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The rapid growth of unmanned aerial vehicle (UAV) applications in the modern world imposes
significant demands on the reliability of control logic. An error in the sequence of stages can lead at best
to inefficient battery usage or violations of airspace regulations, and at worst to an accident with loss of
the vehicle and potential harm. Control is usually implemented using scripts or behavior trees, which
complicates maintenance. The reason is that the size of the source files quickly increases, and when it
becomes necessary to add new functionality or modify existing logic, there is a risk of introducing
vulnerabilities by failing to account for all possible situations. This is why High-Level Petri Nets (HLPN)
were chosen, as this method addresses the problem of formally describing the control system and allows
the system to be easily scaled or modified in any way.

The aim of the study is to develop and validate a model based on HLPN that will serve as the single
source of truth for UAV swarm control. In the proposed model, the places correspond to flight stages,
and the tokens carry numerical parameters such as battery charge, coordinates, and telemetry. Thus, a
single scheme simultaneously describes discrete events and constraints. For each transition, conditions
are formalized to verify the possibility of its execution, such as checking the minimum required battery
level or verifying location.

The methodology includes several stages. First, the network structure is formally defined. Then,
based on this structure, a Python model is built that implements the developed network, controls
movement between states, and ensures the correct sequence of transition firings. After developing the
model, testing and analysis of the obtained results are performed.

The results show that using HLPNs to build a model for verifying commands in a discrete mode
indeed ensures a correct description of transitions between states and increases the reliability and
survivability of the developed control system model, while also significantly reducing maintenance
efforts. The developed model is easily adaptable to route changes, addition of sensors, or functional
expansion.
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1. Introduction

This article is about information systems, autonomous control systems, and formal methods. It aims
to solve the problem of describing and verifying the logic that drives an Unmanned Aerial Vehicle
(UAV) swarm, ensuring that every step of a mission is both correct and easily auditable. Autonomous
UAVs are part of the broader field of intelligent systems. They are the machines whose software
decisions have direct physical effects. Inside this area, the work focuses on the formal modeling of
discrete-event behavior. Formal models are great because they allow us to test ideas in mathematics
first, then in simulation, and finally on hardware.

For instance, delivery UAVs must switch between clearly defined flight stages. If the controller
skips, repeats, or mixes steps, the craft can crash, violate air-space rules, or waste energy. Traditional
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code bases grow into legacy, hard-to-debug systems, and popular behavior-tree editors cannot provide
strong guarantees. The general scientific problem is, therefore, the lack of a simple, verifiable model
for mission-level control that scales from whiteboard sketches to executable code.

We argue that HLPNs are well-suited for this role. In a High-level Petri Net (HLPN), circles
(places) mark flight stages; bars (transitions) mark commands; a dot (token) shows the current state
[1]. Tokens in HLPNs can carry numbers, such as battery level and GPS coordinates, allowing the
same picture to capture both discrete events and continuous limits [2]. Simulations can execute the
net, explore every possible path, and prove constraints such as the UAV always returning to the base
or never lifting off with insufficient energy. Safe, explainable control of small UAV swarms is a live
challenge for spheres such as agriculture, inspection, and emergency for the analysis, but logistics.
Regulators are increasingly requiring evidence that autonomous aircraft will follow prescribed steps
and stay within established security margins. Formal models, such as HLPNs, provide that evidence
at a modest cost [3].

Therefore, the presented research is important, because it fulfills an urgent industrial need, and
in a meanwhile participate in an academic discussion regarding usage of the graph-based formal
methods for robotics.

2. Literature review and problem statement

Modern UAV operations still use the canonical stage chain Ready — Take-off — Route —
Land, and any skipped, repeated, or confused stage can lead to crashes, air-space violations, battery
waste, or mission aborts. In [3] authors highlight the same issue but for Autonomous Underwater
Vehicles. The only difference is the operation space, water vs air. Because of using the tree analysis
approach, if a failure occurs, it is hard to understand whether the current mission can be successfully
finished [3]. Also, it is worth noting that the control logic for UAV swarms is rarely centralized. In
practice, flight-control logic is often a mix of handwritten state machines and ad-hoc scripts, frag-
mented across the entire code base with various validation rules.

Additionally, essential parameters such as battery, payload, route geometry, and wind drift
change from mission to mission. Moreover, as noted in [4], stochastic effects, such as failures, must
also be included in the model, which adds a new problem. In conclusion, all of the above require extra
code checks that pile up and quickly become unmanageable. The challenge escalates once a swarm
flies beyond the visual line of sight. After this, every in-air command must be provably valid. On the
one hand, behavior-tree-based scripts can offer quick prototyping but are essentially unable to block
all illegal commands during flight, leaving a safety gap between simulation and reality and introduc-
ing a “third-party-risk gap” [5].

Some research shows that HLPNs can solve the problem above because they handle discrete
flight modes and continuous numeric resources in a single graph. In [4], the authors use colored
tokens to model inspection drones, including stochastic repair times, and demonstrate that CPN
enables easy reconfiguration of inspection patterns. In [6], the idea is extended to wireless-power
UAV fleets, modeling both energy flow and information latency in a Petri net. Furthermore, in [7],
the authors introduce a spatial-temporal hybrid Petri net that controls physical motion for
heterogeneous UAV clusters and formally verifies attack-mission timelines. These studies
demonstrate that Petri nets can effectively express the rich behavior of UAVs; however, in all these
cases, the nets primarily serve as analysis tools and lack essential safety features. Also, large-scale
UAV swarms are dependable on communication links, resource reserves, and real-time fault isolation.
As mentioned in [9], connection outages are instead an external surprise rather than an integral part
of the mission [9]. Additionally, [6] demonstrates that wireless-power missions must consider energy
utilization and information latency. The paper [10] indicates that we can detect intermittent sensor
faults online; however, they usually do not automatically reroute or replan the mission.

The analysis of literary sources highlighted the existence of several unresolved problems that
arise when controlling a swarm of drones.
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The main problem is that for a swarm of drones, there is a need for strict formalization of the
behavior of the swarm members since any missed or uncoordinated step can lead to accidents,
airspace violations, loss of battery power, or mission interruption.

Another critical issue is ensuring adaptability and safety. There is a need to easily scale the
control system from a few drones to hundreds. The drone control system must support all safety
checks, despite changes in internal conditions (such as battery level or stochastic influences).

3. The aim and objectives of the study

The object of the research is the process of developing a HLPN based control systems for a
swarm of UAVs operating in a dynamically changing environment.

The aim of this research is to implement a control model for the UAV swarm based on HLPN.
This allows to introduce a strict formal description of behavior while ensuring scalability and ease of
extension. Basically, we should be able to use the model not only for the analysis but also be able to
use it for mission flow control.

To achieve this goal, the following tasks are set:

— To develop an HLPN based, scalable, safety-compliant control model that ensures strict
control over UAV swarm members to prevent accidents, like battery depletion, or mission failure.
Also, it should support seamless expansion from a few units to hundreds while maintaining
adaptability to internal condition changes. Finally, it should be easily adaptable for route changes,
addition of sensors or other functional expansion with as less maintenance efforts as possible.

—To perform modeling and then evaluate its effectiveness by concluding a comparative analysis
of the modeling results.

4. Materials and Methods for developing a UAV control system using HLPN

The research methods of the article are the methods and models for adaptive control and safe
reconfiguration of UAV swarms in a dynamically changing environment, particularly using HLPNs
for formal behavior modeling, safety assurance, and swarm coordination under environmental
uncertainties.

4.1 The object and hypothesis of the study

This study aims to develop a drone swarm control model based on HLPNs. The first step in
building the model is to define an HLPN, which formally describes the behavior of a drone in a swarm
as a bipartite graph, the nodes of which are represented by places and edges represented by transi-
tions. Each place contains a defined data structure that specifies the current state of the drone, and
the transition with Guard determines the conditions for modifying the state.

The second problem identified in the literature review is ensuring the adaptability and safety of
the swarm in conditions of dynamic environmental change. Improving current results in this direction
requires further research and application of artificial intelligence technologies. In this work, this task
will be solved by aggregating a set of HLPNs of swarm participants into a single model at a new
hierarchical level, thereby ensuring coordination of swarm participants by eliminating critical situa-
tions.

To do this, we use transition Guards for critical transitions. These rules encode safety checks,
such as minimum energy for takeoff and geo boundaries, ensuring that only legal commands can be
fired, even when noisy telemetry or incorrect operator input is present. We conduct a reachability
analysis to demonstrate that the conditions defined in the previous paragraph are met. The pre-flight
checks are conducted so that the UAV never leaves the Ready stage in an invalid or nearly invalid
state (i.e., with an insufficient battery level to perform the mission). Every UAV in the swarm even-
tually reaches OnBase, and the battery charge during the mission always remains within bounds.
Finally, we implement the model work simulation, which records each firing sequence, allows for
fast what-if tests, and leaves the ability for later experiments. A simulation code traverses the network,
logs each firing sequence, and leaves hooks for later hardware-in-the-loop tests. A mission serves as
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the running example, and we compare the modeling effort, clarity, and verification cost. Thus, by
placing resource tokens, stochastic failure transitions, and transition guard checks in one executable
graph, Petri nets move modeling from manual audits into a live and adaptive safety mechanism that
keeps the swarm in valid states all the time.

To summarize, the objectives described above support the primary goal of the research. They
help ensure that the developed model will deliver a simple yet fault-tolerant control system for the
UAV swarm that can be easily expanded with new functionality while maintaining provable safety.

4.2. Justification of the concept of controlling UAV swarms using Petri nets

We decided to choose HLPNs because they combine the clarity of classical Petri nets with typed
tokens that can store battery charge, 3D position, and mission flags in a single model. It allows one
diagram to express both mode switches (discrete places) and resource limits (7oken attributes),
satisfying the “single source of truth™ goal set in paragraph 2. Petri nets natively support concurrency
and blocking guards, which closely match the reality of UAVs that must arbitrate between navigation,
safety, and payload tasks. Compared to conventional control logic, such as Finite-State Machines
(FSMs) or behavior trees, HLPNs offer two technical advantages.

In an FSM or a behavior tree, the mission graph is implicit: states are scattered across functions,
while event guards are located in many if-else clauses. Adding a new branch (for example, “return if
low battery”) involves tracing many code paths to ensure that no unreachable or cyclic states appear.
A HLPN, in contrast, renders every flight stage as a place and every command as a transition, so the
complete set of paths is visible in one diagram [5]. Formal reachability tools are built-in and can
analyze that diagram to ensure constraints, such as “the UAV always reaches base” or “cannot take
off with less than 75% battery”. Consequently, design reviews focus on a single artifact rather than
scattered source files.

In non-Petri frameworks, quantitative limits (such as battery level or coordinates) live in ad-
hoc variables that must be checked repeatedly [6]. Petri nets allow the encapsulation of those numbers
into the token itself [7]; guard functions operate on the live token, so every transition fires only when
its pre-conditions are valid. This tight integration shortens debug cycles and allows researchers to
improve the controller gradually (by adding timed or stochastic extensions, for example) without
switching tools.

In summary, while FSMs and behavior trees are quick to prototype, HLPNs provide a
mathematically grounded, single-source model that scales easily. It makes them the stronger choice
for any project that needs to control a UAV swarm and requires different regulatory approvals and
operation safety.

4.3. Description of the HLPN model of the control system and tools

A Petrinet is formally defined as a tuple, N=(P, T, A, G ). Places (or States) P={Ready, Takeoff,
EnRoute, AtTarget, Returning, OnBase, Charging} correspond to flight stages. Transitions are bridges
between mission steps: T={CanlakeOff, TakeOffToEnroute, IsEnRoute, IsAtTarget,
IsMissionComplete, IsReturning, IsOnBase, Chargel}. Arcs A connect places with transitions.
Guards G are boolean functions that accept the token as a parameter and verify if the transition firing
is allowed. The logic of these Guards is reflected in the name of tramsition. For example, for
IsAtTarget the function compares drone coordinates with mission coordinates. Overall, this approach
ensures that every step is completed, and the system goes only from a valid to a valid state. The
changes in Token status will be handled automatically as well.

There are a few tools that can be a good choice for HLPN prototyping. We will consider the
platform, programming language, functionality, and the possibility of integrating with other tools. For
example, visual simulations are usually performed in the Gazebo GUI, while control commands are
typically sent from ROS2 [8]. Both tools are available on Linux, with only limited support for Mac
OS and Windows. Regarding UAVs, most software also offers better support for Linux, making the
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platform particularly important in this context. Additionally, the modeling tool must support colored
HLPN; otherwise, the logic will be incomplete.

In Table 1, we mainly chose scientific tools (because some tools are business-oriented). The
graphic interface is not considered a very important factor because there are many third-party libraries
that can help with it, such as NetworkX or GraphViz. Additionally, the license should permit the use
of'the tool freely, allow for modification if needed, and permit the publication of results obtained with
it. The great examples of it are MIT or LGPL.

Table 1. Comparing Petri net tools

HLPN State-space | Integration | | . N
Tool Platform support analysis & AP License Suitability
Basic Basic Lightweight;
CPN Eclipse- h_leradrchy, reachability; Jallva/I_Ecllpse mteg/ratllc_)n |r.1
IDE  |based IDE U0 relies on plug-in GPL |Java/Eclipse;
extensions system; Less mature
- external solvers .
limited analysis features
Easy drawing, but
. . |Java API, HLPN and
Java Basic colours Partial (apaIyS|s CLI; no analysis still
PIPE 5 . modules in PIPE MIT . )
desktop via GSPN 4 only) Python catching up;
y bridge Python glue code
needed
Directly
embedded in
Coloured . the same . .
Plugins for ) lightweight,
Snakes Rure Python net.s, Python reachability, codebase; LGPL-3 |headless,
library objects as model-checkin seamless roarammable
tokens 9 with NumPy, prog
NetworkX,
etc.
State space Efficient and
. . pace, CLI tools, rigorous for TPN;
Time Petri  |symbolic, .
GUI (nd) Nets (no full |temporal logic PNML Less expressive
TINA |and C/C++ P g import/export| Free than CPN Tools;
HLPN (CTL/LTL), . e
analyzers ; no Python Split utilities
support) structural brid ) 4 of sinal
analysis ridge instead of single
IDE
Scalable Provides both
Obiject- discrete-event visual editing and
PetriObj Java oriented and |simulation; Java API; no executable object-
Model stochastic graphical editor, | Python MIT oriented models,
X desktop . . :
Paint multichannel | mean token bridge however, is
Petri nets) counts, buffers, limited to desktop
final state; only

Because the surrounding simulation (e.g., ROS2 node) is already written in Python, Snakes
eliminates language barriers. Therefore, the places, transitions, guards, and other elements like
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monitoring or cloud-integration [9, 10] can be integrated directly into it. Additionally, its plugin
system further enables future extensions, such as timed networks or stochastic firing weights, without
requiring a switch to other tools. Finally, Snakes is known for its execution and verification backbone,
which is suitable for the proposed HLPN-based UAV controller.

4.4. Development of a mathematical model and formal Petri net for swarm operations
To monitor mission health for a fleet of n UAVs, we propose the following model that aggre-
gates three key parameters for every craft: battery reserve, route length, and malfunction probability.
Power consumption is often considered a bottleneck because everything depends on it: moving and
controlling channels. [6] The following formula explains the energy part of the model:

B =100—-%1, b, 1)

where b; is the current battery level (in %) of the i-th UAV; B thus measures the average energy deficit
of the swarm. This value indicates that if it is high enough, the UAVs will not be able to return.
Another critical parameter is operation range, L , the following formula allows to calculate it.

1
L=2301, 2)
where [; is the route length int i-th UAV, it measures the average path of the swarm, so the higher it
is, the better is the result.

The probability of a UAV malfunction p; is determined by the formula (3):

Di =ﬁ( . )2(100—bi)2, (3)

lmax

where J is a relatively small value that keeps the value realistically small, so when the route is 80%
of the max, and the battery is 80%, the probability of malfunction will be 0.2. The quadratic
dependence on both distance fraction and energy deficit captures the intuition that faults are
exponentially likelier when a heavily loaded craft starts a long leg with little reserve.

4.5. The model of UAV swarm control system based on HLPN

To control the work, we use a control system based on Petri nets. As a result, the developed
prototype of the method is tested for reliability. According to the problem statement, the Petri net
(Fig. 1.) controls several markers (in the case of UAVS). In the figure, the system is at stage 1.

The first prototype of the model contained only the four core transitions: Start — Take-Off —
Move — Land. Additionally, it did not include an auto-return branch that could force the UAV to
abandon its task and head back as soon as safety margins (such as battery and link quality) were
violated. Simulation results showed that the minimalist net completed around 76% of flights in the
100-UAV test set. The remaining exhausted their batteries during the initial states or got into an
undefined state during the mission.

Because the initial Petri net structure lacked a guarded transition, the reachability graph exposed
dead-end markings. It was confirmed at design time that a security analysis is needed to check where
most failures occur. This weakness motivated the revised model (Fig. 1) in which a ProblemOccured
transition was introduced. It can be fired during Takeoff or ISEnRoute. This fact guarantees that, even-
tually, every movable state marking contains a path to IsOnBase. Subsequent experiments increased
the success rate, validating the design change and illustrating how a single well-placed transition can
enhance mission-level reliability.

Stages of the control system.

Stage 1. All tokens (3 UAVs in our case) are in Ready place. If the condition for the TakingOff
transition is met, tokens move further and are put in the Takeoff place.
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Stage 2. Depending on takeoff, two scenarios are possible:
— If everything is OK, the TakeOffToEnRoute transition is fired, and tokens are put in stage 3
— If TakeOffToEnRoute is not allowed, tokens are put in stage 5.

Stage 3. Depending on the UAV state, there are three possible cases:

— The target is not reached, and there are no problems; fire EnRoute and stay at this stage.
— The target is reached, fire AtTarget, and move to stage 4.

— If the target is not reached and problems occur, move to stage 5.

Stage 4. According to the plane mission, action is done, and tokens move to stage 5.

Stage 5. It is similar to stage 3 but with two possible cases:
— The base is not reached, and there are no problems; fire Refurning and stays at this stage.
— The base is reached, fire OnBase, and move to stage 6.

Stage 6. Charging the UAVs

Stage 7. If the transition guard condition is met, fire Charged and move to stage 1.

There are 3 States with multiple possible transitions, however they are mutually exclusive. For
example, if the problem was detected then it is impossible to switch from 7akeOff to IsEnRoute. The
transition Guard in TakeOffToEnroute will not allow it. Similarly, switches from IsEnRoute to
IsAtTarget or from IsReturning to IsOnBase are possible only if there are no problems and target or
base coordinates were reached. The transitions are multichannel, meaning all tokens will be moved
if it 1s allowed. The system aggregates all UAVs as Tokens and manages them simultaneously.

EnRoute

Ready TakingOff Takeoff TakeOffToEnroute

.
D—f— =
IsEnRoute

AtTarget

Charged ProblemOccured
lsOnBase OnBase sReturni
k. I= { e I= sretumning MissionComplete
-/
IsCharging Charge

Returning

Fig. 1. Swarm operation control Petri net

Although the current control net contains only seven states, this is rather a strength than a lim-
itation. A resulting HLPN is very modular: adding a new state and transition guard means attaching
an extra function to an existing place while introducing a new maneuver, such as “ChangeLeader”
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or “ChangeFormation” Additionally, the control net can operate in both edge and cloud modes,
which increases reliability. The original net remains unchanged, and its previously verified properties
still hold. Suppose the controller expands beyond a single scenario, such as movement, as discussed
in this article. In that case, support sub-nets can be coupled through shared places or synchronous
transitions, allowing the control net to interact with an obstacle avoidance net.

As we can see, the UAV swarm can navigate through the mission's steps (places) using the
developed control network. In addition, the check for transition firing possibility allows us to ensure
that UAVs in the swarm are moved only from one valid state to another and can be safely brought
back in the event of a malfunction. Additionally, if some UAVs are lost, the mission will continue
until at least one operational UAV remains, which enhances reliability.

5. Performing testing of the developed UAV swarm control model based on Petri net

The investigation was performed on the prototype HLPN model described in Section 4.2. Two
Petri net variants were examined: one without the auto-return transition and one with it enabled. The
experiment proceeded as follows:

— Scripts were prepared to generate random mission profiles (launch charge 70-90%, route
length 5-10 km) and to execute both nets in the Snakes engine.

— A total of 100 UAVs were instantiated; their battery levels, routes, and completion statuses
were logged.

— Every 20 milliseconds, the simulator updated token markings and wrote results to a CSV file,
enabling live plotting.
The scatter plots on Figure 2 shows the success rate with and without auto-return. The UAVs in the
bottom-right corner (those that have the longest route and lowest charge) have exhausted their
batteries and are marked with red cross symbol, according to (3).
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Fig. 2 (a). Number of failed UAVs: model without auto-return
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Fig. 2 (b). Number of failed UAVs: model with auto-return

Figure 2a presents the plot without auto-return step and 25 repeats the plot with auto-return; on
the second plot the failure cluster disappears, confirming that the transition prevents energy depletion.

The experiment demonstrates that adding guard-driven transitions to the HLPN eliminates
mission failures under the given energy model and parameter set. In other words, with this new check,
the swarm controller can check that for some UAVs, there is not enough power and set it in auto-
return mode. Some UAVs still fail due to other reasons, such as connection issues or other technical
problems.

6. Discussion of the results from the development of the HLPN model
The formal reachability analysis conducted in Snakes confirms that the HLPNs controller ful-
fills its three target properties: the UAV never departs Ready with insufficient energy, every legal
mission eventually reaches ReturnToBase, and the battery charge remains within physical bounds.
This result is significant because it is obtained directly from the net's mathematical semantics rather
than from long-running simulations. In practice, it can be rerun on every hardware whenever we
tweak a guard or add a new flight stage, delivering continuous assurance at design time.
The UAV’s structure is a single-colored token that carries battery, position, and mission flags.
This fact keeps the diagram readable while avoiding the need for auxiliary scripts. Guard predicates
are expressed in ordinary Python using Snakes library. It makes domain rules transparent to both
avionics specialists and software developers, easing code reviews and audits. Also, the simple checks
can be extended to more advanced, for example they can be using machine learning models instead
of simple boolean functions while still using Python only tools. Moreover, these checks in future can
use monitoring data from real hardware without significant changes to the model. Because Snakes
executes the same HLPN that the analyzer verifies, there is no semantic gap between the specification
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and the runtime artifact; this “executable specification” property is a marked advantage over behavior
trees or ad-hoc state machines, which often drift from their documentation.

Nevertheless, the current evidence is limited to model-in-the-loop verification. No hardware-
in-the-loop or field tests were performed, so the impact of actuator latency, high-frequency sensor
noise, and wind-induced load remains unqualified. Guards that rely on accurate battery estimates or
GPS data will need runtime margins to withstand real-world uncertainty. The model also treats envi-
ronmental hazards, such as sudden geo-fence updates or collision avoidance, as external events with-
out probabilistic timing. Extending the HLPN with timed or stochastic transitions is a logical next
step. Additionally, the steps are relatively simple, but in the future, it will be easy to integrate ad-
vanced scenarios for states like Landing [11].

Finally, while the Snakes tool chain integrates smoothly with Python-based simulators, teams
already invested in GUI-oriented editors, such as CPN IDE, may face a learning curve when migrating
to a code-centric workflow. A thin visualization layer that renders live markings back to a graphical
view could mitigate this issue and broaden adoption among non-programming stakeholders. Also,
created model can incorporate Al-based enhancements, such as reinforcement learning to optimize
swarm strategies, without violating formal guarantees.

In summary, the proposed HLPN model delivers machine-checkable safety guarantees with
modest computational effort and offers a clear upgrade path over traditional mission scripts. To trans-
late these theoretical gains into operational reliability, future work should couple the model with real-
time telemetry, execute flight-hardware-in-the-loop tests, and refine guard margins against empirical
flight data.

7. Conclusion

In this study, we developed a formalized control model for UAV swarms based on HLPN that
addresses the issues of adaptability, safety, and fault tolerance in dynamically changing environments.
By representing the behavior of each UAV as a bipartite Petri net with typed tokens, we achieve a
unified description of flight phases, resource constraints, and mission logic.

The main result includes a scalable HLPN based control system model that aggregates
individual UAVs as Tokens. It supports energy-efficient and fault-tolerant mission coordination tasks.
Because of using pure Python library (Snakes) as base, mission steps can be easily added or modified
without completely rewriting the model, allowing to expand the model for more complex scenarios
regardless of the number of drones. We also developed formal safety rules and transient protections
that ensure that UAVs operate only under permissible conditions, preventing dangerous states (e.g.,
insufficient battery power for takeoff) and guaranteeing the reachability of mission objectives (e.g.,
final return to base). After these safety rules were introduced, the UAVs are not able to get in invalid
state because the mission aborts immediately and they are automatically returned back to base. It
increased success rate from 76% to 95%. The remaining 5% failed because of unpredictable reasons
that always exists in dynamically changing environments.

The implementation proposed model allows reachability analysis, what-if testing, and has
sequence logging, providing a solid foundation for evaluations.

The proposed HLPN-based approach switches UAV swarm management by replacing ad-hoc
logic and manual checks to a mathematically sound, proven safe, and adaptive mechanism. It can be
applied to both civilian and military scenarios, including surveillance, search and rescue, and delivery
missions, where autonomous decision-making and reliability are critical.
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[IIBuake 3pocTaHHs OMNIIM 3acToCyBaHHA Oe3MUIOTHMX JiTanbHuX anapariB (BITJIA) y
Cy4acHOMY CBIT1 BHUCYBa€ JIOBOJI1 CEpHO3HI BUMOTHU JI0 HAJIIHOCTI JIOTIKU KepyBaHHA. [lomuika B
MOCTIJOBHOCTI CTajAil 3arpokye sK MIHIMyM HepalioHaJIbHUM BHUKOpHUCTaHHSIM Oatapei abo
MOPYIICHHSAM TIOBITPSHUX MPABWI, a K MAaKCUMyM TO aBapi€r0 3 BTPATOIO armapary i 3amojIisTHHS
ITKOM. 3a3BUYail KepyBaHHS OyJIyeThCS Ha CKpHITAaxX ab0 TMOBEIIHKOBHX JIepeBaX, M0 YCKIIAIHIOE
cympoBin. Ilpuunaa B TOMy 110 po3Mip BUXITHUX (ailiIiB MIBHUIKO 3pOCTa€, 1 MpH HEOOXITHOCTI
JnoJaTi HOBHMM (yHKIIOHAN 4YM MOAM(IKYBAaTH ICHYIOUMH, BHHHUKA€E 3arpo3a BHECEHHs IE€BHOI
Bpa3JIMBOCTI Uepe3 He BpaxyBaHHsI BCIX MOXIMBHX cuTyalliil. Came Tomy Oyi10 00paHO BUCOKOPIBHEBI
Mepexi [leTpi, 0CKUTbKY 11el MeTo T BUpIITye MpooieMy (GopMaTbHOTO ONKHCY CHCTEMH KEPYBaHHS, a
TaKOX JI03BOJISIE JIETKO MacIITa0yBaTH JaHy CUCTEMY a00 BHOCUTH B Hel Oy/Ib-sKi 3MIHHU.

MeTtoro gocmipKeHHs1 € po3po0Ka Ta Bamijallis MoJeldi Ha OCHOBI BHCOKOPIBHEBOI MeEpexi
ITerpi, sika Oyae BUCTYIATH SK JDKEPENO ICTHHH s kepyBaHHAM poeMm BITJIA. ¥V 3anponoHoBaHOi
MOJIeJIi, CTaHH BiJIMOBIJAIOTH €TaraM IOJIbOTY, a TOKEHH HECYTh YHCJIOBI MapaMeTPH, TaKl K 3apsil
aKyMyJsITOpa, KOOpAUHATH, TeneMeTpis. TakuM YMHOM OJHa CXeMa OJHOYACHO OIMHCY€E TUCKPETHI1
noii Ta oomMexeHHs. [ KOJKHOTO Tiepexoy (hopMai3oBaHO YMOBH, IO MEPEBIPSAIOTh MOKIIUBICTh
1oro 3miiCHEeHHsI, HAaIPUKJIaJ MepeBipKka MiHIMaIBLHO HEOOXiIHOTO 3apsaay Oarapei abo mepeBipka
nokartii. MeTtooyiorisi BKJIroUae Jekibka eramis. [lepmuii e dhopManbHe BU3HAYEHHS CTPYKTYpH
Mepexi. [lani Ha OCHOB1 CTPYKTYpH OyIdy€eThCsS MOJICIb 3 BUKOPUCTAHHIM MOBH Python, sika peaiizye
pO3po0IeHY MEpEeKy, KOHTPOJIIOE IEPEMIIICHHS MDK CTaHaMH Ta MPaBWIbHY IOCIITOBHICTh
crparboByBaHHs niepexodiB. Iicias po3poOku Moieni BUKOHYEThCS TECTYBaHHS 1 aHaJli3 OTPUMAaHHUX
pe3yabTaTIB.

Pe3ynpratu mokasyrooTh, 0 BUKOPUCTAaHHS BUCOKOpiBHEBHX Mepex l[lerpi ans moOymoBu
MoJIeNi TepeBIpKA KOMaHJ y JTUCKPETHOMY PEKUMI cripaBii 3abe3rneuye KOPEeKTHHI OmHuc poOoTH
MEepexoiB MK CTaHAMM Ta MIABHINYE HAAIAHICTH 1 JKUBYUYICTH PO3pOONEHOI MOZENi CHUCTEMH
KEepyBaHHS, a TaKOXX 3HAYHO CKOPOYye 3YCHIUI Ha HIATpUMKY. Po3pobimeHa Mojenb Jerko
aIanTY€eThCS 10 3MIH MapIIpyTYy, 10/1aBaHHs JaTYUKIB, 200 pO3MIUPEeHHs (DyHKIIIOHATY.

KnrouoBi cnoBa: BucokopiBHeBa Mepexa llerpi, Oe3mimoTHHMI NiTalIbHUN amapar, CHUMYIALs,
CUCTeMa KepyBaHHSI.



