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The rapid growth of unmanned aerial vehicle (UAV) applications in the modern world imposes 

significant demands on the reliability of control logic. An error in the sequence of stages can lead at best 

to inefficient battery usage or violations of airspace regulations, and at worst to an accident with loss of 
the vehicle and potential harm. Control is usually implemented using scripts or behavior trees, which 

complicates maintenance. The reason is that the size of the source files quickly increases, and when it 

becomes necessary to add new functionality or modify existing logic, there is a risk of introducing 
vulnerabilities by failing to account for all possible situations. This is why High-Level Petri Nets (HLPN) 

were chosen, as this method addresses the problem of formally describing the control system and allows 

the system to be easily scaled or modified in any way. 
The aim of the study is to develop and validate a model based on HLPN that will serve as the single 

source of truth for UAV swarm control. In the proposed model, the places correspond to flight stages, 

and the tokens carry numerical parameters such as battery charge, coordinates, and telemetry. Thus, a 

single scheme simultaneously describes discrete events and constraints. For each transition, conditions 
are formalized to verify the possibility of its execution, such as checking the minimum required battery 

level or verifying location. 

The methodology includes several stages. First, the network structure is formally defined. Then, 
based on this structure, a Python model is built that implements the developed network, controls 

movement between states, and ensures the correct sequence of transition firings. After developing the 

model, testing and analysis of the obtained results are performed. 

The results show that using HLPNs to build a model for verifying commands in a discrete mode 
indeed ensures a correct description of transitions between states and increases the reliability and 

survivability of the developed control system model, while also significantly reducing maintenance 

efforts. The developed model is easily adaptable to route changes, addition of sensors, or functional 
expansion. 
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1. Introduction 

This article is about information systems, autonomous control systems, and formal methods. It aims 

to solve the problem of describing and verifying the logic that drives an Unmanned Aerial Vehicle 

(UAV) swarm, ensuring that every step of a mission is both correct and easily auditable. Autonomous 

UAVs are part of the broader field of intelligent systems. They are the machines whose software 

decisions have direct physical effects. Inside this area, the work focuses on the formal modeling of 

discrete-event behavior. Formal models are great because they allow us to test ideas in mathematics 

first, then in simulation, and finally on hardware. 

For instance, delivery UAVs must switch between clearly defined flight stages. If the controller 

skips, repeats, or mixes steps, the craft can crash, violate air-space rules, or waste energy. Traditional 
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code bases grow into legacy, hard-to-debug systems, and popular behavior-tree editors cannot provide 

strong guarantees. The general scientific problem is, therefore, the lack of a simple, verifiable model 

for mission-level control that scales from whiteboard sketches to executable code. 

We argue that HLPNs are well-suited for this role. In a High-level Petri Net (HLPN), circles 

(places) mark flight stages; bars (transitions) mark commands; a dot (token) shows the current state 

[1]. Tokens in HLPNs can carry numbers, such as battery level and GPS coordinates, allowing the 

same picture to capture both discrete events and continuous limits [2]. Simulations can execute the 

net, explore every possible path, and prove constraints such as the UAV always returning to the base 

or never lifting off with insufficient energy. Safe, explainable control of small UAV swarms is a live 

challenge for spheres such as agriculture, inspection, and emergency for the analysis, but logistics. 

Regulators are increasingly requiring evidence that autonomous aircraft will follow prescribed steps 

and stay within established security margins. Formal models, such as HLPNs, provide that evidence 

at a modest cost [3].  

Therefore, the presented research is important, because it fulfills an urgent industrial need, and 

in a meanwhile participate in an academic discussion regarding usage of the graph-based formal 

methods for robotics. 

 

2. Literature review and problem statement 

Modern UAV operations still use the canonical stage chain Ready → Take-off → Route → 

Land, and any skipped, repeated, or confused stage can lead to crashes, air-space violations, battery 

waste, or mission aborts. In [3] authors highlight the same issue but for Autonomous Underwater 

Vehicles. The only difference is the operation space, water vs air. Because of using the tree analysis 

approach, if a failure occurs, it is hard to understand whether the current mission can be successfully 

finished [3]. Also, it is worth noting that the control logic for UAV swarms is rarely centralized. In 

practice, flight-control logic is often a mix of handwritten state machines and ad-hoc scripts, frag-

mented across the entire code base with various validation rules. 

Additionally, essential parameters such as battery, payload, route geometry, and wind drift 

change from mission to mission. Moreover, as noted in [4], stochastic effects, such as failures, must 

also be included in the model, which adds a new problem. In conclusion, all of the above require extra 

code checks that pile up and quickly become unmanageable. The challenge escalates once a swarm 

flies beyond the visual line of sight. After this, every in-air command must be provably valid. On the 

one hand, behavior-tree-based scripts can offer quick prototyping but are essentially unable to block 

all illegal commands during flight, leaving a safety gap between simulation and reality and introduc-

ing a “third-party-risk gap” [5]. 

Some research shows that HLPNs can solve the problem above because they handle discrete 

flight modes and continuous numeric resources in a single graph. In [4], the authors use colored 

tokens to model inspection drones, including stochastic repair times, and demonstrate that CPN 

enables easy reconfiguration of inspection patterns. In [6], the idea is extended to wireless-power 

UAV fleets, modeling both energy flow and information latency in a Petri net. Furthermore, in [7], 

the authors introduce a spatial-temporal hybrid Petri net that controls physical motion for 

heterogeneous UAV clusters and formally verifies attack-mission timelines. These studies 

demonstrate that Petri nets can effectively express the rich behavior of UAVs; however, in all these 

cases, the nets primarily serve as analysis tools and lack essential safety features. Also, large-scale 

UAV swarms are dependable on communication links, resource reserves, and real-time fault isolation. 

As mentioned in [9], connection outages are instead an external surprise rather than an integral part 

of the mission [9]. Additionally, [6] demonstrates that wireless-power missions must consider energy 

utilization and information latency. The paper [10] indicates that we can detect intermittent sensor 

faults online; however, they usually do not automatically reroute or replan the mission. 

The analysis of literary sources highlighted the existence of several unresolved problems that 

arise when controlling a swarm of drones.  
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The main problem is that for a swarm of drones, there is a need for strict formalization of the 

behavior of the swarm members since any missed or uncoordinated step can lead to accidents, 

airspace violations, loss of battery power, or mission interruption.  

Another critical issue is ensuring adaptability and safety. There is a need to easily scale the 

control system from a few drones to hundreds. The drone control system must support all safety 

checks, despite changes in internal conditions (such as battery level or stochastic influences). 

 

3. The aim and objectives of the study 

The object of the research is the process of developing a HLPN based control systems for a 

swarm of UAVs operating in a dynamically changing environment. 

The aim of this research is to implement a control model for the UAV swarm based on HLPN. 

This allows to introduce a strict formal description of behavior while ensuring scalability and ease of 

extension. Basically, we should be able to use the model not only for the analysis but also be able to 

use it for mission flow control. 

To achieve this goal, the following tasks are set: 

– To develop an HLPN based, scalable, safety-compliant control model that ensures strict 

control over UAV swarm members to prevent accidents, like battery depletion, or mission failure. 

Also, it should support seamless expansion from a few units to hundreds while maintaining 

adaptability to internal condition changes. Finally, it should be easily adaptable for route changes, 

addition of sensors or other functional expansion with as less maintenance efforts as possible.  

– To perform modeling and then evaluate its effectiveness by concluding a comparative analysis 

of the modeling results. 

 

4. Materials and Methods for developing a UAV control system using HLPN 

The research methods of the article are the methods and models for adaptive control and safe 

reconfiguration of UAV swarms in a dynamically changing environment, particularly using HLPNs 

for formal behavior modeling, safety assurance, and swarm coordination under environmental 

uncertainties. 

4.1 The object and hypothesis of the study 

This study aims to develop a drone swarm control model based on HLPNs. The first step in 

building the model is to define an HLPN, which formally describes the behavior of a drone in a swarm 

as a bipartite graph, the nodes of which are represented by places and edges represented by transi-

tions. Each place contains a defined data structure that specifies the current state of the drone, and 

the transition with Guard determines the conditions for modifying the state. 

The second problem identified in the literature review is ensuring the adaptability and safety of 

the swarm in conditions of dynamic environmental change. Improving current results in this direction 

requires further research and application of artificial intelligence technologies. In this work, this task 

will be solved by aggregating a set of HLPNs of swarm participants into a single model at a new 

hierarchical level, thereby ensuring coordination of swarm participants by eliminating critical situa-

tions. 

To do this, we use transition Guards for critical transitions. These rules encode safety checks, 

such as minimum energy for takeoff and geo boundaries, ensuring that only legal commands can be 

fired, even when noisy telemetry or incorrect operator input is present. We conduct a reachability 

analysis to demonstrate that the conditions defined in the previous paragraph are met. The pre-flight 

checks are conducted so that the UAV never leaves the Ready stage in an invalid or nearly invalid 

state (i.e., with an insufficient battery level to perform the mission). Every UAV in the swarm even-

tually reaches OnBase, and the battery charge during the mission always remains within bounds. 

Finally, we implement the model work simulation, which records each firing sequence, allows for 

fast what-if tests, and leaves the ability for later experiments. A simulation code traverses the network, 

logs each firing sequence, and leaves hooks for later hardware-in-the-loop tests. A mission serves as 
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the running example, and we compare the modeling effort, clarity, and verification cost. Thus, by 

placing resource tokens, stochastic failure transitions, and transition guard checks in one executable 

graph, Petri nets move modeling from manual audits into a live and adaptive safety mechanism that 

keeps the swarm in valid states all the time. 

To summarize, the objectives described above support the primary goal of the research. They 

help ensure that the developed model will deliver a simple yet fault-tolerant control system for the 

UAV swarm that can be easily expanded with new functionality while maintaining provable safety. 

 

4.2. Justification of the concept of controlling UAV swarms using Petri nets 

We decided to choose HLPNs because they combine the clarity of classical Petri nets with typed 

tokens that can store battery charge, 3D position, and mission flags in a single model. It allows one 

diagram to express both mode switches (discrete places) and resource limits (Token attributes), 

satisfying the “single source of truth” goal set in paragraph 2. Petri nets natively support concurrency 

and blocking guards, which closely match the reality of UAVs that must arbitrate between navigation, 

safety, and payload tasks. Compared to conventional control logic, such as Finite-State Machines 

(FSMs) or behavior trees, HLPNs offer two technical advantages. 

In an FSM or a behavior tree, the mission graph is implicit: states are scattered across functions, 

while event guards are located in many if-else clauses. Adding a new branch (for example, “return if 

low battery”) involves tracing many code paths to ensure that no unreachable or cyclic states appear. 

A HLPN, in contrast, renders every flight stage as a place and every command as a transition, so the 

complete set of paths is visible in one diagram [5]. Formal reachability tools are built-in and can 

analyze that diagram to ensure constraints, such as “the UAV always reaches base” or “cannot take 

off with less than 75% battery”. Consequently, design reviews focus on a single artifact rather than 

scattered source files. 

In non-Petri frameworks, quantitative limits (such as battery level or coordinates) live in ad-

hoc variables that must be checked repeatedly [6]. Petri nets allow the encapsulation of those numbers 

into the token itself [7]; guard functions operate on the live token, so every transition fires only when 

its pre-conditions are valid. This tight integration shortens debug cycles and allows researchers to 

improve the controller gradually (by adding timed or stochastic extensions, for example) without 

switching tools. 

In summary, while FSMs and behavior trees are quick to prototype, HLPNs provide a 

mathematically grounded, single-source model that scales easily. It makes them the stronger choice 

for any project that needs to control a UAV swarm and requires different regulatory approvals and 

operation safety. 

 

4.3. Description of the HLPN model of the control system and tools 

A Petri net is formally defined as a tuple, N=( P, T, A, G ). Places (or States) P={Ready, Takeoff, 

EnRoute, AtTarget, Returning, OnBase, Charging} correspond to flight stages. Transitions are bridges 

between mission steps: T={CanTakeOff, TakeOffToEnroute, IsEnRoute, IsAtTarget, 

IsMissionComplete, IsReturning, IsOnBase, ChargeI}. Arcs A connect places with transitions. 

Guards G are boolean functions that accept the token as a parameter and verify if the transition firing 

is allowed. The logic of these Guards is reflected in the name of transition. For example, for 

IsAtTarget the function compares drone coordinates with mission coordinates. Overall, this approach 

ensures that every step is completed, and the system goes only from a valid to a valid state. The 

changes in Token status will be handled automatically as well.  

There are a few tools that can be a good choice for HLPN prototyping. We will consider the 

platform, programming language, functionality, and the possibility of integrating with other tools. For 

example, visual simulations are usually performed in the Gazebo GUI, while control commands are 

typically sent from ROS2 [8]. Both tools are available on Linux, with only limited support for Mac 

OS and Windows. Regarding UAVs, most software also offers better support for Linux, making the 
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platform particularly important in this context. Additionally, the modeling tool must support colored 

HLPN; otherwise, the logic will be incomplete. 

In Table 1, we mainly chose scientific tools (because some tools are business-oriented). The 

graphic interface is not considered a very important factor because there are many third-party libraries 

that can help with it, such as NetworkX or GraphViz. Additionally, the license should permit the use 

of the tool freely, allow for modification if needed, and permit the publication of results obtained with 

it. The great examples of it are MIT or LGPL. 

 

Table 1. Comparing Petri net tools 

 

Tool Platform 
HLPN 

support 

State-space 

analysis 

Integration 

& API 
License Suitability 

CPN 

IDE 

Eclipse-

based IDE  

Basic 

hierarchy, 

timed 

extensions 

limited 

Basic 

reachability; 

relies on 

external solvers  

Java/Eclipse 

plug-in 

system;  

GPL 

Lightweight;  

integration in 

Java/Eclipse; 

Less mature 

analysis features  

PIPE 5 
Java 

desktop 

Basic colours 

via GSPN 

Partial (analysis 

modules in PIPE 

4 only) 

Java API, 

CLI; no 

Python 

bridge 

MIT 

Easy drawing, but 

HLPN and 

analysis still 

catching up; 

Python glue code 

needed  

Snakes 
Pure Python 

library 

Coloured 

nets, Python 

objects as 

tokens 

Plugins for 

reachability, 

model-checking 

Directly 

embedded in 

the same 

codebase; 

seamless 

with NumPy, 

NetworkX, 

etc. 

LGPL-3 

lightweight, 

headless, 

programmable 

TINA 

GUI (nd) 

and C/C++ 

analyzers  

Time Petri 

Nets (no full 

HLPN 

support)  

State space, 

symbolic, 

temporal logic 

(CTL/LTL), 

structural 

analysis  

CLI tools, 

PNML 

import/export

; no Python 

bridge  

Free 

Efficient and 

rigorous for TPN; 

Less expressive 

than CPN Tools; 

Split utilities 

instead of single 

IDE  

PetriObj

Model 

Paint 

Java 

desktop 

Object-

oriented and 

stochastic 

multichannel 

Petri nets)  

Scalable 

discrete-event 

simulation; 

graphical editor, 

mean token 

counts, buffers, 

final state;  

Java API; no 

Python 

bridge 

MIT 

Provides both 

visual editing and 

executable object-

oriented models, 

however, is 

limited to desktop 

only 

 

Because the surrounding simulation (e.g., ROS2 node) is already written in Python, Snakes 

eliminates language barriers. Therefore, the places, transitions, guards, and other elements like 
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monitoring or cloud-integration [9, 10] can be integrated directly into it. Additionally, its plugin 

system further enables future extensions, such as timed networks or stochastic firing weights, without 

requiring a switch to other tools. Finally, Snakes is known for its execution and verification backbone, 

which is suitable for the proposed HLPN-based UAV controller.  

 
4.4. Development of a mathematical model and formal Petri net for swarm operations 

To monitor mission health for a fleet of n UAVs, we propose the following model that aggre-

gates three key parameters for every craft: battery reserve, route length, and malfunction probability. 

Power consumption is often considered a bottleneck because everything depends on it: moving and 

controlling channels. [6] The following formula explains the energy part of the model: 

 𝐵 = 100 −
1

𝑛
∑ 𝑏𝑖
𝑛
𝑖=1 , (1) 

where 𝑏𝑖 is the current battery level (in %) of the i-th UAV; B thus measures the average energy deficit 

of the swarm. This value indicates that if it is high enough, the UAVs will not be able to return. 

Another critical parameter is operation range, 𝐿 , the following formula allows to calculate it. 

 𝐿 =
1

𝑛
∑ 𝑙𝑖
𝑛
𝑖=1 , (2) 

where 𝑙𝑖 is the route length int i-th UAV, it measures the average path of the swarm, so the higher it 

is, the better is the result. 

The probability of a UAV malfunction 𝑝𝑖 is determined by the formula (3): 

 𝑝𝑖 = 𝛽 (
𝑙𝑖

𝑙𝑚𝑎𝑥
)
2
(100 − 𝑏𝑖)

2, (3) 

where β is a relatively small value that keeps the value realistically small, so when the route is 80% 

of the max, and the battery is 80%, the probability of malfunction will be 0.2. The quadratic 

dependence on both distance fraction and energy deficit captures the intuition that faults are 

exponentially likelier when a heavily loaded craft starts a long leg with little reserve. 

 
4.5. The model of UAV swarm control system based on HLPN 

To control the work, we use a control system based on Petri nets. As a result, the developed 

prototype of the method is tested for reliability. According to the problem statement, the Petri net 

(Fig. 1.) controls several markers (in the case of UAVs). In the figure, the system is at stage 1. 

The first prototype of the model contained only the four core transitions: Start → Take-Off → 

Move → Land. Additionally, it did not include an auto-return branch that could force the UAV to 

abandon its task and head back as soon as safety margins (such as battery and link quality) were 

violated. Simulation results showed that the minimalist net completed around 76% of flights in the 

100–UAV test set. The remaining exhausted their batteries during the initial states or got into an 

undefined state during the mission.  

Because the initial Petri net structure lacked a guarded transition, the reachability graph exposed 

dead-end markings. It was confirmed at design time that a security analysis is needed to check where 

most failures occur. This weakness motivated the revised model (Fig. 1) in which a ProblemOccured 

transition was introduced. It can be fired during Takeoff or IsEnRoute. This fact guarantees that, even-

tually, every movable state marking contains a path to IsOnBase. Subsequent experiments increased 

the success rate, validating the design change and illustrating how a single well-placed transition can 

enhance mission-level reliability.  

Stages of the control system. 

Stage 1. All tokens (3 UAVs in our case) are in Ready place. If the condition for the TakingOff 

transition is met, tokens move further and are put in the Takeoff place. 
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Stage 2. Depending on takeoff, two scenarios are possible: 

– If everything is OK, the TakeOffToEnRoute transition is fired, and tokens are put in stage 3 

– If TakeOffToEnRoute is not allowed, tokens are put in stage 5. 

Stage 3. Depending on the UAV state, there are three possible cases: 

– The target is not reached, and there are no problems; fire EnRoute and stay at this stage. 

– The target is reached, fire AtTarget, and move to stage 4. 

– If the target is not reached and problems occur, move to stage 5. 

Stage 4. According to the plane mission, action is done, and tokens move to stage 5. 

Stage 5. It is similar to stage 3 but with two possible cases: 

– The base is not reached, and there are no problems; fire Returning and stays at this stage. 

– The base is reached, fire OnBase, and move to stage 6. 

Stage 6. Charging the UAVs 

Stage 7. If the transition guard condition is met, fire Charged and move to stage 1. 

There are 3 States with multiple possible transitions, however they are mutually exclusive. For 

example, if the problem was detected then it is impossible to switch from TakeOff to IsEnRoute. The 

transition Guard in TakeOffToEnroute will not allow it. Similarly, switches from IsEnRoute to 

IsAtTarget or from IsReturning to IsOnBase are possible only if there are no problems and target or 

base coordinates were reached. The transitions are multichannel, meaning all tokens will be moved 

if it is allowed. The system aggregates all UAVs as Tokens and manages them simultaneously.  

 

 

Fig. 1. Swarm operation control Petri net 

 

Although the current control net contains only seven states, this is rather a strength than a lim-

itation. A resulting HLPN is very modular: adding a new state and transition guard means attaching 

an extra function to an existing place while introducing a new maneuver, such as “ChangeLeader” 
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or “ChangeFormation” Additionally, the control net can operate in both edge and cloud modes, 

which increases reliability. The original net remains unchanged, and its previously verified properties 

still hold. Suppose the controller expands beyond a single scenario, such as movement, as discussed 

in this article. In that case, support sub-nets can be coupled through shared places or synchronous 

transitions, allowing the control net to interact with an obstacle avoidance net. 

As we can see, the UAV swarm can navigate through the mission's steps (places) using the 

developed control network. In addition, the check for transition firing possibility allows us to ensure 

that UAVs in the swarm are moved only from one valid state to another and can be safely brought 

back in the event of a malfunction. Additionally, if some UAVs are lost, the mission will continue 

until at least one operational UAV remains, which enhances reliability. 

 

5. Performing testing of the developed UAV swarm control model based on Petri net 

The investigation was performed on the prototype HLPN model described in Section 4.2. Two 

Petri net variants were examined: one without the auto-return transition and one with it enabled. The 

experiment proceeded as follows: 

– Scripts were prepared to generate random mission profiles (launch charge 70–90%, route 

length 5–10 km) and to execute both nets in the Snakes engine. 

– A total of 100 UAVs were instantiated; their battery levels, routes, and completion statuses 

were logged. 

– Every 20 milliseconds, the simulator updated token markings and wrote results to a CSV file, 

enabling live plotting. 

The scatter plots on Figure 2 shows the success rate with and without auto-return. The UAVs in the 

bottom-right corner (those that have the longest route and lowest charge) have exhausted their 

batteries and are marked with red cross symbol, according to (3). 

 

 
 

Fig. 2 (a). Number of failed UAVs: model without auto-return 
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Fig. 2 (b). Number of failed UAVs: model with auto-return 

 

Figure 2a presents the plot without auto-return step and 2b repeats the plot with auto-return; on 

the second plot the failure cluster disappears, confirming that the transition prevents energy depletion. 

The experiment demonstrates that adding guard-driven transitions to the HLPN eliminates 

mission failures under the given energy model and parameter set. In other words, with this new check, 

the swarm controller can check that for some UAVs, there is not enough power and set it in auto-

return mode. Some UAVs still fail due to other reasons, such as connection issues or other technical 

problems. 

 

6. Discussion of the results from the development of the HLPN model 

The formal reachability analysis conducted in Snakes confirms that the HLPNs controller ful-

fills its three target properties: the UAV never departs Ready with insufficient energy, every legal 

mission eventually reaches ReturnToBase, and the battery charge remains within physical bounds. 

This result is significant because it is obtained directly from the net's mathematical semantics rather 

than from long-running simulations. In practice, it can be rerun on every hardware whenever we 

tweak a guard or add a new flight stage, delivering continuous assurance at design time. 

The UAV’s structure is a single-colored token that carries battery, position, and mission flags. 

This fact keeps the diagram readable while avoiding the need for auxiliary scripts. Guard predicates 

are expressed in ordinary Python using Snakes library. It makes domain rules transparent to both 

avionics specialists and software developers, easing code reviews and audits. Also, the simple checks 

can be extended to more advanced, for example they can be using machine learning models instead 

of simple boolean functions while still using Python only tools. Moreover, these checks in future can 

use monitoring data from real hardware without significant changes to the model. Because Snakes 

executes the same HLPN that the analyzer verifies, there is no semantic gap between the specification 
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and the runtime artifact; this “executable specification” property is a marked advantage over behavior 

trees or ad-hoc state machines, which often drift from their documentation. 

Nevertheless, the current evidence is limited to model-in-the-loop verification. No hardware-

in-the-loop or field tests were performed, so the impact of actuator latency, high-frequency sensor 

noise, and wind-induced load remains unqualified. Guards that rely on accurate battery estimates or 

GPS data will need runtime margins to withstand real-world uncertainty. The model also treats envi-

ronmental hazards, such as sudden geo-fence updates or collision avoidance, as external events with-

out probabilistic timing. Extending the HLPN with timed or stochastic transitions is a logical next 

step. Additionally, the steps are relatively simple, but in the future, it will be easy to integrate ad-

vanced scenarios for states like Landing [11]. 

Finally, while the Snakes tool chain integrates smoothly with Python-based simulators, teams 

already invested in GUI-oriented editors, such as CPN IDE, may face a learning curve when migrating 

to a code-centric workflow. A thin visualization layer that renders live markings back to a graphical 

view could mitigate this issue and broaden adoption among non-programming stakeholders. Also, 

created model can incorporate AI-based enhancements, such as reinforcement learning to optimize 

swarm strategies, without violating formal guarantees. 

In summary, the proposed HLPN model delivers machine-checkable safety guarantees with 

modest computational effort and offers a clear upgrade path over traditional mission scripts. To trans-

late these theoretical gains into operational reliability, future work should couple the model with real-

time telemetry, execute flight-hardware-in-the-loop tests, and refine guard margins against empirical 

flight data. 

 

7. Conclusion 

In this study, we developed a formalized control model for UAV swarms based on HLPN that 

addresses the issues of adaptability, safety, and fault tolerance in dynamically changing environments. 

By representing the behavior of each UAV as a bipartite Petri net with typed tokens, we achieve a 

unified description of flight phases, resource constraints, and mission logic. 

The main result includes a scalable HLPN based control system model that aggregates 

individual UAVs as Tokens. It supports energy-efficient and fault-tolerant mission coordination tasks. 

Because of using pure Python library (Snakes) as base, mission steps can be easily added or modified 

without completely rewriting the model, allowing to expand the model for more complex scenarios 

regardless of the number of drones. We also developed formal safety rules and transient protections 

that ensure that UAVs operate only under permissible conditions, preventing dangerous states (e.g., 

insufficient battery power for takeoff) and guaranteeing the reachability of mission objectives (e.g., 

final return to base). After these safety rules were introduced, the UAVs are not able to get in invalid 

state because the mission aborts immediately and they are automatically returned back to base. It 

increased success rate from 76% to 95%. The remaining 5% failed because of unpredictable reasons 

that always exists in dynamically changing environments. 

The implementation proposed model allows reachability analysis, what-if testing, and has 

sequence logging, providing a solid foundation for evaluations. 

The proposed HLPN-based approach switches UAV swarm management by replacing ad-hoc 

logic and manual checks to a mathematically sound, proven safe, and adaptive mechanism. It can be 

applied to both civilian and military scenarios, including surveillance, search and rescue, and delivery 

missions, where autonomous decision-making and reliability are critical. 
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Швидке зростання опцій застосування безпілотних літальних апаратів (БПЛА) у 

сучасному світі висуває доволі серйозні вимоги до надійності логіки керування. Помилка в 

послідовності стадій загрожує як мінімум нераціональним використанням батареї або 

порушенням повітряних правил, а як максимум то аварією з втратою апарату і заподіяння 

шкоди. Зазвичай керування будується на скриптах або поведінкових деревах, що ускладнює 

супровід. Причина в тому що розмір вихідних файлів швидко зростає, і при необхідності 

додати новий функціонал чи модифікувати існуючий, виникає загроза внесення певної 

вразливості через не врахування всіх можливих ситуацій. Саме тому було обрано високорівневі 

мережі Петрі, оскільки цей метод вирішує проблему формального опису системи керування, а 

також дозволяє легко масштабувати дану систему або вносити в неї будь-які зміни. 

Метою дослідження є розробка та валідація моделі на основі високорівневої мережі 

Петрі, яка буде виступати як джерело істини для керуванням роєм БПЛА. У запропонованої 

моделі, стани відповідають етапам польоту, а токени несуть числові параметри, такі як заряд 

акумулятора, координати, телеметрія. Таким чином одна схема одночасно описує дискретні 

події та обмеження. Для кожного переходу формалізовано умови, що перевіряють можливість 

його здійснення, наприклад перевірка мінімально необхідного заряду батареї або перевірка 

локації. Методологія включає декілька етапів. Перший це формальне визначення структури 

мережі. Далі на основі структури будується модель з використанням мови Python, яка реалізує 

розроблену мережу, контролює переміщення між станами та правильну послідовність 

спрацьовування переходів. Після розробки моделі виконується тестування і аналіз отриманих 

результатів. 

Результати показують, що використання високорівневих мереж Петрі для побудови 

моделі перевірки команд у дискретному режимі справді забезпечує коректний опис роботи 

переходів між станами та підвищує надійність і живучість розробленої моделі системи 

керування, а також значно скорочує зусилля на підтримку. Розроблена модель легко 

адаптується до змін маршруту, додавання датчиків, або розширення функціоналу. 

Ключові слова: високорівнева мережа Петрі, безпілотний літальний апарат, симуляція, 

система керування. 

 

 


