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Uncrewed aerial vehicle (UAV) swarms provide superior scalability, reliability, and efficiency
compared to individual UAVs, enabling transformative applications in search and rescue, precision
agriculture, environmental monitoring, and urban surveillance. However, their dependence on Global
Navigation Satellite Systems (GNSS) and wireless communication introduces vulnerabilities like signal
loss, jamming, and scalability constraints, particularly in GNSS-denied environments. This study
advances swarm robotics by developing a novel neighbor selection method for occlusion-resilient,
vision-based coordination of UAV swarms in three-dimensional (3D) environments, addressing the
problem of visual occlusions that disrupt decentralized flocking. Unlike prior research focusing on
planar settings or communication-dependent systems, we model swarm coordination as an artificial
potential field problem. Additionally, we evaluate performance through metrics like minimum nearest
neighbor distance (collision avoidance), alignment (velocity synchronization), and union (cohesion).
Using simulations in point mass and realistic quadcopter dynamics (Gazebo with PX4) environments,
we assess swarm behavior across dense, default, and sparse configurations. Our findings reveal that
occlusions degrade alignment (below 0.9) and distances (below 0.5 m) in dense swarms exceeding 70
agents, increasing collision risks. Our novel method, incorporating metric, topographic, and Delaunay
strategies, mitigates these effects. Topographic selection achieves high alignment (above 0.9) in small
swarms (up to 50 agents), while Delaunay ensures perfect cohesion (union = 1) and robust alignment
across all swarm sizes. Validation in simulations confirms these results. Furthermore, our method
enables communication-free coordination that matches or surpasses communication-enabled
performance, with topographic selection outperforming (alignment above 0.9 vs. 0.85) in small swarms
and Delaunay excelling in larger ones. This result eliminates the need for inter-agent communication,
enhancing resilience and bandwidth efficiency. These findings establish a scalable, infrastructure-
independent framework for UAV swarms, with practical value for autonomous operations in complex,
occlusion-prone environments.

Keywords: UAV swarm, vision-based localization, formation control, decentralized coordination,
artificial potential field.

1. Introduction
Swarm robotics, a dynamic field within autonomous systems, focuses on coordinating multiple robots
to achieve collective goals, drawing inspiration from natural systems like bird flocks and fish schools.
Uncrewed aerial vehicles (UAVs) have evolved significantly since their conceptual origins in the
early 20th century. Initial developments focused on military applications, such as reconnaissance and
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target practice, with mass production emerging mid-century. Advancements in electronics enabled
the integration of compact, lightweight components, facilitating sophisticated sensors and
communication systems for long-distance remote control and real-time data transmission. The advent
of powerful computing units marked a crucial change, allowing UAVs to follow preprogrammed paths
autonomously. Breakthroughs in materials science introduced lightweight, durable composites,
enhancing flight endurance and enabling diverse applications. Examples of these applications include
agriculture, infrastructure inspection, environmental monitoring, disaster management, humanitarian
aid, logistics, and entertainment, reflecting the growing relevance of aerial robotics in addressing
modern problems.

UAV swarms, defined as groups of UAVs operating cooperatively to achieve shared objectives,
represent a significant leap beyond individual UAV capabilities. Swarms use collective behavior to
enhance efficiency, offering advantages such as scalability, expanded area coverage, improved
reliability, and the ability to execute complex tasks at reduced costs. In swarm robotics, this
decentralized approach, where each UAV observes its local environment to perform localized tasks,
contributes to global goals, making swarms ideal for dynamic, real-world applications requiring
robust coordination. This distributed approach enables swarms to adapt dynamically to changing
conditions, underscoring their potential in scenarios like disaster response and precision agriculture,
where adaptability and scalability are important.

The scientific problem addressed in this study lies in achieving robust coordination in UAV
swarms using vision-based localization, particularly under visual occlusions in three-dimensional
(3D) environments. The versatility of UAV swarms has driven their adoption across numerous
domains. In agriculture, swarms provide high-resolution aerial imagery for crop monitoring and
precision farming, optimizing resource use over vast areas. In construction and mining, they enable
progress tracking and 3D mapping, improving planning and safety. Infrastructure inspection benefits
from swarms’ ability to navigate and assess complex structures autonomously. For healthcare and
humanitarian aid, swarms deliver medical supplies and support emergency responses in remote or
disaster-affected regions. Public safety and security operations utilize swarms for search and rescue
missions and enhanced surveillance in challenging terrains. In logistics, swarms facilitate last-mile
delivery solutions, particularly in regions with limited infrastructure. Telecommunications use
swarms as aerial networks for temporary coverage, while disaster mitigation employs them for
environmental monitoring and hazard detection, highlighting the topic’s relevance to modern societal
needs [1, 2].

Despite these advancements, decentralized UAV swarms face significant problems in
navigation and coordination, particularly in achieving occlusion-resilient vision-based localization.
Most current implementations rely heavily on the Global Navigation Satellite System (GNSS), such
as the Global Positioning System (GPS), for localization and navigation. These systems are
susceptible to positional inaccuracies, signal jamming, and spoofing, which can disrupt swarm
operations. Additionally, wireless inter-agent or base station communication introduces scalability
constraints and vulnerabilities, limiting swarms’ effectiveness in GNSS-denied environments like
indoor spaces or cluttered urban settings. The problem of visual occlusions — where neighboring
agents or environmental obstacles block line-of-sight — further complicates vision-based localization,
as it restricts the detection of nearby UAVs, important for maintaining cohesive swarm behavior.

This study addresses the pressing need for occlusion-resilient, infrastructure-independent UAV
swarm coordination, a topic of growing importance in swarm robotics due to increasing demands for
autonomous systems in complex, dynamic environments. Vision-based localization, using onboard
cameras and computer vision algorithms, enables UAVs to estimate neighbor positions and
orientations without GNSS or extensive communication, offering a solution for decentralized
flocking. However, occlusions in dense formations reduce the effectiveness of visual sensing,
necessitating innovative methods like neighbor selection to ensure robust performance. The relevance
of this scientific topic stems from its potential to enable scalable, autonomous swarm deployments.
Such swarms could be utilized in various domains, ranging from disaster response to urban
surveillance, where traditional navigation systems falter. In conclusion, studying occlusion-resilient
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vision-based swarm coordination addresses modern problems in automation, resilience, and
infrastructure independence across diverse fields.

2. Literature review and problem statement

UAV swarms have become a center of interest in robotics research due to their ability to perform
complex tasks cooperatively, such as environmental monitoring, disaster response, and infrastructure
inspection. Traditional swarm navigation relies heavily on the GNSS, such as GPS, to provide
positional data for localization and coordination. However, GNSS signals are prone to inaccuracies,
especially in dense formations where small positional errors can lead to misalignment or collisions.
These signals are also susceptible to external disruptions, such as jamming or spoofing, which can
compromise the entire swarm’s operation [3]. Furthermore, decentralized swarms depend on wireless
communication for inter-agent coordination or base station interaction, introducing significant time
lags. These lags stem from a combination of GNSS’s low update rates, control loop latency, and
communication delays, which can destabilize swarm motion, causing oscillations and increasing the
likelihood of collisions in dense configurations [3]. As the number of drones in a swarm increases,
the volume of data transmitted for coordination grows quadratically, potentially oversaturating
communication channels and leading to data loss or delays [4]. While advanced hardware, such as
high-bandwidth transceivers or more precise GNSS receivers, can partially mitigate these issues, such
solutions increase drone weight or cost, reducing flight duration and operational efficiency.

To address these limitations, researchers have explored alternative sensory modalities for
localization, with vision-based approaches emerging as a promising solution. Vision-based
localization enables UAVs to estimate the position and orientation of neighboring agents using
onboard cameras and computer vision algorithms, eliminating the need for external infrastructure like
GNSS. This method supports fully decentralized coordination, allowing swarms to operate
autonomously in GNSS-denied environments, such as indoor spaces, urban canyons, or cluttered
outdoor settings. By relying on onboard sensing, vision-based systems reduce dependence on wireless
communication, enhancing resilience against signal interference or loss [5]. Vision-based localization
can leverage various spectral bands, including infrared (IR), ultraviolet (UV), and visible light. For
example, researchers have developed systems using active IR-coded emitters mounted on drones to
facilitate localization [5]. These emitters allow drones to identify neighbors through unique IR
patterns, but their effectiveness is limited outdoors during daylight due to solar radiation interference
across the IR spectrum.

An alternative approach, the Ultraviolet-based Visual Localization System (UVDAR), utilizes
the UV spectrum to enable communication-free swarm coordination without reliance on GNSS or
radio communication [6, 7]. UVDAR’s use of the UV band, which is largely free from natural
interference, makes it suitable for outdoor operations at any time of day, unlike IR-based methods.
Experimental results have demonstrated UVDAR’s ability to maintain robust localization in various
environments, supporting applications like search and rescue or agricultural monitoring [6]. However,
UVDAR requires specialized hardware, including UV markers and sensors, which add weight to
drones, reducing flight endurance and limiting scalability for large swarms. To overcome this, a fully
vision-based system using omnidirectional cameras and convolutional neural networks (CNNs) has
been proposed, eliminating the need for additional markers [8]. This system processes visual data to
estimate neighbor positions, demonstrating resilience under diverse lighting conditions and complex
backgrounds in outdoor experiments. Such advancements highlight the potential of vision-based
localization for autonomous, infrastructure-independent swarm operations.

Despite these advances, vision-based localization introduces the issue of visual occlusions,
where other drones or environmental obstacles block the line of sight between agents. This problem
is particularly pronounced in dense swarms, where frequent occlusions can disrupt localization
accuracy and swarm cohesion. Researchers have addressed this by limiting the number of neighbors
considered for coordination, using strategies like Voronoi diagrams to select neighbors based on
spatial proximity [9]. These strategies improve performance under occlusions by reducing
computational complexity and focusing on relevant agents. However, these studies were conducted
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in planar (2D) environments, which do not fully represent the spatial (3D) dynamics of most real-
world UAV swarm applications, where movement occurs within height-constrained 3D spaces. The
optimal number of neighbors for effective flocking has been investigated, with findings suggesting
that 7-10 neighbors provide a balance between network complexity and convergence quality [10].
Topological neighbor selection, where each agent interacts with a fixed number of neighbors based
on proximity, has been shown to outperform metric-based selection, which relies on a distance
threshold, in achieving stable flocking [11]. These studies also indicate that both topological and
metric interactions require a threshold (e.g., neighbor count or distance) to achieve an ordered state.
However, they do not explore whether such strategies lead to swarm fragmentation, where subgroups
of drones lose connectivity, reducing overall cohesion.

The body of research on UAV swarm flocking has made significant progress in addressing
localization and coordination issues, but several limitations persist, particularly for vision-based
systems operating in spatial environments. Most prior studies, including those employing Voronoi
diagrams or topological neighbor selection, focus on planar (2D) environments, which simplify the
dynamics of swarm motion. As a result, they fail to capture the complexities of real-world
deployments where drones navigate in three-dimensional spaces, often constrained by minimum and
maximum altitudes [9—-11]. This planar focus overlooks the impact of visual occlusions in dense 3D
formations, where drones frequently obstruct each other’s line of sight, potentially degrading
alignment, increasing collision risks, and disrupting cohesive motion. The lack of spatial analysis
limits the applicability of these findings to practical scenarios, such as infrastructure inspection or
disaster response, where 3D navigation is essential.

Additionally, existing vision-based localization systems often rely on specialized hardware,
such as IR-coded emitters or UV markers, which increase drone weight and reduce flight endurance,
posing scalability constraints for large swarms [5—7]. While CNN-based systems eliminate the need
for markers, their computational complexity can hinder real-time processing, especially for resource-
constrained drones in large-scale deployments [8]. These hardware and computational demands
highlight the need for lightweight, efficient vision-based solutions that can operate without additional
equipment or excessive processing power.

Another underexplored area is the impact of neighbor selection strategies on swarm cohesion
in 3D environments. Prior work suggests that limiting neighbors to 7—10 agents balance performance
and complexity. However, these studies do not assess whether such strategies cause swarm
fragmentation, where subgroups of drones become disconnected, undermining collective behavior
[10, 11]. This is particularly relevant in dense swarms, where frequent occlusions may exacerbate
fragmentation risks. Furthermore, the role of inter-agent communication in vision-based swarms
remains insufficiently studied. While many systems assume some level of communication for
coordination, eliminating this dependency could free bandwidth for other tasks, such as data
transmission for environmental monitoring, enhancing overall swarm efficiency.

Existing occlusion models, such as those using ray casting, are computationally intensive,
making them impractical for large swarms simulations where real-time processing is essential [9]. A
lightweight occlusion model tailored for 3D environments could enable more efficient simulations
and facilitate real-world deployments. Moreover, prior studies often assume idealized conditions,
such as uniform drone shapes or simplified dynamics, which may not reflect the complexities of real
UAVs with varied geometries or realistic flight constraints.

Despite advancements in swarm robotics, current research often overlooks the impact of visual
occlusions on the performance of vision-based UAV swarms in 3D environments, particularly in
terms of alignment, collision avoidance, and cohesion. A critical analysis reveals that 3D spatial
settings, which are essential for real-world applications, introduce unique problems due to occlusions
that disrupt vision-based localization. Consequently, the effectiveness of different neighbor selection
strategies (metric, topological, and Delaunay) in mitigating these occlusions remains unexplored, as
does the potential for achieving communication-free performance comparable to that of
communication-enabled swarms. The unresolved problem is the lack of methods to ensure occlusion-
resilient, decentralized coordination in 3D UAV swarms, limiting their scalability and reliability in
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complex environments. This gap justifies the purpose of the study to investigate vision-based
neighbor selection strategies that enhance swarm performance in 3D settings without relying on inter-
agent communication, addressing needs for autonomous, infrastructure-independent operations.

3. The aim and objectives of the study

This study aims to develop a method for occlusion-resilient, vision-based coordination of UAV
swarms in 3D environments, addressing the unresolved problem of visual occlusions that disrupt
decentralized flocking in GNSS-denied settings. Current swarm systems often rely on GNSS and
wireless communication, which are vulnerable to signal loss, jamming, spoofing, and scalability
constraints, particularly in complex environments such as indoor spaces or cluttered urban areas.
These limitations hinder reliable, autonomous operation, especially in dense formations where visual
occlusions from neighboring UAVs impair line-of-sight localization, reducing alignment and
increasing collision risks. Our goal is to devise a neighbor selection method that ensures cohesive,
collision-free swarm flocking without external dependencies, enhancing applicability to real-world
scenarios. By tackling occlusions in 3D settings, this method aims to enable scalable, infrastructure-
independent UAV swarms, validated through experimental data and analytical conclusions.

To achieve this aim, we define the following objectives:

— evaluate performance improvements from using a neighbor selection method, including
metric, topographic, and Delaunay strategies, and their effectiveness in mitigating visual occlusion
problem in vision-based UAV swarms at different density levels (dense, default, sparse).

— assess the performance of vision-based swarms using the optimal neighbor selection method
against communication-enabled swarms in 3D environments, yielding analytical conclusions on
whether communication-free coordination achieves comparable performance, enhancing scalability
and resilience.

These objectives address the problem by providing a practical method and empirical evidence
to support decentralized, occlusion-resilient flocking, thereby directly contributing to advancements
in swarm robotics.

4. The study materials and methods of vision-based UAV swarm flocking and performance
evaluation in 3D environment
4.1. Preliminary notations
We present a comprehensive review of a vision-based UAV swarm flocking method, along with
an overview of performance metrics and simulation environments. These are used to simulate and
evaluate vision-based UAV swarm flocking in a 3D environment, focusing on navigation toward a
common goal while maintaining cohesive, collision-free motion. Our method encompasses
preliminary notations to define agent relationships, a detailed flocking algorithm for coordinated
motion, neighbor selection strategies to manage occlusions, and performance metrics to evaluate
outcomes. Additionally, two simulation environments are described that were used in our experiments
to strike a balance between computational efficiency and realism.
To model the swarm and its dynamics, we represent the swarm as a set of N homogeneous

agents, each labeled by ieA . The set excluding agent i is denoted as A; = A [{i}, capturing all

other agents in the swarm. Each agent’s state is defined by its position and velocity, expressed as
p.,V, €1®, where p, represents the agent’s coordinates in 3D space, and V, represents its velocity
vector. The relative position of agent ] with respect to agent i is calculated as:

L=0;—0. (1)

This vector quantifies the spatial relationship between agents, essential for vision-based
localization. The distance between agents i and | is computed using the Euclidean norm:

! g
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This distance metric underpins neighbor selection and collision avoidance. We model the swarm
as a directed graph, with vertices representing agents and edges indicating adjacency
(denoted i~ j). This graph is represented by an adjacency matrix A; of size N x N, where entries

are 1 if i~ ] and O otherwise, capturing the connectivity structure of the swarm. Agent speeds are
calculated at each time step k, though we omit this notation in subsequent sections for simplicity.
The set of neighbors for agent i is denoted |Ni| € A, , representing agents within its perception range.

These notations provide a mathematical foundation for modeling swarm interactions and evaluating
performance in a 3D environment.

4.2. Flocking algorithm

We design a robust flocking algorithm to enable UAV swarms to navigate toward a specified
goal in a 3D environment while maintaining cohesive, collision-free motion. This algorithm should
eliminate reliance on GNSS or inter-agent communication. This algorithm uses vision-based
localization, using onboard cameras and computer vision to estimate neighbor positions and
orientations, addressing the problems of visual occlusions in dense formations. By adapting
Reynolds’ flocking rules — separation, alignment, and cohesion — within an artificial potential field
(APF) framework, we ensure decentralized coordination suitable for scalable swarms.

Our objective is to facilitate coordinated motion where each UAV maintains safe distances from
neighbors, aligns its velocity with nearby agents, and moves collectively toward a common target
without fragmenting into subgroups. To achieve this, we design a flocking algorithm using APF
approach, incorporating Reynolds’ flocking rules of separation, alignment, and cohesion. The velocity
command for agent i is computed as the sum of social and migration components:

v =V v, 3)

where social velocity V™ governs interactions with neighboring agents, ensuring cohesion and

collision avoidance. It combines attractive forces that draw agents together to maintain swarm unity
with repulsive forces that prevent collisions by ensuring adequate separation. These forces are derived
from the APF, where potential fields model the influence of nearby agents based on their relative

positions, as defined by the notations in Section 4.1. The migration velocity Vimig drives the swarm

toward the goal, ensuring purposeful collective motion. By summing these components, the algorithm
enables each UAV to make decentralized decisions based on local visual observations, reducing
dependency on external infrastructure and supporting operations in GNSS-denied environments like
indoor spaces or cluttered urban areas.

To ensure the velocity commands are executable in a physical environment, we normalize the
resultant velocity to respect the drone’s maximum speed limit:

SV
V.o =—min(|v.],v™), 4)

where V™ represents the maximum allowable speed of the UAV, typically set to 1 m/s to reflect
common quadcopter capabilities. The normalization process scales the velocity vector to maintain its
direction while capping its magnitude at v™, ensuring that commands are feasible for physical
drones with finite acceleration and thrust. This step enhances the algorithm’s practicality, allowing
seamless integration with real-world UAV control systems, such as those simulated in the Gazebo
environment with PX4 integration (Section 4.5).

Cohesion and collision avoidance within the swarm can be achieved with a combination of
attractive and repulsive potential. The attractive potential drives cohesion, encouraging agents to
converge toward the average position of their neighbors, thereby preserving swarm unity. Conversely,
the repulsive potential ensures separation, generating forces that prevent collisions by pushing agents
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away from nearby neighbors. The social velocity component integrates cohesion and separation
forces and is expressed as:

T

Visoc _ kcoh i Z rij —ksep Z =, (5)
|N| jeN; ieN; HriJ"

where k" is the cohesion gain regulating the attractive force, and k** is the separation gain
controlling the repulsive force. We intentionally avoid scaling the separation speed component to
maintain consistency across experiments, eliminating the need for fine-tuning gains for different
swarm sizes or neighbor selection strategies (e.g., metric, topological, Delaunay). This approach
enhances the algorithm’s robustness and simplifies its application across diverse scenarios, ensuring
reliable performance in both simulation and potential real-world deployments.

To enable goal-oriented navigation, we incorporate a migration velocity component that directs
the swarm toward a specified target, ensuring purposeful collective motion. The migration velocity is
defined as:

mig

r
)

(6)

mig __ |, mig
v =k

where ™ is the relative position vector from agent to the goal position, and k™ is the migration
gain that regulates the strength of the goal-directed pull. This component ensures each UAV adjusts
its trajectory to approach the target, aligning with the swarm’s global objective while maintaining
local coordination through the social velocity. The migration gain is carefully tuned to balance goal-
directed movement with formation stability, preventing the swarm from dispersing or losing cohesion
during navigation.

4.3. Neighbor selection

To manage visual occlusions and optimize computational efficiency, we implement neighbor
selection strategies to limit the set of agents considered as neighbors, moving away from all-to-all
connections. Prior research indicates that effective flocking does not require all agents to be
neighbors, allowing us to reduce processing demands while maintaining performance [9-11]. We
explore three strategies: metric, topological, and Delaunay triangulation-based, each designed to
balance localization accuracy and swarm cohesion in the presence of occlusions.

The metric neighbor selection strategy selects agents within a fixed distance threshold,
representing the drone’s perception or communication range:

Nimetric :{J eAi| dij < rmax}’ (7)

where ™ defines the perception radius, ensuring only nearby agents are considered. This approach
simplifies localization by focusing on spatially close neighbors, reducing the impact of distant
occlusions.

The topological neighbor selection strategy selects the N nearest agents, regardless of distance,
using:

N ={n—arg min dij,jeAi}. (8)

The n-—arg min operator identifies the N closest neighbors, providing a computationally

efficient method that maintains stable swarm performance when n is appropriately chosen, as
supported by prior studies [10, 11]. This strategy ensures consistent neighbor counts, mitigating
occlusion effects in dense formations.

Researchers proposed a neighbor selection strategy using Voronoi diagrams, designating agents
as neighbors if their regions share a common boundary [9]. However, constructing 3D Voronoi
diagrams in spatial environments demands substantial computational resources. In our experiments,
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we observed that for small swarms (n < 20) , alignment sharply declines due to inadequate neighbor

connections. Instead, we adopted Delaunay triangulation, computed efficiently as part of Voronoi
diagram algorithms. This approach matches Voronoi performance for large swarms while
significantly enhancing alignment in smaller swarms.

The Delaunay triangulation-based strategy selects neighbors based on shared ridges in a 3D
triangulation of agent positions:

N™ ={jeP|edge(i, j) existsin T (P)}, 9)

where P is the set of agent positions, and T is the Delaunay triangulation. This method typically
yields up to 12 neighbors in 3D space, offering a spatially balanced selection that enhances cohesion.

The vision-based neighbor selection strategy identifies agents within a defined perception
radius, akin to the metric selection approach, but excludes those partially obstructed by others.
Detecting visual occlusions in 2D environments is straightforward, yet in 3D spaces, it presents a
tough problem. Conventional methods like ray casting, common in computer graphics, demand
extensive computational resources, potentially restricting swarm size in our simulations. To address
this, we devised a streamlined, lightweight model for 3D visual occlusion, enabling experiments with
larger swarms.

We consider agent | invisible to agent i if agent k occludes agent j, even partially, from

agent i ’s viewpoint. Each agent is modeled as a sphere with a fixed radius. By representing agents
as spheres, we simplify the 3D problem into a 2D one by projecting the centers of three agents i, j,k
onto a plane containing these points. This projection transforms agent spheres into circles of equal
radius on the plane, allowing us to assess occlusion. We determine if agent k blocks agent j from
agent 1’s perspective by verifying if the sum of their angular half-sizes exceeds their angular
separation, but only when agent k is closer to i then j. This evaluation, repeated for all trios of

agents, is less resource-intensive than ray casting, facilitating rapid simulations for robust statistical
analysis. The model is expressed as:

NS = { ] %k e N1 (6, + 6, > ay Ady <dy )}, (10)

where 6; and €, denote the angular half-sizes of agents j and k from agent i’s perspective, and

a;;, represents their angular separation. This approach captures visual constraints, supporting large-

scale simulations with minimal computational overhead compared to ray casting. Collectively, these
strategies enable us to evaluate how neighbor selection alleviates occlusion effects in vision-based
swarms.

4.4. Swarm performance metrics
To evaluate the effectiveness of our flocking algorithm and neighbor selection strategies, we
define three performance metrics: minimum nearest neighbor distance, alignment, and union. These
metrics assess whether the swarm achieves collision-free, aligned, and cohesive navigation toward
the goal, calculated at each discrete time step K .
The minimum nearest neighbor distance measures the smallest distance between any two
agents, indicating collision avoidance:

d™ =min,_; d;. (11)

We consider a collision to have occurred if d™ < 2r, where r is agent radius, ensuring safe
separation during migration. This metric is important for evaluating the swarm’s ability to maintain
safe distances in dense formations.

The alignment metric quantifies how closely the swarm’s agents move in the same direction:
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A value of 1 indicates perfect alignment (all agents moving in the same direction), while 0
indicates complete disorder. A value of 0.9 is considered sufficient for effective flocking, reflecting
synchronized motion. This metric helps assess the swarm’s ability to maintain coordinated movement
under occlusion constraints.

The union metric evaluates swarm cohesion, indicating whether the swarm moves as a single
unit:

ncomp _ 1

union :1_
¢ N-1

: (13)
where n“™ is the number of connected components in the adjacency matrix. A value of 1 signifies a
fully cohesive swarm, while 0 indicates fragmentation into isolated agents. This metric ensures the
swarm remains connected, a major factor for collective tasks. These metrics collectively provide a
comprehensive evaluation of swarm performance across varying conditions.

4.5. Simulation environments and drone models

We employ two simulation environments to balance computational efficiency and realistic
dynamics. The first is the point mass environment implemented in pure Python, where agents are
modeled as material points governed by simplified kinematics. Each agent's model can be described
as a set of coordinates and a velocity vector in three-dimensional space. This environment does not
account for aerodynamics, inertia, or actuator constraints. Control commands are directly translated
into velocity updates at each discrete timestep. This type of abstraction significantly reduces
computational requirements by simplifying flight dynamics. In this environment, the motion of agent
i at step k+1 is described as:

Pt = pl VAL (14)

This environment supports large-scale simulations with up to 150 agents, thanks to its lower
computational demands, and is particularly suited for performance analysis of flocking algorithms
and various neighbor selection strategies. Simulations can be performed without a graphical user
interface.

Alternatively, the second environment, powered by Gazebo (Gazebo Classic), offers a physics-
based simulation. Considering three-dimensional maneuverability, target applications mentioned in
Section 1, and market availability, a quadrotor was selected as the drone type for our research.
Although Gazebo supports various quadrotor models, the iris model (provided with PX4 Autopilot
for Gazebo) was chosen because it closely resembles common quadrocopter models available on the
market in terms of technical specifications. This model represents a drone with an approximate mass
of 1.5 kg and a rotor arm length of 0.25 m. The quadrotor simulated in the Gazebo environment is
subjected to realistic aerodynamics, inertial effects, and actuator dynamics. As a result, an agent
cannot achieve the desired velocity instantaneously, unlike in the point mass dynamics environment,
which affects swarm performance and may introduce possible collisions and disorder in the swarm.
Control commands generated by the flocking algorithm are sent to the autopilot software (PX4),
which interprets them within the flight control stack. This combination of tools produces a more
realistic representation of actual UAV behavior, including delays and thrust saturation. An empty map
with only ground and other agents, and no obstacles, has been selected for the experiments. Although
this software allows for more realistic experiments, it requires higher computational resources. As a
result, we were able to perform simulations in this environment for smaller swarms (up to 70 agents);
beyond this, simulations become unstable. Although Gazebo and PX4 run asynchronously,
synchronization can be achieved using the lockstepping feature, ensuring fair comparisons across
swarm sizes. Using MAVSDK-Python, we emulated a ground control station to send velocity
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commands and receive telemetry. This simulation was deployed on a PC with Windows 11, running
Ubuntu 20.04 through WSL2. PX4 software and the ground control station were deployed separately
for each agent. In practice, this setup works as follows: the simulation is executed step by step, with
a pause between each step. During these pauses, velocity commands are calculated for each agent
using the proposed algorithms. Next, these commands are sent to the autopilot software for execution.
At this point, the simulation is resumed and executed for At and then paused again. This process
repeats until simulation completion, mitigating computational load increases with swarm size.

The key difference between environments lies in the fidelity of the flight model, computational
demands, and scalability. The point mass dynamics environment ignores aerodynamics and software
control loop side effects, prioritizing scalability, simulation duration, and computational efficiency,
allowing us to perform large sets of experiments with large swarms. On the other hand, Gazebo
incorporates realistic flight physics and actuator dynamics, which results in more realistic simulations
at the cost of increased computational demand and smaller swarm sizes. These environments
collectively enable the evaluation of vision-based flocking under a range of conditions, from idealized
to realistic scenarios.

4.6. Experimental design overview

Our method integrates a cohesive set of components to evaluate the performance of vision-
based UAV swarms in dense, spatial (3D) environments, addressing the impact of visual occlusions
and the feasibility of communication-free flocking. We combine precise mathematical notations, a
robust flocking algorithm, strategic neighbor selection, comprehensive performance metrics,
carefully chosen experimental parameters. Finally, we use dual simulation environments to create a
systematic framework for studying decentralized swarm behavior. This overview synthesizes these
elements, illustrating how they work together to achieve the study’s objectives of assessing occlusion
effects, evaluating neighbor selection strategies, and comparing vision-based and communication-
enabled swarms.

The preliminary notations (Section 4.1) establish a mathematical foundation by defining agent
positions, velocities, and relationships as a directed graph, enabling us to model spatial interactions
and connectivity. These notations underpin the flocking algorithm (Section 4.2), which uses an APF
approach based on Reynolds’ rules of separation, alignment, and cohesion. The algorithm computes
velocity commands that balance social interactions (cohesion and collision avoidance) with goal-
directed migration, ensuring drones move as a cohesive unit toward a target while avoiding collisions.
By normalizing velocities to respect physical constraints, we ensure the algorithm is practical for real-
world UAVs.

Neighbor selection strategies (Section 4.3) are central to managing visual occlusions, a primary
focus of this study. We implement metric, topological, and Delaunay triangulation-based strategies to
limit the number of neighbors considered, reducing computational demands and mitigating occlusion
effects in dense formations. The novel vision-based neighbor selection, supported by a lightweight
3D occlusion model, simulates realistic visual constraints by identifying occluded agents, enabling
scalable simulations without the computational burden of ray casting. These strategies allow us to test
how different neighbor counts and selection methods influence swarm performance under varying
conditions.

Performance metrics (Section 4.4), such as nearest neighbor distance, alignment, and union,
provide a comprehensive assessment of the swarm’s ability to maintain safe separation, synchronized
motion, and cohesive behavior. At some point in the simulation (after 60 seconds of simulation,
considering agents maximum velocity), the swarm enters the equilibrium state, in which the collective
motion has already stabilized, and agents have aggregated into their final swarm configuration. Only
data from the equilibrium period relevant for assessing flocking is considered; to obtain this, we
analyze only the last 25% of steps. Performance metrics are calculated for each agent at each step and
then averaged. Then, run performance metrics are computed as the mean values of the corresponding
step performance metrics. To obtain generalized performance metric values for a specific
configuration (such as swarm size, swarm density level, neighbor selection strategy, and
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environment), multiple runs are conducted. Final performance metrics for a specific configuration are
calculated as the mean values from these multiple runs.

The dual simulation environments (Section 4.5) — point mass dynamics for large swarms and
Gazebo with PX4 for realistic quadcopter dynamics — enable a balanced evaluation. The point mass
environment supports rapid, large-scale simulations to gather data, while Gazebo provides
information about real-world applicability, incorporating aerodynamic and inertial effects. The
lockstepping feature and MAVSDK-Python integration ensure synchronized, controlled experiments,
mitigating computational problems as swarm size increases.

We design our experiments as follows: the swarm is assigned to perform goal-directed motion
in a formation. To achieve this, each agent is given a constant migration velocity vector along the
horizontal axis, regulated by migration gain to balance movement toward the goal with local flocking
interactions. This parameter is critical for the experiments because large values could cause agents to
move toward the goal independently rather than as a formation, leading to fragmentation. Conversely,
if migration gain is too small, the swarm may prioritize local interactions and fail to perform the
intended migration, stalling the mission. At the start of each run, agents are spawned randomly inside
a cube, the size of which depends on the number of agents to ensure similar initial density across
different configurations. We enforce a minimum inter-agent distance constraint in our spawn
algorithm to prevent collisions from the start. Additionally, we include a rule that each agent must
have at least one other agent within a specified radius to avoid initial fragmentation of the swarm. To
ensure consistency across configurations, this radius is defined by a threshold distance used for the
Metric neighbor selection strategy. However, in the Gazebo environment, some additional preparatory
steps are necessary. In Gazebo, quadrocopter must reach the required thrust level to maintain height,
so agents are initially spawned on the ground with subsequent thrust and takeoff commands. Once all
agents reach their designated coordinates, the experiment begins. At this point, agents start receiving
velocity commands generated by the flocking algorithm to assemble in formation while moving
toward the goal, in both environments. Each run lasts the same amount of time (steps). When the run
ends, performance metrics of the swarm can be collected.

Together, these components form a robust experimental framework to investigate vision-based
localization in 3D environments. By simulating swarms of varying sizes (10 to 150 agents) and
densities levels, we assess how occlusions degrade performance and how neighbor selection strategies
mitigate these effects. The comparison between vision-based and communication-enabled swarms
tests the necessity of communication, aiming to validate scalable, infrastructure-independent
flocking.

5. Results of investigating vision-based UAV swarm flocking performance under visual
occlusions in 3D environment
5.1. Results of enhancing swarm flocking method with neighbor selection strategy

We present experimental results evaluating the performance of vision-based UAV swarms in
3D environments, emphasizing the novel neighbor selection method developed to mitigate visual
occlusions and achieve communication-free coordination. Our experiments assess swarm behavior
across varying density levels, neighbor selection methods, and communication scenarios, using
metrics such as minimum nearest neighbor distance (collision avoidance), alignment (velocity
synchronization), and union (cohesion).

The reported metrics are mean values derived from the averaged data over 10 simulation runs
per configuration, ensuring robust representation of swarm performance. The low variability across
runs, as observed in the consistent metric trends, supports the reliability of these mean values, without
evident long tails or high scatter that would undermine the conclusions. The agent radius is set to
r =0.25m, reflecting typical quadcopter dimensions, and the perception radius is r™ =10m,

representing the range of onboard vision systems [5-9]. The maximum speed is V™ =1m/s,
consistent with common quadcopter capabilities. At the start of each simulation, agents are randomly

spawned within a cube, with a minimum separation of r™" =1m and a maximum of r™ , ensuring
consistent density across swarm sizes. The migration velocity is set to v™ =[1,0,0] along the
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horizontal axis, with a migration gain of k™ =0.5m/s, balancing goal-directed movement with
formation stability. The time step is At = 0.1s, sufficient for visual localization and control tasks, and
the simulation duration is T =120s, allowing the swarm to achieve formation and migrate.
Performance metrics are calculated for the last 25% of the simulation to focus on steady-state
behavior. All metrics are calculated for every discrete time step k and then averaged.

The results are organized into two subsections, each addressing a specific objective: occlusion
impact and neighbor selection efficiency and vision-based versus communication-enabled
performance, with novel contributions highlighted through experimental data and figure analyses.

We developed a novel neighbor selection method (metric, topographic, and Delaunay
strategies) to mitigate visual occlusions. We evaluated its impact on swarm performance across dense,
default, and sparse configurations in a point mass dynamics environment. We tested three swarm
densities levels — dense, default, and sparse — by tuning separation and cohesion gains. For dense

=3m/s; for default swarms k3 =1m/s and k" =1m/s

h
swarms, we set Kir =1m/s and kg b it

dense dense

; and for sparse swarms k** =5m/s and k™ =1m/s. Using the point mass dynamics

sparse sparse

environment, we simulated swarms of 10 to 150 agents N {10, 30,50, 70,90,110,130,150}, relying
solely on onboard vision-based localization for navigation. Performance was evaluated through
minimum nearest neighbor distance (indicating collision avoidance), alignment (measuring velocity
synchronization), and union (assessing swarm cohesion). Metrics are illustrated in Figure 1: Figure
la shows the average number of neighbors detected by each agent, Figure 1b displays alignment
values, and Figure 1c¢ presents the minimum nearest neighbor distance across swarm sizes and density
levels.

Avg. number of neighbors Alignment Nearest minimum distance, m
100 1.000 5.00
80 0.900 oo Tl | .
60 0.800 3.00
0.700 —— .
40 2.00 L * = S .
0.600
0 0.400 0.00
10 30 50 70 90 110 130 150 10 30 50 70 S0 110 130 150 10 30 50 70 90 110 130 150
Number of agents Number of agents Number of agents
——Dense —=Default —eSparse —Dense —Default —=Sparse ——Dense ——Default -=-Sparse
a b c

Fig. 1. Performance metrics for different swarm densities: a — Average number of neighbors; b —
Alignment; ¢ — Minimum nearest distance.

The results reveal that purely vision-based localization significantly impacts dense swarms
compared to default and sparse ones. In dense formations, where agents are closely spaced, average
number of neighbors increases significantly (Figure 1a). This causes an increased number of visual
occlusions. This oversaturation of neighbors reduces localization accuracy, causing a marked decline
in alignment (Figure 10), with values dropping below 0.9 for swarms exceeding 70 agents. The
minimum nearest neighbor distance also decreases significantly (Figure 1c¢), approaching critical
thresholds (below 0.5 m) where collisions become imminent, particularly in dense swarms with more
than 70 agents. Default and sparse swarms, with greater inter-agent spacing, exhibit less severe
performance degradation, maintaining alignment above 0.9 and safer distances (above 0.5 m) across
most swarm sizes. The union metric, consistently at 1 for all configurations, indicates that occlusions
do not cause swarm fragmentation, as agents remain interconnected despite localization problems.

To address the performance degradation observed in dense swarms, we applied neighbor
selection strategies (metric, topological, and Delaunay) to limit the number of agents considered as
neighbors for flocking. It tends to reduce occlusion effects and enhance scalability. Experiments
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focused on dense swarms, which are most affected by occlusions, using the point mass dynamics
environment for swarms of 10 to 150 agents N <{10,30,50,70,90,110,130,150}. To prevent initial

disconnection in metric neighbor selection, all agents have at least one neighbor within r™" =4m,
the distance threshold for metric strategy. Parameters used for dense swarm introduced above are
used throughout experiments. Results are presented in Figure 2: Figure 2a shows the average number
of neighbors, Figure 25 displays alignment, Figure 2¢ illustrates minimum nearest neighbor distance,
and Figure 2d depicts the union metric across swarm sizes for each strategy. Furthermore, we
conducted experiments in Gazebo environment with realistic quadcopter dynamics for swarms up to
70 agents to verify the results N €{10,30,50,70}, as shown in Figure 3: Figure 3a (average

neighbors), Figure 35 (alignment), Figure 3¢ (minimum distance), and Figure 3d (union).
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Fig. 2. Performance metrics for different neighbor selection strategies: a — Average number of
neighbors; b — Alignment; ¢ — Minimum nearest distance; d — Union.
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Fig. 3. Performance comparison of material point and quadrocopter dynamics: a — Average number
of neighbors; b — Alignment; ¢ — Minimum nearest distance; d — Union.

Implementing neighbor selection strategies significantly improves swarm performance. By
restricting neighbor counts, all strategies maintain a semi-constant minimum distance (around 1 m,
Figure 2c), effectively preventing collisions even as swarm size increases. Alignment improves
notably, with topological and Delaunay strategies achieving values above 0.9 for most swarm sizes
(Figure 2b), indicating synchronized motion. Metric selection, however, shows a gradual decline in
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alignment for larger swarms (above 90 agents), suggesting it is less robust for scalability. For smaller
swarms (up to 30 agents), Delaunay selection exhibits slightly lower alignment (around 0.85)
compared to topological (above 0.9), likely due to its spatially balanced but less consistent neighbor
selection in sparse configurations. For larger swarms (above 30 agents), Delaunay matches or exceeds
topological performance, maintaining high alignment (above 0.9).

The union metric (Figure 2d) reveals differences in cohesion. Metric and topological selections
show fragmentation risks, with union values dropping below 1 for swarms of 30 (metric) and 50
(topological) agents, indicating subgroups forming due to inconsistent neighbor connections.
Delaunay selection maintains perfect cohesion (union = 1) across all swarm sizes.

Comparison of point mass and Gazebo environments results shows similar trends (Figure 3).
Topological selection maintains higher alignment (above 0.9) for swarms up to 50 agents but shows
fragmentation at 50 agents (union < 1). Delaunay selection sustains viable alignment (around 0.9),
which increases with the swarm size, and perfect cohesion (union = 1), reinforcing its suitability for
larger swarms.

The presented metric values (Figures 1-3) represent mean values averaged over the 10 repeated
simulation runs for each configuration, focusing on the last 25% of each run to capture steady-state
behavior. The results showed consistent patterns across runs, with low variability observed, indicating
reliability of the findings without notable long tails or high scatter in the metric distributions. This
observed consistency aligns with the deterministic aspects of the simulations, such as fixed gains and
migration velocity, though detailed statistical measures like standard deviation or skewness were not
required given the stable outcomes.

The consistency between environments underscores the robustness of these strategies in
realistic settings, where aerodynamic and inertial effects are considered. Neighbor selection strategies
significantly enhance dense swarm performance by mitigating occlusion effects, maintaining safe
distances, and improving alignment. Topological selection excels for smaller swarms (up to 50
agents), while Delaunay is superior for larger ones, ensuring cohesion and scalability. Metric
selection, while effective for collision avoidance, is less robust for alignment and cohesion in larger
swarms.

5.2. Results of performance comparison between vision-based swarm with applied neighbor
selection strategy and communication-enabled swarm

We assessed our vision-based neighbor selection method against communication-enabled
swarms to determine if communication-free coordination achieves comparable performance, using
experimental data from point mass simulations of 10 to 150 agents. All agents in a communication-
enabled swarm are aware of the positions of other agents. We selected topographic and Delaunay
strategies, which outperformed metric selection in Section 5.1, for their occlusion-resilient properties.
The results are presented in Figure 4: Figure 4a shows the average number of neighbors, Figure 45
displays alignment, Figure 4c illustrates minimum nearest neighbor distance, and Figure 4d depicts
the union metric for vision-based and communication-enabled swarms.

Our contribution demonstrates that vision-based swarms, using our neighbor selection method,
achieve performance comparable to or better than communication-enabled swarms, a significant
advancement in decentralized coordination. Topographic selection yields higher alignment (above
0.9) for swarms up to 50 agents compared to communication-enabled swarms (around 0.85, Figure
4b), due to reduced occlusion noise. Delaunay selection maintains high alignment (above 0.9) and
perfect cohesion (union = 1) for larger swarms, matching or surpassing communication-enabled
performance (Figure 4d). Minimum distances remain comparable (around 1m, Figure 4¢), ensuring
equivalent collision avoidance. Topographic selection shows fragmentation risks above 50 agents
(union < 1, Figure 4d), while Delaunay’s robust cohesion makes it ideal for scalability.
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Fig. 4. Performance metrics for vision-based neighbor selection strategies in comparison with all-to-
all connected strategies: a — Average number of neighbors; b — Alignment; ¢ — Minimum nearest
distance; d — Union.

This result validates the feasibility of communication-free, occlusion-resilient flocking in 3D
environments, advancing swarm robotics by eliminating external dependencies, unlike prior studies
reliant on communication.

6. Discussion of results regarding vision-based swarm flocking under visual occlusions in 3D
environment

This study advances swarm robotics by developing a neighbor selection method for occlusion-
resilient, vision-based UAV swarm coordination in 3D environments, addressing the problem of
visual occlusions. Our results demonstrate that occlusions from neighboring agents impair dense
swarm performance, driven by oversaturated neighbor detection that disrupts vision-based
localization. Sparse and default configurations experience milder setbacks due to fewer occlusions,
enabling stable alignment (above 0.9) and safer distances (above 0.5m). The observed degradation in
dense swarms — alignment dropping below 0.9 and distances below 0.5m for swarms exceeding 70
agents — stems from increased occlusion frequency, which reduces localization accuracy and increases
collision risks. This analysis highlights the need for density management and occlusion-mitigating
strategies to ensure collision-free flocking.

Our neighbor selection method, comprising metric, topographic, and Delaunay strategies,
effectively mitigates occlusion effects representing a novel contribution to swarm robotics. All
strategies maintain consistent inter-agent distances (around 1m, Figure 2c¢), minimizing collision
risks. Topographic selection excels in small swarms (up to 50 agents) because its fixed neighbor count
reduces occlusion noise, achieving superior alignment (above 0.9, Figure 2b0), consistent with prior
findings on limited interactions [9-11, 14]. However, its fragmentation in larger swarms (union < 1
above 50 agents, Figure 2d) results from inconsistent neighbor connections. Conversely, Delaunay
selection’s spatially balanced tetrahedral mesh ensures perfect cohesion (union = 1) across all swarm
sizes and high alignment (above 0.9) for larger swarms. However, it shows slightly lower alignment
(around 0.85) in small swarms due to sparse connections (Figures 25, 2d). Metric selection, less
effective, struggles with cohesion (union < 1 above 30 agents) and alignment due to variable neighbor
counts. These results, validated in Gazebo simulations (Figure 3), confirm that topographic selection
is optimal for smaller swarms, while Delaunay excels for larger ones, offering a scalable solution for
large-scale missions such as environmental monitoring. Our results align with prior works on vision-
based swarm challenges but extend them to 3D environments. For instance, it was reported occlusion-
induced performance degradation in 2D settings [9], with similar declines in alignment and cohesion,
though without quantitative statistical measures like standard deviation in their analysis. Our neighbor
selection method achieves higher alignment (above 0.9) and perfect cohesion in 3D, surpassing their
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findings by addressing spatial occlusions, which were not explored in their planar focus. The observed
consistency in our mean values across runs reinforces the robustness of these personal contributions,
distinguishing our work from existing literature that often overlooks 3D dynamics or reports results
without scatter analysis.

Our comparison of vision-based and communication-enabled swarms reveals that our neighbor
selection method enables communication-free coordination that matches or surpasses
communication-enabled performance. Topographic selection achieves higher alignment (above 0.9
vs. 0.85, Figure 4b) in small swarms by minimizing occlusion noise, while Delaunay maintains high
alignment and perfect cohesion in larger swarms (Figures 4b, 4d), driven by its robust neighbor
connections. Comparable minimum distances (around 1m, Figure 4c¢) indicate equivalent collision
avoidance. This novel finding eliminates the need for communication, freeing bandwidth for data
transmission and enhancing resilience in GNSS-denied environments. In conclusion, our method
addresses the occlusion problem by enabling scalable flocking with topographic and Delaunay
strategies, optimizing performance for various swarm sizes, and advancing decentralized swarm
robotics.

Despite these advances, our occlusion model assumes a spherical agent shape, which might not
accurately reflect the complex geometry of UAVs. However, since UAVs can vary in shape, carry
extra equipment such as landing gear, or have different payloads attached to the top or bottom, a
spherical model remains a practical alternative. It provides a more general approach to modeling UAV
geometry for the occlusion model, while enabling large-scale simulations by reducing computational
complexity. We believe that this model strikes a balance between realism and efficiency, while
accounting for the complex shapes of real-world UAVs. Future research may focus on refining the
model to enhance the practicality of our research for real-world applications and deployments.
Exploring reinforcement learning (RL) [13] could further enhance occlusion mitigation and
scalability, while real-world experiments would validate our findings under dynamic conditions. RL
can be used to develop a new neighbor selection strategy that does not depend on swarm size.
Alternatively, RL algorithms can improve flocking algorithms, making them more suitable for real-
world environments with many obstacles, which could also affect the swarm performance. These
prospects promise to advance swarm robotics for applications addressing the growing demand for
autonomous, infrastructure-independent systems.

The research was implemented within the National Research Foundation of Ukraine project No.
2023.04/0077 “Drone for water sampling”.

Conclusions

Our study establishes the feasibility of occlusion-resilient, vision-based UAV swarm
coordination in 3D environments. We developed a novel vision-based UAV swarm flocking method
suitable for 3D environments, an area that has been under-researched in previous works. This method
utilizes neighbor selection strategies such as metric (considering only agents within the threshold),
topological (considering only n-nearest agents), and Delaunay (considering agents that share ridges
produced by Delaunay triangulation). Neighbor selection restricts neighbor count, thus mitigating
visual occlusions. This discovery enables significant advancements in swarm performance.
Experimental data reveal that, without neighbor selection, dense swarms suffer degraded alignment
(below 0.9) and reduced minimum distances (below 0.5 m) for swarms exceeding 70 agents,
increasing collision risks. By applying proposed selection strategies, we can boost swarm
performance to achieve levels adequate for real-world deployments. For instance, topographic
selection ensures high alignment (above 0.9) and stable distances (around 1 m) in small swarms (up
to 50 agents). In contrast, Delaunay selection maintains perfect cohesion (union = 1) and high
alignment across all swarm sizes, especially excelling for larger swarms. This novel method enhances
scalability and safety in dense 3D formations, offering practical value for applications where
occlusion-prone environments are common.

Further experiments comparing purely vision-based swarms with communication-enabled ones
reveal that the optimal vision-based neighbor selection method enables communication-free swarm
coordination that matches or exceeds the performance of communication-enabled swarms.
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Topographic selection achieves superior alignment (above 0.9 vs. 0.85) in small swarms, while
Delaunay selection sustains high alignment and cohesion in larger swarms, with comparable collision
avoidance (distances around 1 m). This eliminates the need for inter-agent communication, providing
a robust, infrastructure-independent alternative that enhances operational efficiency in GNSS-denied
settings, such as disaster response or urban surveillance. These conclusions, validated in Gazebo
simulations, underscore the practical significance of our method for scalable, autonomous UAV
swarm deployments, thereby advancing prior work that relies on communication or simplified 2D
models.
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N03BOJISAIOTh BUKOpHUCTOBYBaTH poi BIIJIA 11t mourykoBo-pATYyBaJbHUX OIEpalliid, y CUIbCbKOMY
rOCIO/IapCTBl, €KOJOTTYHOMY MOHITOPUHTY Ta CIIOCTEPEKEHHI Y MICBKOMY CEpeloBHUIIL. 3 IHIIOrOo
00Ky, Taki poi Bpa3iMBi JO BTpaTH CUTHANY, DIYIIIHHS Ta 0OMeXeHOi MaclITabOBaHOCTI yepes
3aJIeKHICTh Bil IOOAJbHUX HaBIrallIMHUX CYMYTHUKOBHX CHUCTEM Ta Oe3qpoToBOTrO 3B’s3Ky. Lle
JOCIIPKEHHS CIPUS€E PO3BUTKY POEBOI POOOTOTEXHIKHM 32 PaxyHOK CTBOPEHHS HOBOI'O CTIHKOTO 10
B3yaJbHUX TIEPEIIKOJ] METOIy BHOOpY CYCimiB Juisi APOHIB HAa OCHOBI Bi3yaJlbHHX JaHUX B
TpuBuMipHoMy cepenoBuimi (3D). Ileli meTox A03BOJISE BUPIMIUTH MPOOJIEMY, CIPUUYUHEHY
B3yaJJbHUMH TEPENIKOJIaMU, SKa 3/1aTHAa MOPYIIMTH JACUIEHTPATI30BaHy KOOPAWHAIIID por. Mu
PO3MIAIAEMO 3a/1a9y KOOPJAWHALI PO Yy BUIIIAI IITYYHOTO MOTEHIIMHOTO TOJIs, HAa BIAMIHY Bij
MOTIEPETHIX JI0CIIHKEHb, K1 (POKYCYBaJIMCh HA ABOBUMIPHUX CEPEIOBHUIIAX a00 K HAa BUKOPUCTAHHI
3B’s13KY. J{J1s1 OIIHKY POAYKTHBHOCTI BUKOPUCTOBYIOTHCS TaKi METPUKH, SIK MiHIMaJIbHA BiJICTaHb JI0
HaWOMKYOro cycima (yYHUKHEHHsI 3ITKHEHbB), Y3TO/DKCHICTh (CHHXPOHI3AIlisl IIBUIKOCTEH) Ta
€HICTh. BukopucTaHHs cepefoBHINa 3 JUHAMIKOI MarepialbHOi TOYKH Ta CEPEIOBHINA 3 OUIBII
PEaNiCTUYHOIO JUHAMIKOIO KBaJAPOKOIITEpa J03BOJISIE HAM OI[IHUTH MOBEAIHKY POIO Y BUIAJIKY TICHOT,
3BHYAHOT Ta po3ocepemkeHoi KoHoirypaiii. PesynbraTH, OTprMaHi HamMu, NOKa3yloTh, IO
MEPEIIKOIM HeTaTUBHO BIUIMBAIOTh HA Y3ro/pKeHICTh (Huxk4ve (0.9) Ta MiHIMalbHY BIACTaHb (MEHIIIE
0.5M) y TicHOMY polo, SKMi Hamiuye Outbmie 70 areHTiB, MO MiABUILYE HMOBIPHICTH 3ITKHEHbB.
3anpornoHOBaHUM HaMU METOJ, KU BHUKOPHUCTOBYE METPHUHY, TomorpadiuHy cTparerii abo x
CTpaTerito 3 BUKOPUCTAHHAM TpiaHrymsanii JlenoHa, J03BOJSiE YHUKHYTH IUX HpoOIeMm.
Tonorpadiuauii BuGip 103BOJISIE TOCATTH BUCOKOTO PIBHS Y3roKkeHOCT] (Outbiie 0.9) mist HeBEeMUKUX
poiB (mo 50 arentiB). 3 iHmIOro 00Ky BUKOpHUCTaHHs TpiaHTymsauii Jenona 3abesmnedye igeanbHy
€IHICTh Ta BHCOKY Y3TO/DKEHICTh MJIsi poiB BCiX po3MmipiB. JlaHi TBepIKEHHS MiIKPIIUICH]
pesynbTaTaMu, OTPUMAHUMHU 3a JOMOMOrok cumymsimiii. Ham mertox no3Bomsie mo30aBUTHUCH
BUKOPHUCTAHHS 3B’SI3KY JAJISl KOOPIMHAIIT poto, 3a0e3mnedyroun abo MepeBHILYIOYH TPOAYKTHBHICTh
poro 31 3B’s3koM. lle MOXJIMBO 3a pPaxyHOK BHUKOPHUCTAHHsS TOMNOJOIIYHOrO BHOOpY CycCiIiB
(y3romxenicts 0.9 npotu 0.85) /U1 HEBENIUKUX POiB Ta BUOOPY HAa OCHOBI TpiaHT YLl Jlenona ams
Outbiiux. HaBeneHi pe3ydabTaTH JOBOJSATH, IO BHUKOPUCTAHHS 3B’SA3KYy MDK areHTaMu HE €
HEOOXITHUM JJIsl KOOpAMHALi poro. BiAmoBimHO, 1€ M03BOJIA€ MIIBUIIUTH CTIHKICTH PO Ta
NPONYCKHY 3[aTHICTh KaHaJiB 3B’sA3Ky /I mnepenadi iHmoi iHdopmanii. Buxopucranss
3aIPONOHOBAHOTO METOJy J1I03BOJIIE CTBOPUTH MaclITabOBaHUMN, HE3aNeKHUH BiJ IHPaCTpyKTypH
¢peiimBopk it poiB BITJIA, mo Hece MpakTUYHY LIHHICTH JJIS aBTOHOMHHX oOTepaliii poiB B
CKJIAJJHUX CEpEe/IOBUINAX 3 BUCOKOIO KUTbKICTIO BI3yaJbHUX MEPEIIKO/.

Knrouosi cnoBa: piii BIIJIA, BidyanbHa Jokaiizalis, KOHTpOJdb (opmarlii, JelneHTpaai3oBaHa
KOOPJHMHALIS, IITYYHE MOTEHIlIAIbHE TOJIe.



