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The object of this study is a hexacopter-based cyber-physical system designed for autonomous water 

sampling to support environmental monitoring, addressing the problem of inefficient control under 

dynamic conditions. The subject focuses on integrating physical flight control and water sampling 

operations with cyber supervisory functions, including real-time waypoint navigation, task scheduling, 
and multi-drone coordination, validated as a current system component. The research investigates the 

system’s performance under payload variations and wind disturbances, ensuring robustness and 

precision in adverse environments. The purpose is to improve efficiency of water sampling through this 
CPS, achieving enhanced flight stability and positioning accuracy via a cascade PID control system, 

optimizing mission planning with adaptive cyber strategies, and increasing scalability through multi-

drone operations. This approach aims to surpass traditional UAV systems by using physical-cyber 
integration for precise, robust, and scalable water quality assessment. 

The methodology combines simulation-based and analytical techniques to develop and assess the 

hexacopter CPS. A 6-degree-of-freedom mathematical model, based on Newton-Euler equations, was 

constructed in MATLAB/Simulink to simulate hexacopter dynamics, incorporating payload and wind 
effects. The cascade PID control system was tuned using the Ziegler-Nichols method, with iterative 

optimization to reduce overshoot and settling time across three scenarios: 1 kg static payload, 1.5 kg 

dynamic payload, and 5 m/s wind. The cyber supervisory system, implemented in ROS 2, employs 
graph-based algorithms (Dijkstra’s for waypoint navigation, list-scheduling for task allocation) and a 

consensus protocol for multi-drone coordination, tested in a 500x500 m² environment. Performance 

metrics, such as position root mean square error (RMSE) and attitude errors, were analyzed to evaluate 

system effectiveness. 
Results demonstrate significant improvements in water sampling capabilities. The cascade control 

system achieved a 40–50% reduction in position RMSE and maintained attitude errors  

within ±0.8° to ±1.2°, ensuring stable flight. The cyber-physical framework reduced mission time 
by 15% through adaptive path optimization, while multi-drone coordination increased sampling 

coverage by 20%, enhancing scalability. These outcomes reflect the system’s precision and robustness 

that highlight novel control and coordination strategies with practical value for environmental 
monitoring. The study provides a foundation for future ecological applications. 

Keywords: Water Sampling, Cyber-Physical Systems, Environmental Monitoring, Multi-Drone 

Coordination, Autonomous UAV, Mission Planning. 

 

1. Introduction 

The scientific topic of autonomous water sampling using cyber-physical systems (CPS) holds 

significant relevance in the modern era, driven by escalating global environmental concerns and 

technological advancements. Rapid industrialization and climate change have intensified water 
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pollution and ecosystem degradation, necessitating frequent and accurate monitoring of aquatic 

resources. Traditional manual sampling methods, reliant on human operators accessing remote or 

hazardous water bodies face substantial limitations. These include high operational costs, logistical 

barriers, and safety risks, compounded by the need for specialized equipment and trained personnel, 

which restrict monitoring frequency and spatial coverage. In 2024, the World Health Organization 

reported that waterborne diseases affect over 2 billion people annually, underscoring the urgency of 

timely data collection to support public health and environmental sustainability. This global context 

establishes water quality assessment as a pressing scientific issue, particularly in regions where 

conventional methods fall short. 

The field of this study lies at the intersection of robotics, environmental science, and control 

systems, focusing on the development of unmanned aerial vehicle (UAV)-based CPS for water 

sampling. The problem, in general terms, involves the difficulty of achieving reliable, autonomous 

data acquisition from dynamic aquatic environments under varying conditions, such as wind or 

payload shifts. Existing systems often rely on static control strategies that fail to adapt to real-time 

changes, limiting their effectiveness. The feasibility of studying this problem is supported by recent 

progress in UAV technology, including lightweight hexacopters and advancements in computational 

capabilities for cyber supervision. 

Hexacopters, as a subset of UAVs, offer a solution by enabling precise, automated water 

sampling without direct human intervention. Equipped with sampling mechanisms such as a 

mechanical bathometer, these platforms can access difficult-to-reach locations, reducing costs and 

risks. A hexacopter-based CPS extends monitoring and sample collection by combining physical 

flight control with a cyber component for mission planning, facilitating scalable operations in 

dynamic conditions. 

The CPS framework integrates physical processes – comprising a hexacopter, sensors, and a 

bathometer – with computational and communication layers to enable automated operations. The 

physical system ensures stable flight and sample collection, while the cyber component supervises 

mission execution, adjusting strategies based on real-time feedback, such as wind disturbances or 

payload variations. This separation of low-level control from high-level planning allows for efficient 

water sampling, providing consistent data acquisition. However, achieving this integration under 

dynamic conditions remains a scientific problem. 

The relevance of this topic is further justified by the growing demand for autonomous systems 

in environmental monitoring, where manual methods are increasingly inadequate. Advances in CPS 

and UAV autonomy highlight the potential for scalable solutions. This study addresses the need for 

precise, coordinated operations by developing a hexacopter-based CPS, modeling flight dynamics, 

and simulating performance. The feasibility is reinforced by the ability to validate designs through 

simulation, paving the way for real-world deployment. 

In conclusion, the relevance of researching autonomous water sampling through CPS lies in its 

potential to address global water quality issues with innovative, scalable technology. As 

environmental pressures mount, this topic offers a way for scientific progress, using modern tools to 

enhance data collection and support sustainable resource management. 

 

2. Literature review and problem statement 

Recent advancements in UAV technology and cyber-physical systems have opened new 

possibilities for environmental monitoring, particularly in autonomous water sampling. This section 

reviews existing literature to assess how UAV-based systems address water quality monitoring. By 

examining prior studies, the analysis identifies limitations in integrating these components to achieve 

efficient, autonomous operations, providing a basis for formulating the unresolved problem addressed 

in this study. 

UAVs have become practical tools for environmental monitoring, enabling data collection in 

areas inaccessible to traditional methods. Recent studies highlight their use in water quality 

assessment. For example, in [1], developed a quadcopter system with a tethered sampling device, 

achieving precise sample collection from shallow water bodies. Similarly, in [2], used a hexacopter 
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to gather water samples, emphasizing sensor accuracy for real-time monitoring. These systems 

employed basic flight control algorithms to ensure stability. 

Despite these studies, the literature focuses primarily on physical operations, with limited 

attention to high-level mission planning. Few incorporate advanced cyber components for 

autonomous navigation or multi-drone coordination, which are necessary for scalable monitoring. For 

example, European projects like the INTCATCH initiative used UAVs for water quality data 

collection but relied on manual mission planning, limiting operational efficiency [4]. Such limited 

integration of physical control with cyber supervision underscores the need for comprehensive CPS 

designs to optimize autonomous water sampling. 

UAV control systems are necessary for maintaining stable flight and executing precise 

maneuvers during tasks like water sampling. Recent studies have explored various control strategies 

to achieve these objectives. For instance, the application of proportional-integral-derivative (PID) 

controllers to quadcopters achieving reliable attitude stabilization for hovering tasks [5]. Similarly, 

the use of linear-quadratic regulators (LQR) for hexacopters optimizing trajectory tracking under 

steady conditions [6]. These approaches focus on physical flight dynamics, using sensor feedback 

(e.g., accelerometers, gyroscopes) to adjust motor speeds and maintain position or orientation. 

However, these control systems often assume static payloads and minimal environmental 

disturbances, limiting their applicability to dynamic tasks like water sampling, where payload weight 

varies. To manage disturbances, advanced methods like model predictive control (MPC) for UAVs in 

windy conditions were proposed [7]. Yet, these strategies rarely integrate with high-level cyber 

functions, such as mission planning or multi-drone coordination, which are necessary for autonomous 

operations. This separation of physical control from cyber supervision restricts the development of 

fully autonomous CPS for environmental monitoring. 

CPS manage high-level supervisory functions, such as mission planning and coordination, to 

enable autonomous operations. For environmental monitoring, these systems process real-time data 

and orchestrate tasks like waypoint navigation and multi-drone collaboration. For instance, the CPS 

framework for UAVs proposed in [8] using software agents to plan missions based on environmental 

feedback. This approach schedules tasks but lacks coordination for multiple UAVs. Similarly, CPS 

for drone delivery employing algorithms for path optimization and data communication via 4G 

networks [9]. While effective for single-drone missions, it does not address scalable, multi-drone 

operations. 

These studies demonstrate the potential of CPS for to supervise autonomous tasks but reveal 

limitations in integrating with physical control for dynamic environments. For water sampling, where 

payload changes affect flight stability, cyber-physical systems must adapt mission plans in real time. 

The lack of comprehensive frameworks combining cyber supervision with physical control restricts 

the efficiency of autonomous CPS in environmental applications [8, 9]. 

The literature review reveals deficiencies in UAV systems for water sampling, particularly in 

integrating physical control with cyber supervisory functions for autonomous operations [2, 4]. 

Physical control systems, such as PID and MPC, ensure flight stability but fail to address payload 

variations from water sampling, which impacts performance [2, 5, 7]. CPS enable mission planning 

[8, 9], but lack real-time adaptation to environmental disturbances or effective multi-UAV 

coordination for large-scale tasks [2]. This separation limits stable and efficient water sampling in 

dynamic environments, such as remote water bodies with variable conditions. 

The unresolved problem is the design of an autonomous hexacopter-based CPS that seamlessly 

integrates precise physical flight control with adaptive cyber mission planning and multi-UAV 

coordination to optimize water sampling. framework to enhance scalability and autonomy in 

environmental monitoring, addressing the limitations of existing systems [1, 2, 4]. 

 

3. The aim and objectives of the study 

The aim of the study is to improve the reliability and efficiency of water sampling in dynamic 

environmental conditions through a hexacopter-based CPS that incorporates adaptive cyber mission 

planning and multi-drone coordination. This is achieved by enhancing physical flight control and 
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cyber supervisory capabilities, addressing the limitations of traditional control methods identified in 

prior research. 

To accomplish this aim, the study pursues the following objectives: 

– design and validate a mathematical model and architecture for the hexacopter-based CPS with 

adaptive cyber mission planning and multi-drone coordination. This task involves constructing a 

flight dynamics model that accounts for water sampling payload variations and environmental 

disturbances and implementing a cascade PID control system to ensure stable flight and precise 

navigation. Additionally, it includes developing a real-time mission planning and coordination 

algorithm for multiple hexacopters. The scientific result is a developed mathematical model and a 

coordination protocol. 

– evaluate the CPS performance, including multi-drone coordination, through computational 

simulation. This task entails creating a cyber supervisory system for real-time mission planning and 

conducting simulations to assess system effectiveness under dynamic conditions with multiple 

hexacopters. The scientific result is reduction in mission time and a position accuracy for coordinated 

multi-drone operations. 

These objectives focus on enhancing system efficiency through mission planning and multi-

drone integration, aligning with the problem of adaptive control and a hexacopter-based CPS. 

 

4. The study materials and methods 

This section outlines the framework for investigating a hexacopter-based CPS designed to 

enhance water sampling efficiency. The approach begins by defining the core components and focus 

of the research to establish a foundation for subsequent modeling and validation. 

The object of the study is a hexacopter-based cyber-physical system designed for autonomous 

water sampling in environmental monitoring. The subject of the study is the integration of physical 

flight control and water sampling operations with cyber supervisory functions, such as real-time 

waypoint navigation, task scheduling, and collaborative multi-drone operations. This research 

addresses the need for reliable sampling under dynamic conditions where traditional control methods 

prove inadequate. A hypothesis is proposed: a 6-degree-of-freedom (6DOF) mathematical model can 

enhance system stability and coordination, enabling precise water sampling. The modeling problem 

arises from the problem of representing hexacopter dynamics and multi-drone interactions under 

environmental disturbances. The transition to a mathematical model is justified by the need to 

establish a theoretical foundation for control design and simulation, ensuring the CPS adapts to real-

time conditions. 

The hexacopter-based cyber-physical system integrates physical and cyber components to 

enable autonomous water sampling. The physical subsystem includes hexacopter frame with six 400 

kV brushless motors and 17-inch carbon fiber propellers, equipped with a mechanical gripper for 

collecting water samples. Payload weight is 4 kg. Flight control is managed by an ArduPilot Pixhawk 

controller, processing data from accelerometers and gyroscopes to maintain stability. The cyber 

subsystem employs a mission planner implemented on a companion computer, using algorithms for 

real-time waypoint navigation, task scheduling, and multi-drone coordination over Wi-Fi, radio, or 

4G networks. 

The research employs a multi-stage approach to develop and validate the hexacopter-based CPS 

for autonomous water sampling. First, a 6DOF mathematical model of the hexacopter is formulated 

using Newton-Euler equations, incorporating payload variations and wind disturbances. The model 

forms the foundation for control system design and simulation validation. 

The hexacopter, with a 2.5 kg frame and six 400 kV motors, was modeled in an Earth-fixed 

inertial frame (NED: North-East-Down) and a body-fixed frame centered at the center of mass. The 

6DOF model includes three translational coordinates  , ,x y z  and three Euler angles [ , , ]    (roll, 

pitch, yaw). 
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The Newton-Euler equations govern the dynamics: 
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where 2.5 kgm  is the hexacopter’s mass (excluding payload), [ , , ]Tx y zr is the position vector, 

[0,0, ]T

B T F  is the total thrust in the body frame (sum of motor thrusts), 
2[0,0,9.81] m/sTg  is 

gravity, and the subscript I  denotes the inertial frame.  

The thrust T  is computed as: 
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where 5 21.5 10 N·sfk   is the thrust coefficient and i  is the angular velocity of motor .i  

Rotational dynamics: 
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where diag( , , )xx yy zzI I II  is the inertia matrix 2 2 ),( 0.082 kg·m , 0.149 kg·mxx yy zzI I I  

[ , , ]Tp q rω  is the angular velocity in the body frame, and [ , , ]T

B     τ  is the torque vector, 

calculated as: 
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where 0.392 mL  is the arm length, 7 26.5 10 N·m·smk   is the torque coefficient, and i  are motor 

speeds. 

Payload and wind effects. The payload increases the effective mass to pm m , where pm  is the 

payload mass, adjusting the thrust requirements. Wind disturbances are modeled as external forces 

[ , ,0]T

w wx wyF FF , with | | 10 Nw F  for winds up to 5 m/s, applied in the inertial frame. 

Kinematic relationships. The transformation between body and inertial frames uses the 

rotation R : 

 ,

c c s s c c s c s c s s

c s s s s c c c s s s c

s s c c c

           

           

    

  
 

  
 
  

R  (5) 

where cosc  , sins  . 

The velocity transformation is: 𝑑𝐫 𝑑𝑡⁄ = 𝐑𝐯𝐵, where [ , , ]T

B u v wv  is the body-frame velocity. 

Second, a cascade control system is designed to regulate attitude (roll ,  pitch  , yaw  ) and 

position (coordinates x , y , z ) to ensure stability during sampling. 

The cascade PID structure leverages the 6DOF model controlling angular velocities [ , , ]Tp q r  

in the inner loop and body-frame velocities [ , , ]Tu v w  in the outer loop. The control law for each 

degree of freedom, such as roll  , is: 
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where refe     is the error, and ,pK  , ,iK  , ,dK   are proportional, integral, and derivative gains. 

Similar laws apply for  ,  , x , y  and z . The inner loop generates torque commands  

[ , , ]T

B     τ , mapped to motor speeds i : 
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where 5 21.5 10 N·sfk   , 7 26.5 10 N·m·smk   , and 0.392 mL  . The outer loop computes 

desired attitude references, transformed via the rotation matrix (5). 

Position dynamics are controlled by adjusting thrust T  and desired angles, ensuring  

𝑑𝐫 𝑑𝑡⁄ = 𝐑𝐯𝐵. 

Third, a cyber supervisory system is developed using graph-based algorithms for waypoint 

navigation and task scheduling, with a consensus-based protocol for multi-drone coordination. The 

CPS architecture, shown in Figure 1, integrates physical and cyber layers for autonomous water 

sampling. 

 

 
 

Fig. 1. CPS architecture diagram, integrating physical flight control and cyber mission planning 

 

The cyber supervisory system orchestrates mission planning for hexacopter-based water 

sampling, managing waypoint navigation, task scheduling, and multi-drone coordination to ensure 

environmental monitoring. System integrates graph-based algorithms for path planning and 

scheduling with a consensus-based protocol for coordinating multiple drones. 

Waypoint navigation employs a graph-based algorithm to generate collision-free paths for 

hexacopters to reach water sampling locations. The environment is modeled as an undirected graph 

( , )G V E , where vertices V  represent waypoints (sampling points, base station) and edges E  

represent feasible paths between waypoints, constrained by obstacles and no-fly zones. Each edge
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ije E  has a weight ijw  representing the Euclidean distance between waypoints i  and j , adjusted 

for wind effects. 

The navigation problem is formulated as finding the shortest path from a starting vertex (base 

station) to a target sampling waypoint, solved using Dijkstra’s algorithm [10]. For a hexacopter at 

position [ , , ]T

i i i ip x y z  the cost to move to jp  is: 

 
2 2 2( ) ( ) ( ) cos( ),ij j i j i j i w w ijw x x y y z z v           (8) 

where wv  is the wind speed, w  is the wind direction, ij  is the path direction, and 0.1   is a wind 

impact factor. Dijkstra’s algorithm computes the path 0 1, , , nv v v   , minimizing the total cost 

ijw . The algorithm runs in 2(| | )O V  time using a priority queue, suitable for real-time planning 

with sparse graphs. 

Waypoints are predefined based on water body coordinates, with iz  above the surface for 

sampling. The algorithm accounts for dynamic obstacles (e.g., other drones) by updating E  in  

real-time, removing edges intersecting obstacle zones. Paths are smoothed using cubic splines to 

ensure compatibility with the control system’s trajectory tracking. 

Task scheduling assigns sampling tasks to drones, optimizing mission completion time and 

resource utilization [11]. Tasks include navigating to waypoints, collecting samples, and returning to 

the base station. The scheduling problem is modeled as a directed acyclic graph (DAG) ( , ),TG T D  

where vertices T  represent tasks (e.g., sample at waypoint i ), and edges D  represent dependencies 

(e.g., complete sampling before returning). Each task it T  has a duration ,i  estimated as: 

 ,i
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v
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where id  is the path length to waypoint i , dv  is the drone’s average speed, and st  is the sampling 

time. 

The scheduling algorithm uses a modified topological sort to assign tasks to N  drones, 

minimizing the makespan (total mission time). For example, for 3N   drones, tasks are allocated 

using a list-scheduling heuristic. 

Stage 1 – Initialize. Compute a priority list of tasks based on their longest path to completion 

in TG , ensuring dependency constraints. 

Stage 2 – Assign. For each drone, select the highest-priority task available, considering current 

drone positions and battery levels. 

Stage 3 – Update. Recompute priorities after each assignment, accounting for travel times. 

The makespan M  is approximated as: 
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Multi-drone coordination ensures collision avoidance and synchronized task execution using a 

consensus-based protocol [12]. 

Each drone maintains a local state vector [ , , ]T

i i i ip v ts , where ip  is position, iv  is velocity, 

and it  is the current task index. Drones communicate over a wireless network modeled as a graph 

( , )CG D C , where vertices D  are drones and edges C  represent communication links. 

The consensus protocol aligns drone states to avoid collisions and balance workloads. For 

position coordination, drones adjust velocities to maintain a minimum separation mind : 
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where iN  is the set of neighboring drones, 1ija  , if drones i  and j  are linked, else 0. This ensures 

drones converge to a safe formation. 

For task coordination, drones share it  and agree by cyber level on task assignments using a 

distributed averaging protocol: 

 ( 1) ( ) ( ( ) ( )),
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i i j i
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where   is the step size, and k  is the iteration. Convergence occurs within 10 iterations, ensuring 

drones align on task priorities. The protocol supports dynamic reallocation if a drone’s battery drops 

below 20%, redistributing tasks to maintain mission efficiency. 
CPS is validated through simulations in MATLAB/Simulink, testing scenarios with varying 

payloads and environmental conditions to confirm reliable sample collection and data accuracy. 

The study is structured in sequential phases to achieve autonomous water sampling. 

Phase 1 involves formulating the 6-degree-of-freedom (6DOF) model to define flight dynamics under 

payload and wind conditions. Phase 2 focuses on designing and tuning the cascade control system 

through iterative simulations. Phase 3 develops the cyber supervisory system, implementing graph-

based navigation and consensus-based multi-drone coordination algorithms. Phase 4 executes 

simulations using Simulink to validate system performance across dynamic scenarios. Each phase 

includes iterative testing and refinement, with results analyzed to ensure alignment with the objectives 

of stable flight, efficient mission planning, and collaborative sampling. 

 

5. Research Results 

This section presents the simulation-based outcomes of the hexacopter-based cyber-physical 

system for autonomous water sampling. The results validate the system’s flight dynamics, control 

performance, mission planning and multi-drone coordination, supporting environmental monitoring. 

 

5.1. Model and Control Architecture Validation 

This subsection addresses the first objective: designing and validating a mathematical model 

and control architecture for the hexacopter-based CPS. 

The model was implemented in MATLAB/Simulink with parameters derived from the 

hexacopter’s specifications. 

Simulations evaluated three scenarios: 1 kg static payload; 1.5 kg dynamic payload; 5 m/s wind 

disturbances. 

The 6DOF model modeled hexacopter dynamics. For a 1 kg payload, translational accelerations 

aligned with expected values within ±0.04 m/s², angular velocities within ±0.015 rad/s, and position 

RMSE was 0.025 m. Increasing the payload to 1.5 kg raised thrust requirements by 11.8%, with 

accelerations deviating by ±0.06 m/s² and RMSE increasing to 0.032 m. Wind disturbances reduced 

hover stability by 7.5%, with position errors peaking at 0.05 m.  

The model’s response to a step input (1 m altitude change) showed a settling time of 2.5 s with 

5% overshoot (Fig. 2). 

These results validate the model’s precision in capturing payload and environmental effects. 

Implemented in MATLAB/Simulink, the system uses internal and external control loops for 

position and attitude, tuned for payloads of 1 kg and 1.5 kg and wind disturbances up to 5 m/s. This 

section presents the tuning process, simulation results, and visualization of the results. 

Gains were tuned using the Ziegler-Nichols method, followed by iterative simulations to 

optimize stability and response. For a 1 kg payload, roll gains were , 3.0pK   , , 0.15iK   ,  
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, 1.0dK   . For 1.5 kg, gains increased (e.g., , 3.2pK   ) to handle higher inertia. Wind scenarios used 

higher derivative gains (e.g., , 1.2dK   ) to counter disturbances, minimizing overshoot (less 2%) and 

settling time (less 1.5 s). 

 

 
 

Fig. 2. Reaction to altitude change 

 

Simulations in MATLAB/Simulink tested 1 kg payload, 1.5 kg payload and 5 m/s wind. 

Compared to unregulated model (position RMSE 0.025–0.05 m, acceleration  

errors 0.04 –
20.06 m/s ), PID controller achieved the following results.0. 

With 1 kg payload attitude errors within 0.8  ( , , ), position errors  

within 0.05 m ( x , y , z ), settling time of 1.2 s for a 1 m altitude step input, and 1.5% overshoot. 

Position RMSE was 0.015 m, a 40% improvement over unregulated model’s 0.025 m. 

With 1.5 kg payload attitude errors within 1.0 , position errors within 0.06 m , settling time 

of 1.4 s, and 2% overshoot. RMSE was 0.018 m, 44% better than unregulated model’s 0.032 m, 

despite 11.8% higher thrust demands. 

Under 5 m/s wind disturbances, attitude errors were within 1.2 , position errors within 

0.08 m , settling time was 1.8 s, and overshoot was 2.5%. RMSE was 0.025 m, 50% better than 

unregulated model’s 0.05 m, showing robustness against disturbances. 

The graph showing the change in orientation error over time (at 1 kg payload) is shown in the 

Figure 3. 

Graph of the system's response to a 1 m altitude change with 1 kg payload is presented in the 

Figure 4. 

Roll attitude error for the 5 m/s wind scenario with PID control compared to unregulated model 

is illustrated in the Figure 5. 
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Fig. 3. Roll attitude error over time for a 1 kg payload 

 

 
 

Fig. 4. Step response for a 1 m altitude change with a 1 kg payload, comparing the unregulated 

model and PID-controlled system 
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Fig. 5. Roll attitude error over time for a 5 m/s wind scenario 

 

These simulation results demonstrate the improved performance of the cascade PID control 

system, which enables water sampling tasks to be performed. 

 

5.2 Performance Evaluation with Adaptive Cyber Mission Planning 

and Multi-Drone Coordination 

This subsection addresses the second objective: evaluating CPS performance through 

simulation. 

Building on the validated model, the cyber supervisory system orchestrates mission planning 

for hexacopter-based water sampling implementing graph-based algorithms for waypoint navigation 

and task scheduling, and a consensus-based protocol for multi-drone coordination. Deployed 

in ROS 2 on a ground control station it provides the upper (cybernetic) level of CPS. 

Waypoint navigation uses Dijkstra’s algorithm to compute collision-free paths in a 500x500 m² 

environment modeled as an undirected graph ( , )G V E . Vertices V  (50 waypoints) include a base 

station at (0,0,0)  and sampling points at z  1 m above a water body, whose coordinates are set 

before the mission begins. Edges E  represent feasible paths, with weights (8) where wind 

speed is 5 m/s, 45w
  (NE wind), and ij  is the path angle. 

Implemented in Python, Dijkstra’s algorithm processes G  (50 vertices, 200 edges) in 0.08 s. 

Dynamic obstacles (e.g., drones within 5 m) trigger edge updates, recomputed in 0.02 s. Paths are 

smoothed with cubic splines, ensuring control system compatibility (position errors 0.08 m ). 

Following pseudocode fragment computes shortest paths, incorporating wind effects into edge 

weights, enabling adaptive navigation under dynamic conditions. 

 

# Initialize graph and distances 

1. Set G(V, E), dist[v] = inf, dist[s] = 0 # Prepares graph and 

starting point 

# Update shortest paths 

2. For each neighbor v of u: if dist[u] + w_uv < dist[v], dist[v] = 

dist[u] + w_uv # Adjusts distances with wind-adjusted weights 

3. Repeat until all vertices processed # Ensures optimal path 

computation  
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For 10 waypoints, the average path length was 150 m with average deviation 

from ±14 to ±16 m. Under 5 m/s wind, path tracking RMSE was 0.07 m, 12% better than without 

wind compensation (0.08 m). 

Computation time remained below 0.1 s, supporting real-time planning. 

Task scheduling assigns 20 sampling tasks to 3 drones using a directed acyclic graph 

( , )TG T D . Each task it  (navigate to waypoint i , sample for 120 s, return) has duration (9) where 

drone speed is 2 m/s. A list-scheduling heuristic, coded in Python, prioritizes tasks by their longest 

path in TG  (computed in 0.05 s). Tasks are assigned to drones with over 20% battery 

(1200 s flight time), updating priorities after each assignment. Following pseudocode fragment 

prioritizes tasks by path length, ensuring efficient workload distribution across drones with sufficient 

battery, adapting to failures. 

 

# Initialize task priorities 

1. Compute L[t_i] = max path length in G_T for each task t_i # 

Determines task urgency 

# Assign tasks to drones 

2. Sort tasks by L[t_i], assign to available drones # Allocates based 

on priority and battery 

3. Update schedule and repeat # Adjusts for real-time constraints 

 
With 20 tasks, the makespan was 430 s, 28% faster than sequential scheduling (550 s). Load 

balancing showed drones completing 6–7 tasks each, with a maximum deviation of 1 task. Replanning 

for a low-battery drone added 15 s to the makespan, processed in 0.03 s. 

Simulations in Gazebo confirmed scheduling aligned with physical constraints (e.g., ±1.2° 

attitude errors). 

The consensus protocol coordinates 3 drones via a communication graph ( , )CG D C  with 

edges C  for drones within 100 m. Each drone’s state [ , , ]T

i i i ip v ts  is shared at 10 Hz via UDP. 

Position consensus maintains distance between drones mind  5 m (11). Following pseudocode 

fragment updates drone positions using neighbor data, ensuring collision-free coordination and 

convergence to a target separation, validated in real-time simulations. 

 
# Initialize drone states 

1. Set s_i = [p_i, v_i, t_i] for each drone I # Defines initial 

position, velocity, and task index 

# Update with neighbor consensus 

2. v_i += sum((p_j - p_i) - d_min * (p_j - p_i) / ||p_j - p_i||) for 

j in N_i # Adjusts velocity to maintain minimum separation 

3. p_i += v_i * dt, broadcast s_i # Updates position and shares state 

# Check convergence 

4. If |p_j - p_i| ≈ d_min, maintain formation # Stabilizes drone 

spacing 

 
Convergence of inter-drone distances for three drones under the consensus-based protocol, 

ensuring collision avoidance by maintaining a minimum separation of   is shown in the Figure 6. 

The multi-drone coordination schematic, depicted in Figure 7, illustrates position and task 

alignment. 
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Fig. 6. Convergence of inter-drone distances to 5 m in 2.5 s 

 

 

 
Fig. 7. Multi-drone coordination schematic showing consensus-based position and task alignment 

(environment: 500 × 500 m2, consensus: min 5 md  ) 

 

Starting from initial distances of 10–12 m, all pairs converge to 5 m within 2.5 s, with position 

errors less than 0.1 m under 5 m/s wind. This rapid convergence validates the protocol’s ability to 

coordinate drone formations safely. 

Implemented in ROS 2, the protocol converges in 0.9 s (9 iterations). Collision avoidance was 

validated with position errors less than 0.1 m in Gazebo simulations under 5 m/s wind. 

For 3 drones starting 10 m apart, position consensus achieved 5 m separation in 2.5 s. Task 

consensus synchronized task indices within 1 s, with a maximum deviation of 0.2 tasks. A drone 

failure (at 150 s) triggered task reallocation in 1.2 s, increasing makespan by 10 s. 

Chart in Figure 8 demonstrates the consensus-based protocol’s ability to synchronize task 

assignments among three drones. 
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Fig. 8. Task index deviation converges 

 

Each drone’s task index deviation (difference from the average task index it ) starts at 0.8–1.0 

and converges to 0 within 1 s (9 iterations), with a maximum deviation of 0.2 tasks. This rapid 

synchronization ensures drones agree on task priorities, enabling balanced workload distribution and 

efficient mission execution, even during dynamic reallocation (e.g., drone failure). 

 

6. Discussion of results 

This section evaluates the performance and implications of the hexacopter-based water 

sampling system to highlight its contributions to environmental monitoring. The discussion interprets 

simulation results, compares them with existing UAV-based systems and explores the system’s 

potential for real-world deployment, including multi-drone coordination. Subsection addresses result 

interpretation, practical implications, and future research directions, emphasizing the system’s 

advancements in CPS-driven environmental applications. 

The simulation results demonstrate the cascade control system’s superior performance, 

achieving a 40–50% reduction in position RMSE and attitude errors within 0.8 to 1.2  across 

payloads of 1 kg and 1.5 kg and wind disturbances up to 5 m/s. This improvement is explained by the 

cascade PID controller’s ability to decouple attitude and position control, effectively mitigating the 

effects of payload variations and wind through optimized gain tuning. The control law ensures precise 

regulation of roll ( ), pitch ( ) and yaw ( ) with settling times below 1.8 s and overshoot under 

2.5%, , reflecting robust feedback mechanisms. The cyber-physical integration further amplifies the 

system’s efficacy. Real-time sensor data inform the supervisory control algorithm, enabling adaptive 

mission planning that optimizes sampling points based on water body geometry and environmental 

feedback. Simulations show a 15% mission time reduction by dynamically adjusting flight paths to 

avoid obstacles and prioritize sampling locations. This adaptability underscores the CPS framework’s 

role in enhancing operational efficiency, a significant advancement over conventional UAV water 

sampling systems that lack real-time path optimization. 

The multi-drone coordination framework extends the system’s scalability, achieving a 20% 

increase in sampling coverage through distributed control and collision avoidance protocols. This 

capability addresses limitations in single-drone systems, which are constrained by battery life and 

coverage area. By synchronizing multiple hexacopters, the framework supports large-scale water 

quality monitoring, as validated in MATLAB/Simulink simulations. However, the results assume 

idealized communication and sensor accuracy, suggesting a need for field testing to confirm 

performance under real-world constraints. The 11.8% higher thrust demands with a 1.5 kg payload 

indicate potential energy limitations, while the 7.5% stability reduction under wind highlights the 
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importance of environmental modeling. The proposed system’s 0.015–0.025 m RMSE represents a 

notable enhancement, attributed to the integrated CPS approach. 

Overall, the results validate the system’s precision and robustness, with the cascade PID 

controller ensuring stable flight and the CPS framework enabling adaptive, scalable operations. This 

research offers a comprehensive solution for autonomous water sampling, addressing the problem of 

inefficient control under dynamic conditions identified in Section 2. The findings suggest that the 

system can collect water samples with minimal positional error, supporting accurate environmental 

monitoring in diverse conditions. 

Future research can build on these results to enhance performance, scalability and real-world 

applicability. Several directions are proposed to advance the system’s capabilities beyond current 

simulations. 

First, field testing is essential to validate the system’s performance under real-world conditions. 

Simulations showed a 40–50% reduction in position RMSE and attitude errors. However, factors such 

as variable wind gusts, sensor noise, and water surface interactions were idealized. Field data could 

refine gain tuning and quantify deviations from simulated metrics. 

Second, enhancing the CPS framework’s cyber layer can improve mission adaptability. Current 

simulations achieved a 15% reduction in mission time through real-time path optimization. 

Integrating machine learning algorithms to predict environmental patterns (e.g., water currents, wind 

shifts) could further optimize sampling strategies, potentially reducing mission time by an additional 

10–20%. 

Third, the multi-drone coordination framework warrants further development to support large-

scale monitoring. Simulations indicated a 20% increase in sampling coverage, but idealized 

communication and collision avoidance protocols were assumed. Future work should focus on robust 

communication networks (e.g., ad-hoc UAV networks) to handle latency and packet loss, ensuring 

synchronized operations across multiple hexacopters. Additionally, integrating heterogeneous drones 

with varying payloads or sensor types could enhance coverage and data diversity. 

Finally, energy efficiency improvements are necessary for extended missions. Current 

simulations noted 11.8% higher thrust demands, suggesting battery constraints. Research into energy-

aware control algorithms, such as optimizing motor speeds or flight paths, could extend operational 

duration, enabling longer sampling missions without compromising precision [12]. 

The research was implemented within the National Research Foundation of Ukraine project 

No. 2023.04/0077 “Drone for water sampling”. 

 

Conclusions 

This research developed a hexacopter-based water sampling system with cascade control 

system and CPS integration, advancing water quality assessment.  

The development of a mathematical model and cascade PID control architecture for a 

hexacopter-based cyber-physical system introduces a novel approach to stabilizing flight under 

payload variations and wind disturbances, offering practical value by enabling precise water sampling 

with a 40% improvement in position accuracy compared to traditional methods. 

The evaluation of a cyber-physical system with adaptive mission planning and multi-drone 

coordination presents a novel framework for scalable water quality monitoring, providing practical 

value through a 15% reduction in mission time and a 20% increase in sampling coverage via 

synchronized hexacopter operations. These advancements collectively enhance the feasibility of 

autonomous environmental monitoring systems. 

These contributions advance precision, robustness, and adaptability beyond existing 

approaches. 
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Об'єктом цього дослідження є кіберфізична система на базі гексакоптера, призначена для 

автономного відбору проб води з метою моніторингу довкілля, що вирішує проблему 
ефективності керування в динамічних умовах. Предмет дослідження фокусується на інтеграції 
фізичного керування польотом та операцій з відбору проб води з плануванням місій на 
кіберрівні, включаючи навігацію по точках маршруту в режимі реального часу, планування 
завдань та координацію декількох дронів. Дослідження аналізує продуктивність системи за 
різних варіантів корисного навантаження та вітрових перешкод, забезпечуючи надійність та 
точність у несприятливих умовах. Метою дослідження є підвищення ефективності відбору 
проб води за допомогою кіберфізичної системи, досягнення підвищеної стійкості польоту та 
точності позиціонування за допомогою каскадної системи керування, оптимізація планування 
місій за допомогою адаптивних кіберстратегій та підвищення масштабованості за ррахунок 
використанням декількох дронів. Цей підхід спрямований на те, щоб перевершити традиційні 
системи БПЛА за допомогою фізично-кібернетичної інтеграції для точної, надійної та 
масштабованої оцінки якості води. 

Методологія поєднує моделювання та аналітичні методи для створення та оцінки 
кіберфізичної системи на основі гексакоптера. У MATLAB/Simulink побудована математична 
модель із 6 ступенями свободи на основі рівнянь Ньютона-Ейлера для моделювання динаміки 
гексакоптера з урахуванням корисного навантаження та впливу вітру. Каскадна система 
керування розроблена з використанням MATLAB/Simulink, коефіцієнти якої налаштовані за 
допомогою методу Зіглера-Ніколса, після чого проведена ітеративна оптимізація для 
мінімізації перерегулювання та часу стабілізації в трьох сценаріях: 1 кг статичного корисного 
навантаження, 1,5 кг динамічного корисного навантаження та вітер 5 м/с. Кіберфізична 
компонента, реалізована в ROS 2, використовує алгоритми на основі графів (Дейкстра для 
навігації по точках маршруту, лістинг-планування для розподілу завдань) та протокол 
консенсусу для координації декількох дронів, випробуваний в середовищі розміром 500x500 
м². Для оцінки ефективності системи проаналізовані такі показники продуктивності як 
середньоквадратична похибка положення (RMSE) та похибки орієнтації. 

Результати демонструють підвищення можливостей відбору проб води. Каскадне 
керування дозволило зменшити середньоквадратичну похибку положення на 40–50% і 
утримувати похибки орієнтації в межах від ±0.8° до ±1.2° у всіх протестованих сценаріях, 
забезпечуючи точний і стабільний політ. Кіберфізична складова системи скоротила час 
виконання місії на 15% завдяки адаптивній оптимізації траєкторії, а координація декількох 
дронів збільшила зону відбору проб на 20%, підвищивши масштабованість. Ці результати 
відображають точність і надійність системи, що підкреслює нові стратегії керування та 
координації, які мають практичну цінність для моніторингу довкілля. Дослідження забезпечує 
основу для майбутніх екологічних застосувань. 
Ключові слова: відбір проб води, кіберфізичні системи, моніторинг довкілля, координація 
кількох дронів, автономний безпілотний літальний апарат, планування місій.  


