 

terms of alignment, collision avoidance, and cohesion. A critical analysis reveals that 3D spatial 

settings, which are essential for real-world applications, introduce unique problems due to occlusions 

that disrupt vision-based localization. Consequently, the effectiveness of different neighbor selection 

strategies (metric, topological, and Delaunay) in mitigating these occlusions remains unexplored, as 

does the potential for achieving communication-free performance comparable to that of 

communication-enabled swarms. The unresolved problem is the lack of methods to ensure occlusion-

resilient, decentralized coordination in 3D UAV swarms, limiting their scalability and reliability in 



104 Information, Computing and Intelligent Systems № 6, 2025 

complex environments. This gap justifies the purpose of the study to investigate vision-based 

neighbor selection strategies that enhance swarm performance in 3D settings without relying on inter-

agent communication, addressing needs for autonomous, infrastructure-independent operations. 

 

3. The aim and objectives of the study 

This study aims to develop a method for occlusion-resilient, vision-based coordination of UAV 

swarms in 3D environments, addressing the unresolved problem of visual occlusions that disrupt 

decentralized flocking in GNSS-denied settings. Current swarm systems often rely on GNSS and 

wireless communication, which are vulnerable to signal loss, jamming, spoofing, and scalability 

constraints, particularly in complex environments such as indoor spaces or cluttered urban areas. 

These limitations hinder reliable, autonomous operation, especially in dense formations where visual 

occlusions from neighboring UAVs impair line-of-sight localization, reducing alignment and 

increasing collision risks. Our goal is to devise a neighbor selection method that ensures cohesive, 

collision-free swarm flocking without external dependencies, enhancing applicability to real-world 

scenarios. By tackling occlusions in 3D settings, this method aims to enable scalable, infrastructure-

independent UAV swarms, validated through experimental data and analytical conclusions. 

To achieve this aim, we define the following objectives: 

– evaluate performance improvements from using a neighbor selection method, including 

metric, topographic, and Delaunay strategies, and their effectiveness in mitigating visual occlusion 

problem in vision-based UAV swarms at different density levels (dense, default, sparse). 

– assess the performance of vision-based swarms using the optimal neighbor selection method 

against communication-enabled swarms in 3D environments, yielding analytical conclusions on 

whether communication-free coordination achieves comparable performance, enhancing scalability 

and resilience. 

These objectives address the problem by providing a practical method and empirical evidence 

to support decentralized, occlusion-resilient flocking, thereby directly contributing to advancements 

in swarm robotics. 

 

4. The study materials and methods of vision-based UAV swarm flocking and performance 

evaluation in 3D environment 

4.1. Preliminary notations 

We present a comprehensive review of a vision-based UAV swarm flocking method, along with 

an overview of performance metrics and simulation environments. These are used to simulate and 

evaluate vision-based UAV swarm flocking in a 3D environment, focusing on navigation toward a 

common goal while maintaining cohesive, collision-free motion. Our method encompasses 

preliminary notations to define agent relationships, a detailed flocking algorithm for coordinated 

motion, neighbor selection strategies to manage occlusions, and performance metrics to evaluate 

outcomes. Additionally, two simulation environments are described that were used in our experiments 

to strike a balance between computational efficiency and realism. 

To model the swarm and its dynamics, we represent the swarm as a set of N  homogeneous 

agents, each labeled by iA . The set excluding agent i  is denoted as  i iA A � , capturing all 

other agents in the swarm. Each agent’s state is defined by its position and velocity, expressed as 
3,i ip v  , where ip  represents the agent’s coordinates in 3D space, and iv  represents its velocity 

vector. The relative position of agent j  with respect to agent i  is calculated as: 

 ij j ir p p  . (1) 

This vector quantifies the spatial relationship between agents, essential for vision-based 

localization. The distance between agents i  and j  is computed using the Euclidean norm: 

 ij ijd r . (2) 
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This distance metric underpins neighbor selection and collision avoidance. We model the swarm 

as a directed graph, with vertices representing agents and edges indicating adjacency 

(denoted ~i j ). This graph is represented by an adjacency matrix ijA  of size N N , where entries 

are 1 if ~i j  and 0 otherwise, capturing the connectivity structure of the swarm. Agent speeds are 

calculated at each time step k , though we omit this notation in subsequent sections for simplicity. 

The set of neighbors for agent i  is denoted 
i iN A , representing agents within its perception range. 

These notations provide a mathematical foundation for modeling swarm interactions and evaluating 

performance in a 3D environment. 

 

4.2. Flocking algorithm 

We design a robust flocking algorithm to enable UAV swarms to navigate toward a specified 

goal in a 3D environment while maintaining cohesive, collision-free motion. This algorithm should 

eliminate reliance on GNSS or inter-agent communication. This algorithm uses vision-based 

localization, using onboard cameras and computer vision to estimate neighbor positions and 

orientations, addressing the problems of visual occlusions in dense formations. By adapting 

Reynolds’ flocking rules – separation, alignment, and cohesion – within an artificial potential field 

(APF) framework, we ensure decentralized coordination suitable for scalable swarms. 

Our objective is to facilitate coordinated motion where each UAV maintains safe distances from 

neighbors, aligns its velocity with nearby agents, and moves collectively toward a common target 

without fragmenting into subgroups. To achieve this, we design a flocking algorithm using APF 

approach, incorporating Reynolds’ flocking rules of separation, alignment, and cohesion. The velocity 

command for agent i  is computed as the sum of social and migration components: 

 
soc mig

i i iv v v  , (3) 

where social velocity 
soc

iv governs interactions with neighboring agents, ensuring cohesion and 

collision avoidance. It combines attractive forces that draw agents together to maintain swarm unity 

with repulsive forces that prevent collisions by ensuring adequate separation. These forces are derived 

from the APF, where potential fields model the influence of nearby agents based on their relative 

positions, as defined by the notations in Section 4.1. The migration velocity 
mig

iv  drives the swarm 

toward the goal, ensuring purposeful collective motion. By summing these components, the algorithm 

enables each UAV to make decentralized decisions based on local visual observations, reducing 

dependency on external infrastructure and supporting operations in GNSS-denied environments like 

indoor spaces or cluttered urban areas. 

To ensure the velocity commands are executable in a physical environment, we normalize the 

resultant velocity to respect the drone’s maximum speed limit: 

  maxmin ,i
i i

i

v
v v v

v
 , (4) 

where maxv  represents the maximum allowable speed of the UAV, typically set to 1 m/s to reflect 

common quadcopter capabilities. The normalization process scales the velocity vector to maintain its 

direction while capping its magnitude at maxv , ensuring that commands are feasible for physical 

drones with finite acceleration and thrust. This step enhances the algorithm’s practicality, allowing 

seamless integration with real-world UAV control systems, such as those simulated in the Gazebo 

environment with PX4 integration (Section 4.5). 

Cohesion and collision avoidance within the swarm can be achieved with a combination of 

attractive and repulsive potential. The attractive potential drives cohesion, encouraging agents to 

converge toward the average position of their neighbors, thereby preserving swarm unity. Conversely, 

the repulsive potential ensures separation, generating forces that prevent collisions by pushing agents 
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away from nearby neighbors. The social velocity component integrates cohesion and separation 

forces and is expressed as: 

 
soc coh sep

2

1

i i

ij

i ij

j N j Ni ij

r
v k r k

N r 

   , (5) 

where cohk  is the cohesion gain regulating the attractive force, and sepk  is the separation gain 

controlling the repulsive force. We intentionally avoid scaling the separation speed component to 

maintain consistency across experiments, eliminating the need for fine-tuning gains for different 

swarm sizes or neighbor selection strategies (e.g., metric, topological, Delaunay). This approach 

enhances the algorithm’s robustness and simplifies its application across diverse scenarios, ensuring 

reliable performance in both simulation and potential real-world deployments. 

To enable goal-oriented navigation, we incorporate a migration velocity component that directs 

the swarm toward a specified target, ensuring purposeful collective motion. The migration velocity is 

defined as: 

 
mig

mig mig

mig
,i

r
v k

r
  (6) 

where 
migr  is the relative position vector from agent to the goal position, and migk  is the migration 

gain that regulates the strength of the goal-directed pull. This component ensures each UAV adjusts 

its trajectory to approach the target, aligning with the swarm’s global objective while maintaining 

local coordination through the social velocity. The migration gain is carefully tuned to balance goal-

directed movement with formation stability, preventing the swarm from dispersing or losing cohesion 

during navigation. 

 

4.3. Neighbor selection 

To manage visual occlusions and optimize computational efficiency, we implement neighbor 

selection strategies to limit the set of agents considered as neighbors, moving away from all-to-all 

connections. Prior research indicates that effective flocking does not require all agents to be 

neighbors, allowing us to reduce processing demands while maintaining performance [9–11]. We 

explore three strategies: metric, topological, and Delaunay triangulation-based, each designed to 

balance localization accuracy and swarm cohesion in the presence of occlusions. 

The metric neighbor selection strategy selects agents within a fixed distance threshold, 

representing the drone’s perception or communication range: 

  metric max

i i ijN j d r  A ∣ , (7) 

where 
maxr  defines the perception radius, ensuring only nearby agents are considered. This approach 

simplifies localization by focusing on spatially close neighbors, reducing the impact of distant 

occlusions. 

The topological neighbor selection strategy selects the n  nearest agents, regardless of distance, 

using: 

  topo arg min ,i ij iN n d j  A . (8) 

The arg minn operator identifies the n  closest neighbors, providing a computationally 

efficient method that maintains stable swarm performance when n  is appropriately chosen, as 

supported by prior studies [10, 11]. This strategy ensures consistent neighbor counts, mitigating 

occlusion effects in dense formations. 

Researchers proposed a neighbor selection strategy using Voronoi diagrams, designating agents 

as neighbors if their regions share a common boundary [9]. However, constructing 3D Voronoi 

diagrams in spatial environments demands substantial computational resources. In our experiments, 
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we observed that for small swarms  20n  , alignment sharply declines due to inadequate neighbor 

connections. Instead, we adopted Delaunay triangulation, computed efficiently as part of Voronoi 

diagram algorithms. This approach matches Voronoi performance for large swarms while 

significantly enhancing alignment in smaller swarms. 

The Delaunay triangulation-based strategy selects neighbors based on shared ridges in a 3D 

triangulation of agent positions: 

  del edge( , ) exists in ( )iN j i j P T P∣ , (9) 

where P  is the set of agent positions, and T  is the Delaunay triangulation. This method typically 

yields up to 12 neighbors in 3D space, offering a spatially balanced selection that enhances cohesion. 

The vision-based neighbor selection strategy identifies agents within a defined perception 

radius, akin to the metric selection approach, but excludes those partially obstructed by others. 

Detecting visual occlusions in 2D environments is straightforward, yet in 3D spaces, it presents a 

tough problem. Conventional methods like ray casting, common in computer graphics, demand 

extensive computational resources, potentially restricting swarm size in our simulations. To address 

this, we devised a streamlined, lightweight model for 3D visual occlusion, enabling experiments with 

larger swarms. 

We consider agent j  invisible to agent i  if agent k  occludes agent j , even partially, from 

agent i  ’s viewpoint. Each agent is modeled as a sphere with a fixed radius. By representing agents 

as spheres, we simplify the 3D problem into a 2D one by projecting the centers of three agents , ,i j k  

onto a plane containing these points. This projection transforms agent spheres into circles of equal 

radius on the plane, allowing us to assess occlusion. We determine if agent k  blocks agent j  from 

agent i ’s perspective by verifying if the sum of their angular half-sizes exceeds their angular 

separation, but only when agent k  is closer to i  then j . This evaluation, repeated for all trios of 

agents, is less resource-intensive than ray casting, facilitating rapid simulations for robust statistical 

analysis. The model is expressed as: 

   visual metric

i i ij ik ijk ik ijN j k N d d         ∣ , (10) 

where ij  and ik  denote the angular half-sizes of agents j  and k  from agent i ’s perspective, and 

ijk  represents their angular separation. This approach captures visual constraints, supporting large-

scale simulations with minimal computational overhead compared to ray casting. Collectively, these 

strategies enable us to evaluate how neighbor selection alleviates occlusion effects in vision-based 

swarms. 

 

4.4. Swarm performance metrics 

To evaluate the effectiveness of our flocking algorithm and neighbor selection strategies, we 

define three performance metrics: minimum nearest neighbor distance, alignment, and union. These 

metrics assess whether the swarm achieves collision-free, aligned, and cohesive navigation toward 

the goal, calculated at each discrete time step k . 

The minimum nearest neighbor distance measures the smallest distance between any two 

agents, indicating collision avoidance: 

 min min i j ijd d . (11) 

We consider a collision to have occurred if min 2d r , where r is agent radius, ensuring safe 

separation during migration. This metric is important for evaluating the swarm’s ability to maintain 

safe distances in dense formations. 

The alignment metric quantifies how closely the swarm’s agents move in the same direction: 



108 Information, Computing and Intelligent Systems № 6, 2025 

 align 1

( 1)

i j

i jj i

v v

N N v v








 . (12) 

A value of 1 indicates perfect alignment (all agents moving in the same direction), while 0 

indicates complete disorder. A value of 0.9 is considered sufficient for effective flocking, reflecting 

synchronized motion. This metric helps assess the swarm’s ability to maintain coordinated movement 

under occlusion constraints. 

The union metric evaluates swarm cohesion, indicating whether the swarm moves as a single 

unit: 

 

comp
union 1

1
1

n

N



 


, (13) 

where compn  is the number of connected components in the adjacency matrix. A value of 1 signifies a 

fully cohesive swarm, while 0 indicates fragmentation into isolated agents. This metric ensures the 

swarm remains connected, a major factor for collective tasks. These metrics collectively provide a 

comprehensive evaluation of swarm performance across varying conditions. 

 

4.5. Simulation environments and drone models 

We employ two simulation environments to balance computational efficiency and realistic 

dynamics. The first is the point mass environment implemented in pure Python, where agents are 

modeled as material points governed by simplified kinematics. Each agent's model can be described 

as a set of coordinates and a velocity vector in three-dimensional space. This environment does not 

account for aerodynamics, inertia, or actuator constraints. Control commands are directly translated 

into velocity updates at each discrete timestep. This type of abstraction significantly reduces 

computational requirements by simplifying flight dynamics. In this environment, the motion of agent 

i  at step 1k   is described as: 

 
1k k k

i i ip p v t    . (14) 

This environment supports large-scale simulations with up to 150 agents, thanks to its lower 

computational demands, and is particularly suited for performance analysis of flocking algorithms 

and various neighbor selection strategies. Simulations can be performed without a graphical user 

interface. 

Alternatively, the second environment, powered by Gazebo (Gazebo Classic), offers a physics-

based simulation. Considering three-dimensional maneuverability, target applications mentioned in 

Section 1, and market availability, a quadrotor was selected as the drone type for our research. 

Although Gazebo supports various quadrotor models, the iris model (provided with PX4 Autopilot 

for Gazebo) was chosen because it closely resembles common quadrocopter models available on the 

market in terms of technical specifications. This model represents a drone with an approximate mass 

of 1.5 kg and a rotor arm length of 0.25 m. The quadrotor simulated in the Gazebo environment is 

subjected to realistic aerodynamics, inertial effects, and actuator dynamics. As a result, an agent 

cannot achieve the desired velocity instantaneously, unlike in the point mass dynamics environment, 

which affects swarm performance and may introduce possible collisions and disorder in the swarm. 

Control commands generated by the flocking algorithm are sent to the autopilot software (PX4), 

which interprets them within the flight control stack. This combination of tools produces a more 

realistic representation of actual UAV behavior, including delays and thrust saturation. An empty map 

with only ground and other agents, and no obstacles, has been selected for the experiments. Although 

this software allows for more realistic experiments, it requires higher computational resources. As a 

result, we were able to perform simulations in this environment for smaller swarms (up to 70 agents); 

beyond this, simulations become unstable. Although Gazebo and PX4 run asynchronously, 

synchronization can be achieved using the lockstepping feature, ensuring fair comparisons across 

swarm sizes. Using MAVSDK-Python, we emulated a ground control station to send velocity 
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commands and receive telemetry. This simulation was deployed on a PC with Windows 11, running 

Ubuntu 20.04 through WSL2. PX4 software and the ground control station were deployed separately 

for each agent. In practice, this setup works as follows: the simulation is executed step by step, with 

a pause between each step. During these pauses, velocity commands are calculated for each agent 

using the proposed algorithms. Next, these commands are sent to the autopilot software for execution. 

At this point, the simulation is resumed and executed for t  and then paused again. This process 

repeats until simulation completion, mitigating computational load increases with swarm size.  

The key difference between environments lies in the fidelity of the flight model, computational 

demands, and scalability. The point mass dynamics environment ignores aerodynamics and software 

control loop side effects, prioritizing scalability, simulation duration, and computational efficiency, 

allowing us to perform large sets of experiments with large swarms. On the other hand, Gazebo 

incorporates realistic flight physics and actuator dynamics, which results in more realistic simulations 

at the cost of increased computational demand and smaller swarm sizes. These environments 

collectively enable the evaluation of vision-based flocking under a range of conditions, from idealized 

to realistic scenarios. 

 

4.6. Experimental design overview 

Our method integrates a cohesive set of components to evaluate the performance of vision-

based UAV swarms in dense, spatial (3D) environments, addressing the impact of visual occlusions 

and the feasibility of communication-free flocking. We combine precise mathematical notations, a 

robust flocking algorithm, strategic neighbor selection, comprehensive performance metrics, 

carefully chosen experimental parameters. Finally, we use dual simulation environments to create a 

systematic framework for studying decentralized swarm behavior. This overview synthesizes these 

elements, illustrating how they work together to achieve the study’s objectives of assessing occlusion 

effects, evaluating neighbor selection strategies, and comparing vision-based and communication-

enabled swarms. 

The preliminary notations (Section 4.1) establish a mathematical foundation by defining agent 

positions, velocities, and relationships as a directed graph, enabling us to model spatial interactions 

and connectivity. These notations underpin the flocking algorithm (Section 4.2), which uses an APF 

approach based on Reynolds’ rules of separation, alignment, and cohesion. The algorithm computes 

velocity commands that balance social interactions (cohesion and collision avoidance) with goal-

directed migration, ensuring drones move as a cohesive unit toward a target while avoiding collisions. 

By normalizing velocities to respect physical constraints, we ensure the algorithm is practical for real-

world UAVs. 

Neighbor selection strategies (Section 4.3) are central to managing visual occlusions, a primary 

focus of this study. We implement metric, topological, and Delaunay triangulation-based strategies to 

limit the number of neighbors considered, reducing computational demands and mitigating occlusion 

effects in dense formations. The novel vision-based neighbor selection, supported by a lightweight 

3D occlusion model, simulates realistic visual constraints by identifying occluded agents, enabling 

scalable simulations without the computational burden of ray casting. These strategies allow us to test 

how different neighbor counts and selection methods influence swarm performance under varying 

conditions. 

Performance metrics (Section 4.4), such as nearest neighbor distance, alignment, and union, 

provide a comprehensive assessment of the swarm’s ability to maintain safe separation, synchronized 

motion, and cohesive behavior. At some point in the simulation (after 60 seconds of simulation, 

considering agents maximum velocity), the swarm enters the equilibrium state, in which the collective 

motion has already stabilized, and agents have aggregated into their final swarm configuration. Only 

data from the equilibrium period relevant for assessing flocking is considered; to obtain this, we 

analyze only the last 25% of steps. Performance metrics are calculated for each agent at each step and 

then averaged. Then, run performance metrics are computed as the mean values of the corresponding 

step performance metrics. To obtain generalized performance metric values for a specific 

configuration (such as swarm size, swarm density level, neighbor selection strategy, and 
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environment), multiple runs are conducted. Final performance metrics for a specific configuration are 

calculated as the mean values from these multiple runs. 

The dual simulation environments (Section 4.5) – point mass dynamics for large swarms and 

Gazebo with PX4 for realistic quadcopter dynamics – enable a balanced evaluation. The point mass 

environment supports rapid, large-scale simulations to gather data, while Gazebo provides 

information about real-world applicability, incorporating aerodynamic and inertial effects. The 

lockstepping feature and MAVSDK-Python integration ensure synchronized, controlled experiments, 

mitigating computational problems as swarm size increases. 

We design our experiments as follows: the swarm is assigned to perform goal-directed motion 

in a formation. To achieve this, each agent is given a constant migration velocity vector along the 

horizontal axis, regulated by migration gain to balance movement toward the goal with local flocking 

interactions. This parameter is critical for the experiments because large values could cause agents to 

move toward the goal independently rather than as a formation, leading to fragmentation. Conversely, 

if migration gain is too small, the swarm may prioritize local interactions and fail to perform the 

intended migration, stalling the mission. At the start of each run, agents are spawned randomly inside 

a cube, the size of which depends on the number of agents to ensure similar initial density across 

different configurations. We enforce a minimum inter-agent distance constraint in our spawn 

algorithm to prevent collisions from the start. Additionally, we include a rule that each agent must 

have at least one other agent within a specified radius to avoid initial fragmentation of the swarm. To 

ensure consistency across configurations, this radius is defined by a threshold distance used for the 

Metric neighbor selection strategy. However, in the Gazebo environment, some additional preparatory 

steps are necessary. In Gazebo, quadrocopter must reach the required thrust level to maintain height, 

so agents are initially spawned on the ground with subsequent thrust and takeoff commands. Once all 

agents reach their designated coordinates, the experiment begins. At this point, agents start receiving 

velocity commands generated by the flocking algorithm to assemble in formation while moving 

toward the goal, in both environments. Each run lasts the same amount of time (steps). When the run 

ends, performance metrics of the swarm can be collected. 

Together, these components form a robust experimental framework to investigate vision-based 

localization in 3D environments. By simulating swarms of varying sizes (10 to 150 agents) and 

densities levels, we assess how occlusions degrade performance and how neighbor selection strategies 

mitigate these effects. The comparison between vision-based and communication-enabled swarms 

tests the necessity of communication, aiming to validate scalable, infrastructure-independent 

flocking. 

 

5. Results of investigating vision-based UAV swarm flocking performance under visual 

occlusions in 3D environment 

5.1. Results of enhancing swarm flocking method with neighbor selection strategy 

We present experimental results evaluating the performance of vision-based UAV swarms in 

3D environments, emphasizing the novel neighbor selection method developed to mitigate visual 

occlusions and achieve communication-free coordination. Our experiments assess swarm behavior 

across varying density levels, neighbor selection methods, and communication scenarios, using 

metrics such as minimum nearest neighbor distance (collision avoidance), alignment (velocity 

synchronization), and union (cohesion).  

The reported metrics are mean values derived from the averaged data over 10 simulation runs 

per configuration, ensuring robust representation of swarm performance. The low variability across 

runs, as observed in the consistent metric trends, supports the reliability of these mean values, without 

evident long tails or high scatter that would undermine the conclusions. The agent radius is set to 

0.25mr  , reflecting typical quadcopter dimensions, and the perception radius is max 10mr  , 

representing the range of onboard vision systems [5–9]. The maximum speed is max 1m/ sv  , 

consistent with common quadcopter capabilities. At the start of each simulation, agents are randomly 

spawned within a cube, with a minimum separation of 
min 1mr   and a maximum of 

maxr , ensuring 

consistent density across swarm sizes. The migration velocity is set to [1,0,0]migv   along the 
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horizontal axis, with a migration gain of 0.5m/ smigk  , balancing goal-directed movement with 

formation stability. The time step is 0.1st  , sufficient for visual localization and control tasks, and 

the simulation duration is 120sT  , allowing the swarm to achieve formation and migrate. 

Performance metrics are calculated for the last 25% of the simulation to focus on steady-state 

behavior. All metrics are calculated for every discrete time step k  and then averaged. 

The results are organized into two subsections, each addressing a specific objective: occlusion 

impact and neighbor selection efficiency and vision-based versus communication-enabled 

performance, with novel contributions highlighted through experimental data and figure analyses. 

We developed a novel neighbor selection method (metric, topographic, and Delaunay 

strategies) to mitigate visual occlusions. We evaluated its impact on swarm performance across dense, 

default, and sparse configurations in a point mass dynamics environment. We tested three swarm 

densities levels – dense, default, and sparse – by tuning separation and cohesion gains. For dense 

swarms, we set 1m/ ssep

densek   and 3m/ scoh

densek  ; for default swarms 1m/ ssep

defaultk   and 1m/ scoh

defaultk 

; and for sparse swarms 5m/ ssep

sparsek   and 1m/ scoh

sparsek  . Using the point mass dynamics 

environment, we simulated swarms of 10 to 150 agents {10,30,50,70,90,110,130,150}N  , relying 

solely on onboard vision-based localization for navigation. Performance was evaluated through 

minimum nearest neighbor distance (indicating collision avoidance), alignment (measuring velocity 

synchronization), and union (assessing swarm cohesion). Metrics are illustrated in Figure 1: Figure 

1a shows the average number of neighbors detected by each agent, Figure 1b displays alignment 

values, and Figure 1c presents the minimum nearest neighbor distance across swarm sizes and density 

levels. 

 

 
 

               a     b            c 

 

Fig. 1. Performance metrics for different swarm densities: a – Average number of neighbors; b – 

Alignment; c – Minimum nearest distance. 

 

The results reveal that purely vision-based localization significantly impacts dense swarms 

compared to default and sparse ones. In dense formations, where agents are closely spaced, average 

number of neighbors increases significantly (Figure 1a). This causes an increased number of visual 

occlusions. This oversaturation of neighbors reduces localization accuracy, causing a marked decline 

in alignment (Figure 1b), with values dropping below 0.9 for swarms exceeding 70 agents. The 

minimum nearest neighbor distance also decreases significantly (Figure 1c), approaching critical 

thresholds (below 0.5 m) where collisions become imminent, particularly in dense swarms with more 

than 70 agents. Default and sparse swarms, with greater inter-agent spacing, exhibit less severe 

performance degradation, maintaining alignment above 0.9 and safer distances (above 0.5 m) across 

most swarm sizes. The union metric, consistently at 1 for all configurations, indicates that occlusions 

do not cause swarm fragmentation, as agents remain interconnected despite localization problems. 

To address the performance degradation observed in dense swarms, we applied neighbor 

selection strategies (metric, topological, and Delaunay) to limit the number of agents considered as 

neighbors for flocking. It tends to reduce occlusion effects and enhance scalability. Experiments 
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focused on dense swarms, which are most affected by occlusions, using the point mass dynamics 

environment for swarms of 10 to 150 agents {10,30,50,70,90,110,130,150}N  . To prevent initial 

disconnection in metric neighbor selection, all agents have at least one neighbor within 4 mmetricr  , 

the distance threshold for metric strategy. Parameters used for dense swarm introduced above are 

used throughout experiments. Results are presented in Figure 2: Figure 2a shows the average number 

of neighbors, Figure 2b displays alignment, Figure 2c illustrates minimum nearest neighbor distance, 

and Figure 2d depicts the union metric across swarm sizes for each strategy. Furthermore, we 

conducted experiments in Gazebo environment with realistic quadcopter dynamics for swarms up to 

70 agents to verify the results {10,30,50,70}N  , as shown in Figure 3: Figure 3a (average 

neighbors), Figure 3b (alignment), Figure 3c (minimum distance), and Figure 3d (union). 

 

 
 

         a    b           c    d 

 

Fig. 2. Performance metrics for different neighbor selection strategies: a – Average number of 

neighbors; b – Alignment; c – Minimum nearest distance; d – Union. 

 

 
 

         a    b           c    d 

 

Fig. 3. Performance comparison of material point and quadrocopter dynamics: a – Average number 

of neighbors; b – Alignment; c – Minimum nearest distance; d – Union. 

 

Implementing neighbor selection strategies significantly improves swarm performance. By 

restricting neighbor counts, all strategies maintain a semi-constant minimum distance (around 1 m, 

Figure 2c), effectively preventing collisions even as swarm size increases. Alignment improves 

notably, with topological and Delaunay strategies achieving values above 0.9 for most swarm sizes 

(Figure 2b), indicating synchronized motion. Metric selection, however, shows a gradual decline in 
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alignment for larger swarms (above 90 agents), suggesting it is less robust for scalability. For smaller 

swarms (up to 30 agents), Delaunay selection exhibits slightly lower alignment (around 0.85) 

compared to topological (above 0.9), likely due to its spatially balanced but less consistent neighbor 

selection in sparse configurations. For larger swarms (above 30 agents), Delaunay matches or exceeds 

topological performance, maintaining high alignment (above 0.9). 

The union metric (Figure 2d) reveals differences in cohesion. Metric and topological selections 

show fragmentation risks, with union values dropping below 1 for swarms of 30 (metric) and 50 

(topological) agents, indicating subgroups forming due to inconsistent neighbor connections. 

Delaunay selection maintains perfect cohesion (union = 1) across all swarm sizes.  

Comparison of point mass and Gazebo environments results shows similar trends (Figure 3). 

Topological selection maintains higher alignment (above 0.9) for swarms up to 50 agents but shows 

fragmentation at 50 agents (union < 1). Delaunay selection sustains viable alignment (around 0.9), 

which increases with the swarm size, and perfect cohesion (union = 1), reinforcing its suitability for 

larger swarms. 

The presented metric values (Figures 1-3) represent mean values averaged over the 10 repeated 

simulation runs for each configuration, focusing on the last 25% of each run to capture steady-state 

behavior. The results showed consistent patterns across runs, with low variability observed, indicating 

reliability of the findings without notable long tails or high scatter in the metric distributions. This 

observed consistency aligns with the deterministic aspects of the simulations, such as fixed gains and 

migration velocity, though detailed statistical measures like standard deviation or skewness were not 

required given the stable outcomes. 

The consistency between environments underscores the robustness of these strategies in 

realistic settings, where aerodynamic and inertial effects are considered. Neighbor selection strategies 

significantly enhance dense swarm performance by mitigating occlusion effects, maintaining safe 

distances, and improving alignment. Topological selection excels for smaller swarms (up to 50 

agents), while Delaunay is superior for larger ones, ensuring cohesion and scalability. Metric 

selection, while effective for collision avoidance, is less robust for alignment and cohesion in larger 

swarms. 

 

5.2. Results of performance comparison between vision-based swarm with applied neighbor 

selection strategy and communication-enabled swarm 

We assessed our vision-based neighbor selection method against communication-enabled 

swarms to determine if communication-free coordination achieves comparable performance, using 

experimental data from point mass simulations of 10 to 150 agents. All agents in a communication-

enabled swarm are aware of the positions of other agents. We selected topographic and Delaunay 

strategies, which outperformed metric selection in Section 5.1, for their occlusion-resilient properties. 

The results are presented in Figure 4: Figure 4a shows the average number of neighbors, Figure 4b 

displays alignment, Figure 4c illustrates minimum nearest neighbor distance, and Figure 4d depicts 

the union metric for vision-based and communication-enabled swarms. 

Our contribution demonstrates that vision-based swarms, using our neighbor selection method, 

achieve performance comparable to or better than communication-enabled swarms, a significant 

advancement in decentralized coordination. Topographic selection yields higher alignment (above 

0.9) for swarms up to 50 agents compared to communication-enabled swarms (around 0.85, Figure 

4b), due to reduced occlusion noise. Delaunay selection maintains high alignment (above 0.9) and 

perfect cohesion (union = 1) for larger swarms, matching or surpassing communication-enabled 

performance (Figure 4d). Minimum distances remain comparable (around 1m, Figure 4c), ensuring 

equivalent collision avoidance. Topographic selection shows fragmentation risks above 50 agents 

(union < 1, Figure 4d), while Delaunay’s robust cohesion makes it ideal for scalability.  
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Fig. 4. Performance metrics for vision-based neighbor selection strategies in comparison with all-to-

all connected strategies: a – Average number of neighbors; b – Alignment; c – Minimum nearest 

distance; d – Union. 

 

This result validates the feasibility of communication-free, occlusion-resilient flocking in 3D 

environments, advancing swarm robotics by eliminating external dependencies, unlike prior studies 

reliant on communication. 

 

6. Discussion of results regarding vision-based swarm flocking under visual occlusions in 3D 

environment 
This study advances swarm robotics by developing a neighbor selection method for occlusion-

resilient, vision-based UAV swarm coordination in 3D environments, addressing the problem of 

visual occlusions. Our results demonstrate that occlusions from neighboring agents impair dense 
swarm performance, driven by oversaturated neighbor detection that disrupts vision-based 
localization. Sparse and default configurations experience milder setbacks due to fewer occlusions, 

enabling stable alignment (above 0.9) and safer distances (above 0.5m). The observed degradation in 
dense swarms – alignment dropping below 0.9 and distances below 0.5m for swarms exceeding 70 
agents – stems from increased occlusion frequency, which reduces localization accuracy and increases 
collision risks. This analysis highlights the need for density management and occlusion-mitigating 

strategies to ensure collision-free flocking. 
Our neighbor selection method, comprising metric, topographic, and Delaunay strategies, 

effectively mitigates occlusion effects representing a novel contribution to swarm robotics. All 

strategies maintain consistent inter-agent distances (around 1m, Figure 2c), minimizing collision 
risks. Topographic selection excels in small swarms (up to 50 agents) because its fixed neighbor count 
reduces occlusion noise, achieving superior alignment (above 0.9, Figure 2b), consistent with prior 

findings on limited interactions [9–11, 14]. However, its fragmentation in larger swarms (union < 1 
above 50 agents, Figure 2d) results from inconsistent neighbor connections. Conversely, Delaunay 
selection’s spatially balanced tetrahedral mesh ensures perfect cohesion (union = 1) across all swarm 
sizes and high alignment (above 0.9) for larger swarms. However, it shows slightly lower alignment 

(around 0.85) in small swarms due to sparse connections (Figures 2b, 2d). Metric selection, less 
effective, struggles with cohesion (union < 1 above 30 agents) and alignment due to variable neighbor 
counts. These results, validated in Gazebo simulations (Figure 3), confirm that topographic selection 

is optimal for smaller swarms, while Delaunay excels for larger ones, offering a scalable solution for 
large-scale missions such as environmental monitoring. Our results align with prior works on vision-
based swarm challenges but extend them to 3D environments. For instance, it was reported occlusion-
induced performance degradation in 2D settings [9], with similar declines in alignment and cohesion, 

though without quantitative statistical measures like standard deviation in their analysis. Our neighbor 
selection method achieves higher alignment (above 0.9) and perfect cohesion in 3D, surpassing their 
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findings by addressing spatial occlusions, which were not explored in their planar focus. The observed 

consistency in our mean values across runs reinforces the robustness of these personal contributions, 
distinguishing our work from existing literature that often overlooks 3D dynamics or reports results 
without scatter analysis. 

Our comparison of vision-based and communication-enabled swarms reveals that our neighbor 

selection method enables communication-free coordination that matches or surpasses 
communication-enabled performance. Topographic selection achieves higher alignment (above 0.9 
vs. 0.85, Figure 4b) in small swarms by minimizing occlusion noise, while Delaunay maintains high 

alignment and perfect cohesion in larger swarms (Figures 4b, 4d), driven by its robust neighbor 
connections. Comparable minimum distances (around 1m, Figure 4c) indicate equivalent collision 
avoidance. This novel finding eliminates the need for communication, freeing bandwidth for data 

transmission and enhancing resilience in GNSS-denied environments. In conclusion, our method 
addresses the occlusion problem by enabling scalable flocking with topographic and Delaunay 
strategies, optimizing performance for various swarm sizes, and advancing decentralized swarm 
robotics. 

Despite these advances, our occlusion model assumes a spherical agent shape, which might not 
accurately reflect the complex geometry of UAVs. However, since UAVs can vary in shape, carry 
extra equipment such as landing gear, or have different payloads attached to the top or bottom, a 

spherical model remains a practical alternative. It provides a more general approach to modeling UAV 
geometry for the occlusion model, while enabling large-scale simulations by reducing computational 
complexity. We believe that this model strikes a balance between realism and efficiency, while 

accounting for the complex shapes of real-world UAVs. Future research may focus on refining the 
model to enhance the practicality of our research for real-world applications and deployments. 
Exploring reinforcement learning (RL) [13] could further enhance occlusion mitigation and 
scalability, while real-world experiments would validate our findings under dynamic conditions. RL 

can be used to develop a new neighbor selection strategy that does not depend on swarm size. 
Alternatively, RL algorithms can improve flocking algorithms, making them more suitable for real-
world environments with many obstacles, which could also affect the swarm performance. These 

prospects promise to advance swarm robotics for applications addressing the growing demand for 
autonomous, infrastructure-independent systems. 

The research was implemented within the National Research Foundation of Ukraine project No. 
2023.04/0077 “Drone for water sampling”. 

 

Conclusions 
Our study establishes the feasibility of occlusion-resilient, vision-based UAV swarm 

coordination in 3D environments. We developed a novel vision-based UAV swarm flocking method 
suitable for 3D environments, an area that has been under-researched in previous works. This method 
utilizes neighbor selection strategies such as metric (considering only agents within the threshold), 

topological (considering only n-nearest agents), and Delaunay (considering agents that share ridges 
produced by Delaunay triangulation). Neighbor selection restricts neighbor count, thus mitigating 
visual occlusions. This discovery enables significant advancements in swarm performance. 
Experimental data reveal that, without neighbor selection, dense swarms suffer degraded alignment 

(below 0.9) and reduced minimum distances (below 0.5 m) for swarms exceeding 70 agents, 
increasing collision risks. By applying proposed selection strategies, we can boost swarm 
performance to achieve levels adequate for real-world deployments. For instance, topographic 

selection ensures high alignment (above 0.9) and stable distances (around 1 m) in small swarms (up 
to 50 agents). In contrast, Delaunay selection maintains perfect cohesion (union = 1) and high 
alignment across all swarm sizes, especially excelling for larger swarms. This novel method enhances 

scalability and safety in dense 3D formations, offering practical value for applications where 
occlusion-prone environments are common. 

Further experiments comparing purely vision-based swarms with communication-enabled ones 
reveal that the optimal vision-based neighbor selection method enables communication-free swarm 

coordination that matches or exceeds the performance of communication-enabled swarms. 
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Topographic selection achieves superior alignment (above 0.9 vs. 0.85) in small swarms, while 

Delaunay selection sustains high alignment and cohesion in larger swarms, with comparable collision 
avoidance (distances around 1 m). This eliminates the need for inter-agent communication, providing 
a robust, infrastructure-independent alternative that enhances operational efficiency in GNSS-denied 
settings, such as disaster response or urban surveillance. These conclusions, validated in Gazebo 

simulations, underscore the practical significance of our method for scalable, autonomous UAV 
swarm deployments, thereby advancing prior work that relies on communication or simplified 2D 
models. 
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Рої безпілотних літальних апаратів (БПЛА) забезпечують більшу масштабованість, 

надійність та ефективність у порівнянні з використанням окремих БПЛА. Ці переваги 

дозволяють використовувати рої БПЛА для пошуково-рятувальних операцій, у сільському 

господарстві, екологічному моніторингу та спостереженні у міському середовищі. З іншого 

боку, такі рої вразливі до втрати сигналу, глушіння та обмеженої масштабованості через 

залежність від глобальних навігаційних супутникових систем та бездротового зв’язку. Це 

дослідження сприяє розвитку роєвої робототехніки за рахунок створення нового стійкого до 

візуальних перешкод методу вибору сусідів для дронів на основі візуальних даних в 

тривимірному середовищі (3D). Цей метод дозволяє вирішити проблему, спричинену 

візуальними перешкодами, яка здатна порушити децентралізовану координацію рою. Ми 

розглядаємо задачу координації рою у вигляді штучного потенційного поля, на відміну від 

попередніх досліджень, які фокусувались на двовимірних середовищах або ж на використанні 

зв’язку. Для оцінки продуктивності використовуються такі метрики, як мінімальна відстань до 

найближчого сусіда (уникнення зіткнень), узгодженість (синхронізація швидкостей) та 

єдність. Використання середовища з динамікою матеріальної точки та середовища з більш 

реалістичною динамікою квадрокоптера дозволяє нам оцінити поведінку рою у випадку тісної, 

звичайної та розосередженої конфігурації. Результати, отримані нами, показують, що 

перешкоди негативно впливають на узгодженість (нижче 0.9) та мінімальну відстань (менше 

0.5м) у тісному рою, який налічує більше 70 агентів, що підвищує ймовірність зіткнень. 

Запропонований нами метод, який використовує метричну, топографічну стратегії або ж 

стратегію з використанням тріангуляції Делона, дозволяє уникнути цих проблем. 

Топографічний вибір дозволяє досягти високого рівня узгодженості (більше 0.9) для невеликих 

роїв (до 50 агентів). З іншого боку використання тріангуляції Делона забезпечує ідеальну 

єдність та високу узгодженість для роїв всіх розмірів. Дані твердження підкріплені 

результатами, отриманими за допомогою симуляцій. Наш метод дозволяє позбавитись 

використання зв’язку для координації рою, забезпечуючи або перевищуючи продуктивність 

рою зі зв’язком. Це можливо за рахунок використання топологічного вибору сусідів 

(узгодженість 0.9 проти 0.85) для невеликих роїв та вибору на основі тріангуляції Делона для 

більших. Наведені результати доводять, що використання зв’язку між агентами не є 

необхідним для координації рою. Відповідно, це дозволяє підвищити стійкість рою та 

пропускну здатність каналів зв’язку для передачі іншої інформації. Використання 

запропонованого методу дозволяє створити масштабований, незалежний від інфраструктури 

фреймворк для роїв БПЛА, що несе практичну цінність для автономних операцій роїв в 

складних середовищах з високою кількістю візуальних перешкод. 

Ключові слова: рій БПЛА, візуальна локалізація, контроль формації, децентралізована 

координація, штучне потенціальне поле. 

 


