Information, Computing and Intelligent Systems, 2025, No. 6, 4 — 13

UDC 004.42 https://doi.org/10.20535/2786-8729.6.2025.333586

ENVIRONMENT FOR TUNING PARAMETERS
OF A MULTITHREADED PROGRAM DEVELOPED USING
A DEPENDENCY GRAPH

Kostiantyn Nesterenko *

National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
https://orcid.org/0000-0003-3921-4324

Inna V. Stetsenko

National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
https://orcid.org/0000-0002-4601-0058

*Corresponding author: k.nesterenko@kpi.ua

With the advent of multi-core central processors, multithreading has become the most widespread
practice for improving program execution performance. However, the development of a multithreaded
program remains a rather complex process. To simplify this process and enhance the performance of the
resulting program, various methods for managing thread-based execution are often employed.

One such method is the method of managing the execution of tasks of a multithreaded program
according to a given dependency graph. This method significantly reduces the resource intensity of
program development and increases program performance by employing a lockless approach to
multithreaded programming.

Nevertheless, the challenge of efficient utilization of computational resources remains relevant and
can only be addressed through the careful design of parallel computations. In particular, identifying the
configuration parameters for a multithreaded program that ensure optimal resource utilization is a
resource-intensive and complex task, even for highly qualified specialists.

This study examines existing approaches to tuning the parameters of multithreaded programs to
achieve the most efficient execution. It proposes the use of an environment for tuning multithreaded
program parameters based on the method of managing the execution of tasks of a multithreaded program
according to a given dependency graph. The accuracy of the resource efficiency metrics obtained
through this environment was experimentally validated. A practical example demonstrates the
application of the environment in the development of a multithreaded program. The use of the
environment also facilitates the configuration process of multithreaded program parameters.
Keywords: software, multithreading, computational resources, dependency graph, C-++ parallel
programming.

1. Introduction

The development of a multithreaded program is a complicated process, even for an experienced
specialist. To simplify and enhance this process, various methods for managing program execution
in threads are employed. One such prominent method is the method of managing the execution of
tasks of a multithreaded program according to a given dependency graph [1]. This method allows
presenting an execution flow of a multithreaded program as a directional acyclic graph (DAG) and
performing tasks according to the given DAG. Application of this method significantly simplifies the
development process, as well as increasing overall program performance by utilizing the lockless
approach to multithreaded execution.

However, the task of determining the optimal amount of computational resources required for
program execution remains and often presents a non-trivial and resource-consuming challenge [2].

For any given codebase, gradually increasing the number of threads eventually leads to
diminishing returns in performance gains [3]. It is important to recognize that a higher thread count

© The Author(s) 2025. Published by Igor Sikorsky Kyiv Polytechnic Institute.
This is an Open Access article distributed under the terms of the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/),
which permits re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Environment for Tuning Parameters of a Multithreaded Program Developed Using a Dependency Graph 5

incurs greater overhead associated with deployment and maintenance of the software solution.
Moreover, increasing the number of threads also raises the hardware requirements (and thus the cost)
of the system on which the program runs [4]. Therefore, identifying a configuration that ensures both
satisfactory performance, defined by the program’s non-functional requirements, and efficient
utilization of computational resources remains a highly relevant task.

In addressing this challenge, two general approaches can be distinguished: first, the application
of computational modeling methods during the software design phase; and second, experimental or
automated tuning of parameters in an already developed software system [5]. However, both
approaches suffer from a common drawback — significant resource consumption.

Thus, reducing the resource consumption of the process of tuning the parameters of a
multithreaded program remains a relevant scientific problem.

2. Literature review and problem statement
2.1. Methods for modeling software computations

One of the most widely used and effective methods for system modeling is the application of
Petri nets. In particular, stochastic Petri nets allow sufficiently accurate modeling of asynchronous
and parallel systems, as they account for computational execution delays and the stochastic nature of
resource acquisition [6]. The number of tokens in specific places of the net's initial state enables the
representation of available resources, such as logical cores of central processing unit (CPU), and
allows tracking their occupancy during computation.

However, this approach also has limitations. Chief among them is the high qualification
requirement for specialists, including a solid theoretical background in automata theory and formal
methods in software engineering. Furthermore, although software tools for designing and simulating
Petri nets exist, such as CPN IDE (Colored Petri nets Integrated Development Environment) [7],
modeling parallel computations according to the program code still demands substantial expert effort.
For this reason, such solutions are unsuitable for small companies or startups, where rapid software
development is a critical priority.

Another drawback of modeling computations using timed Petri nets lies in the definition of
delay parameters. The accuracy of such models directly depends on how closely the defined delays
reflect the actual execution time of specific functions or processes within the program. These delays
are also influenced by the characteristics of the hardware on which the software is executed, making
the development of a precise computational model particularly challenging during the prototyping
phase or when designing new software.

2.2. Software tools for program profiling

Currently, a wide range of tools are available to developers for debugging and performance
tuning. Some are built into integrated development environments (e.g., Performance Profiler in Visual
Studio [8]) or game engines (e.g., Unreal Insights for Unreal Engine 5 [9]), while others exist as
independent solutions that can be integrated into software products (e.g., RAD Telemetry
Performance Visualization System [10]). In most cases, these tools record information during
program execution about when and in which thread a specific call occurred, as well as how long it
took to execute. Developers can then analyze this data to identify performance bottlenecks [11].

Although this approach ensures accurate insight into program execution behavior, it has a
notable drawback. When system parameters change — for instance, when the number of available
threads is increased or decreased — performance analysis must be repeated from scratch. This involves
re-executing the program and reanalyzing the data to assess the impact of these changes on
performance. The process itself is resource-intensive, and its efficiency depends heavily on the
experience and qualifications of the specialist conducting the analysis [13]. The presence of parallel
computations in the program adds further complexity due to the inherent stochasticity in how different
program segments are executed.

6 Information, Computing and Intelligent Systems N2 6, 2025

Thus, based on the analysis of existing methods for assessing program performance and
resource utilization efficiency, it can be concluded that their primary drawback lies in their high
resource demands and the significant level of expertise required for their effective use.

Accordingly, the problem of reducing the resource intensity of configuring parameters in
multithreaded programs remains an important direction for further research.

3. The aim and objectives of the study

The aim of this research is to reduce the resource intensity of the process of configuring
parameters for multithreaded programs developed using a dependency graph.

To achieve the goal, the following tasks are set:

— to create an environment for tuning parameters of a multithreaded program that allows
replaying the execution of a multithreaded program, changing its parameters, and running simulations
with modified parameters,

— to conduct an experimental investigation of the accuracy of results provided by the
environment.

4. The study materials and methods of developing the environment for tuning parameters of
the multithreaded program
4.1. General overview of the environment

The design of the environment is based on a task execution control method for multithreaded
programs using a predefined dependency graph [1]. This method represents the set of subtasks in a
multithreaded program as a directed acyclic graph, where the graph’s nodes correspond to individual
subtasks and the edges denote dependencies between them.

The proposed approach integrates data collection (see Section 4.3) on execution time and
computational resource utilization. Based on the collected data, the environment is capable of
reproducing the program execution process, enabling developers to visually identify performance
bottlenecks. Additionally, the environment provides key statistical insights, including total execution
time, the working and idle durations of each thread, and an estimate of overall resource utilization
efficiency.

Moreover, with empirical data on the execution time of each subtask, the environment enables
simulation of program execution under varying system resource configurations. This allows the
developer to alter the number of available threads for executing the task graph and observe simulation
results under different system configurations — without needing to run the actual program.

4.2. Simulation Algorithm Development

As mentioned earlier, the simulation algorithm is built upon the task execution control method
using a predefined dependency graph [1]. To ensure high accuracy in simulation results, the algorithm
mirrors the logic of the original method.

The simulation algorithm implements discrete-event simulation. Simulation time progresses
between events corresponding to the completion of a subtask by one of the threads.

To simulate the behavior of individual threads, the ‘SimulationWorker’ class is
implemented. This class emulates the processing logic of a node and determines the expected
completion time for that node. For representing the state of nodes in the dependency graph, the
‘GraphNode’ class is developed. Instances of this class maintain the state of a node as well as its
dependency information. A node can be in ‘blocked’, ‘partially unblocked’, ‘ready’
‘executing’, or ‘processed’ state. The state of a node is updated via the ‘updateSimulation’
method, which receives the current simulation time as input.

After each state update, the next simulation event time is calculated as the nearest scheduled
task completion among all active threads.

Environment for Tuning Parameters of a Multithreaded Program Developed Using a Dependency Graph 7

4.3 Environment Development

The environment is developed using the C++ programming language and the Qt Framework.
According to recent studies, C++ is one of the fastest programming languages and offers fine-grained
control over system resources [13]. The Qt Framework has been chosen to implement the graphical
user interface. Thanks to its built-in signal and slot mechanism [14], the framework enables rapid
development of user interactions with the application. It also offers a rich set of graphical tools, which
is a significant advantage for visualizing the dependency graph.

The first step in the development is to identify the dataset collected during program execution,
as well as to determine a structure for storing this data. The JSON format is selected for data storage
due to its human-readability and broad tool support. The collected data is categorized into two main
types: general execution data and data required to reconstruct the dependency graph.

General execution data includes the total execution time of the program and the active time of
each allocated thread. Only the durations in which threads were processing subtasks (i.e., performing
useful work) are counted (Fig. 1).

"stats": {
"total_time™: 7000,
"workers™: |

r

be

Fig. 1. Example of collected general execution data.

To reconstruct the dependency graph, data for each graph node is recorded in the following
format: a unique node identifier, the name of the node (or subtask, for easier interpretation of the
graph’s structure), the list of identifiers corresponding to the nodes that this node connects to via
outgoing edges, the start time of the node’s processing, and the completion time of that processing
(Fig. 2). All this information is collected automatically during the execution of a multithreaded
program implemented using the task execution control method based on a predefined dependency
graph.

"data": [
{

"node name”: "Node A",

"node id": 0O,
"start processing”: ’
"finish processing”: ’

"connected to": [1, 2]

node_name": "Node B",
"node_id": 1,

"start processing”: 4 ’
"finis

h_processing”: ! y
"connected to": [3]
Yo

Fig. 2. Example of collected graph data.

The next challenge addressed during the development of the environment was the visualization
of the dependency graph itself. A wide range of algorithms for graph visualization is available to
solve this type of task [15]. Given that, according to the method’s definition, the dependency graph
is directed and acyclic, the most suitable approach for its visualization is the hierarchical graph layout
method, also known as the Sugiyama framework [16] (Fig. 3).

8 Information, Computing and Intelligent Systems N2 6, 2025

200.103 ms

\
N
\
\\
égm 75 ms

A

/Node 5
/

S

/

Fig. 3. Visualizing the dependency graph within the environment using the Sugiyama layout
method.

To visualize the program execution process based on the dependency graph and to enable its
simulation, a dedicated class named ‘GraphController’ is developed. This class contains a
complete representation of the graph in the form of an array of ‘GraphNode’ objects, as well as the
logic for updating the graph state according to simulation time (see Figure 3).

During the program execution, each ‘GraphNode’ object displays the number of unresolved
dependencies that prevent the corresponding subtask from being executed. A ‘GraphNode’ can be in
the following states:

— blocked (marked with a red outline) if none of the dependencies of this node have been
fulfilled,

— partially unblocked (marked with a yellow outline) if some, but not all, dependencies of the
node have been fulfilled,

— ready (marked with a green outline) if all dependencies have been resolved, and the subtask
associated with this node is queued for execution,

—executing (marked with a solid yellow fill) if the subtask associated with this node is currently
being executed,

— processed (marked with a solid green fill) if the subtask associated with this node has
completed execution.

The ‘GraphController’ operates in two distinct modes: step-by-step playback and
simulation mode. Depending on the selected mode, ‘GraphController’ utilizes either
‘ReplayGraphNode’ Or ‘SimulationGraphNode’ objects, since these types implement different
logic for updating the state of each graph node based on time progression.

In playback mode, the environment reproduces the program execution according to data
previously recorded in a file. This allows the developer to visually analyze the graph state and identify
performance bottlenecks that negatively impact execution speed.

In simulation mode, the execution of the graph is emulated using the computation mechanism
described in the method for managing multithreaded task execution via a predefined dependency
graph. In this mode, the user can specify any number of threads for the simulation, regardless of the
actual configuration of the system. Before starting the simulation, the user may choose whether to
visualize the simulation process or to focus solely on the resulting statistical data.

The execution statistics include the following metrics:

Environment for Tuning Parameters of a Multithreaded Program Developed Using a Dependency Graph 9

— total execution time in milliseconds,

— efficiency coefficient, calculated as the average utilization of all threads,

— per-thread statistics, including work time in milliseconds, idle time in milliseconds, ratio of
work time to total program execution time.

5. Results of the investigation of the environment for tuning parameters of the multithreaded
program

As a result of the investigation, an environment for tuning parameters of the multithreaded
program is proposed and developed. To verify that the environment produces accurate and valid
results, an experiment is required.

For the experimental investigation of the accuracy of multithreaded program simulation, a
method for controlling the execution of tasks within a multithreaded application according to the
given dependency graph was implemented in C++, as described in [1].

To test the simulation on graphs of varying sizes, an algorithm for generating random directed
acyclic graphs was also added. The generated graph adheres to the following requirements:

— the number of graph vertices equals a predefined quantity N,

— the number of edges is random and ranges between N and 5N (this constraint prevents an
excessive number of dependencies that would otherwise make parallel execution practically
impossible),

— the generated graph is connected.

Each vertex of the graph corresponds to a subtask that simulates a time delay of approximately
20+1 milliseconds. In this case, the random distribution reproduces the variability in the execution
time of the same code segment across different runs.

A busy waiting approach is used to simulate the time delay. The rationale behind using busy
waiting lies in the fact that the thread remains actively engaged in computation, preventing operating
system optimization mechanisms from reallocating resources away from inactive threads. Otherwise,
the experimental results could be distorted [17].

Graphs with the following parameters were generated for testing:

— 100 vertices, 406 edges,

— 250 vertices, 1045 edges,

— 500 vertices, 1122 edges,

— 1000 vertices, 3551 edges.

For each generated graph, the program was executed using 2, 4, 6, 8, and 10 threads.

To evaluate the accuracy of the simulation, both the absolute execution time and the efficiency
of computational resource utilization were compared. The efficiency indicators of resource utilization
are calculated using the following formula:

_ 2t

k= (1)

where K is the efficiency coefficient of computational resource utilization, N is the number of program

threads, t; is the execution time of the i-th thread (only the time spent on subtask processing is
considered), T is the total runtime of the program.

As a result of the research, simulation accuracy of 93.97% was achieved for the program
execution time, and 95.55% for the calculated efficiency of system resource utilization. These results
support the conclusion that the simulation algorithm operates correctly.

6. Discussion of the results of developing the environment for tuning parameters of the
multithreaded program
6.1 Description of the software demonstration
To demonstrate the practical application of the developed simulation environment, the program
was created that implements the Canny edge detection algorithm [18] in C++, based on the method
for managing the execution of tasks in a multithreaded program via a predefined dependency

graph [1].

10 Information, Computing and Intelligent Systems N2 6, 2025

For parallel image processing, the image is divided into individual horizontal strips, each of
which is processed independently. However, during most stages of the Canny algorithm, a common
issue arises concerning the handling of border pixels at the edges of each strip. This problem is
effectively addressed by the task execution management method using a dependency graph. It enables
the treatment of border pixel processing as a separate subtask, with its dependencies configured in
such a way that the subtask is only executed after all adjacent strips have completed their processing.

6.2 Application of the environment for tuning parameters of a multithreaded program

It is assumed that the developed implementation of the Canny algorithm will be deployed on a
cloud computing platform as a component of a larger software system. In this scenario, the developer
must determine the appropriate number of computational resources to allocate for executing this
program. This decision is critical: insufficient resources can degrade the overall performance of the
product, while allocating excessive resources results in unnecessary financial costs, especially if the
program cannot utilize those resources efficiently.

To address this issue, the proposed environment for tuning the parameters of a multithreaded
program based on a dependency graph can be employed.

Suppose the input images for Canny processing are of size 2048%2048 pixels. In this case,
dividing the image into 16 horizontal strips is considered optimal.

Additionally, we assume the following non-functional requirements for the deployed
application:

— the processing time for a single image must not exceed 2 seconds,

— the number of logical CPU cores allocated should not exceed 6.

It is further assumed that, for the initial experiment, the program was executed in a 2-thread
configuration, and its execution statistics were recorded (see Figure 4). It was observed that, although
the efficiency of computational resource utilization was nearly 100%, the program’s execution time
exceeded 2 seconds. Therefore, the configuration using 2 logical cores does not satisfy the program’s
non-functional requirements.

To determine the optimal resource configuration, the developer would typically need to repeat
the experiment with different numbers of logical cores, compare the resulting metrics, and draw
conclusions about which configuration best meets the non-functional constraints. However,
conducting such experiments is resource-intensive. In addition to the computational overhead,
performing repeated tests incurs additional time and financial costs, especially when using cloud
infrastructure.

Replay stats:

Total execution time: 3018.22 ms
Efficiency Score: 0.990472

Worker 0, working time: 2961.28 ms
Worker 0, idle time: 56.941 ms
Worker 0, load: 0.981134

Worker 1, working time: 3017.65 ms
Worker 1, idle time: 0.5765 ms
Worker 1, load: 0.999809

Fig. 4. Statistics 2-thread execution of the program.

The proposed tuning environment for multithreaded programs addresses this challenge by
enabling the simulation of program execution under alternative thread configurations based on the
results of a single empirical run. This significantly reduces the resource demands of the optimization
process.

In this case, simulation results were generated using the empirical data obtained from the
experiment with two threads, and the outcomes are summarized in Table 1.

Environment for Tuning Parameters of a Multithreaded Program Developed Using a Dependency Graph 11

Table 1. Simulation results

Number of Execution Efficiency indicator of resource | Satisfies non-functional
threads time, ms utilization requirements
3 2030 0.9818 No
4 1529.57 0.9772 Yes
5 1240.93 0.9636 Yes
6 1044.95 0.9536 Yes

The non-functional requirements are satisfied by the results obtained for four, five, and six
threads. The fastest result was achieved with six threads, while the highest efficiency of
computational resource utilization was demonstrated by the four-thread configuration. Thus, we can
conclude that according to the simulation, the fastest configuration would be the use of six threads,
and the most efficient and most suitable for meeting the non-functional requirements — four threads.

For the obtained results, validation will be performed by executing the actual program using
four and six threads. The validation results are presented in Table 2.

Table 2. Simulation results validation

L Efficiency indicator of resource
Number of Execution time, ms utilization
threads Program | Simulation | Accuracy Program Simulation | Accuracy
4 1493.87 1529.57 97.6% 0.9749 0.9772 99.8%
6 996.218 1044.95 95.1% 0.9572 0.9536 99.2%

Thus, it is concluded that the environment for tuning the parameters of a multithreaded program
provided entirely accurate results based on the simulation, while significantly reducing the resource
intensity of the process of investigating these parameters.

Conclusion

To reduce the resource cost of tuning the parameters of a multithreaded program, an
environment for tuning parameters of a multithreaded program developed using a dependency graph
is created. The environment allows to significantly reduce the resource cost of the process of tuning
the parameters of a multithreaded program. This was proved by demonstrating the application of the
developed environment to the practical task. The validity of the results obtained through simulation
is confirmed by comparing them with those obtained from real program executions.

An analysis of existing solutions for tuning parameters of a multithreaded program was
conducted. The issue of intense resource consumption of existing methods was identified. As a
solution, an environment for tuning parameters of a multithreaded program developed using a
dependency graph is proposed and developed. A general overview of the environment is provided,
along with a detailed description of its development process and implementation specifics.

The accuracy of the developed simulation algorithm, used by the environment, is evaluated,
confirming its correctness and efficiency. For the test data, simulation accuracy of 93.97% was
achieved for the program execution time, and 95.55% for the calculated efficiency of system resource
utilization. These results support the conclusion that the simulation algorithm operates correctly.

References
[1] K. P. Nesterenko and 1. V. Stetsenko, “Method of managing the execution of tasks of a

multithreaded program according to a given dependency graph,” in Problems in Programming,
no. 2-3, pp. 239-246, 2024. https://doi.org/10.15407/pp2024.02-03.239.

12 Information, Computing and Intelligent Systems N2 6, 2025

[2] S. Borkar and A. Chien, “The Future of Microprocessors,” in Communications of the ACM, vol.
54 (5), pp. 6777, 2011. https://doi.org/10.1145/1941487.1941507.

[3] R. Rakvic, Q. Cai, J. Gonzélez, G. Magklis, P. Chaparro, and A. Gonzalez, “Thread-management
techniques to maximize efficiency in multicore and simultaneous multithreaded microprocessors,”
in ACM Transactions on Architecture and Code Optimization, vol. 7 (2), article no. 9, 2010.
https://doi.org/10.1145/1839667.1839671.

[4] Tharwani, Jay & Purkayastha, Arnab. (2024). Cost-Performance Evaluation of General Compute
Instances: AWS, Azure, GCP, and OCI. http://doi.org/10.48550/arXiv.2412.03037.

[5] J. Cui, J. L. Bordim, K. Nakano, T. Hayashi, and N. Ishii, “Multithreaded Parallel Computer
Model with Performance Evaluation,” in Lecture Notes in Computer Science, vol. 1800,
pp. 155-160, 2000. https://doi.org/10.1007/3-540-45591-4 20.

[6] I. V. Stetsenko, O. Dyfuchyna, “Thread Pool Parameters Tuning Using Simulation,” Advances in
Intelligent Systems and Computing, vol. 938, pp. 78-89, 2020. https://doi.org/10.1007/978-3-030-
16621-2_8.

[7] CPN IDE. “CPN IDE Documentation”. Accessed: June 21, 2025. [Online]. Available:
https://cpnide.org/category/documentation/.

[8] “Visual Studio Profiling Documentation,” Microsoft Learn. [Online]. Available:
https://learn.microsoft.com/en-us/visualstudio/profiling. Accessed: Jun. 21, 2025.

[9] “Unreal Engine Insights Documentation,” Epic Games. [Online]. Available:
https://dev.epicgames.com/documentation/en-us/unreal-engine/unreal-insights-in-unreal-engine.
Accessed: June 21, 2025.

[10] “RAD Game Tools. Telemetry Performance Visualization System,” [Online]. Awvailable:
https://www.radgametools.com/telemetry.htm. Accessed: June 21, 2025.

[11] M. A. Khan, “Improving performance through deep value profiling and specialization with code
transformation,” in Computer Languages, Systems and Structures, vol. 37, pp. 193-203, 2011,
https://doi.org/10.1016/j.cl.2011.08.001.

[12] Yang, Chen & Zhang, Jing & Xie, Xiguo & Sun, Jianpeng. (2024). Research on Application
Performance Analysis Methods for Scientific Computing. 429-436.
http://doi.org/10.1145/3690931.3691003.

[13] “Debian. The Computer Language Benchmarks Game (CLBG),” [Online]. Awvailable:
https://benchmarksgame-team.pages.debian.net/benchmarksgame/. Accessed: June 21, 2025.

[14] Q.-X. Wu and J. Ou, “QT Programming Technology and Application with Linux,” in Advances
in Intelligent and Soft Computing, vol. 114, pp. 573-578, 2012, https://doi.org/10.1007/978-3-
642-03718-4_71.

[15] S. Di Bartolomeo, T. Crnovrsanin, D. Saffo, E. Puerta, C. Wilson, and C. Dunne, “Evaluating
Graph Layout Algorithms: A Systematic Review of Methods and Best Practices,” in Computer
Graphics Forum, 43 (6), 15073, 2024, https://doi.org/10.1111/cgf.15073.

[16] C. Bachmaier, “A radial adaptation of the Sugiyama framework for Visualizing Hierarchical
Information,” in IEEE Transactions on Visualization and Computer Graphics, 13 (3),
pp. 583-594, 2007, https://doi.org/10.1109/TVCG.2007.1000.

[17] J. Blieberger, B. Burgstaller, and B. Scholz, “Busy Wait Analysis,” in Lecture Notes in Computer
Science, vol. 2655, pp. 142-152, 2003, https://doi.org/10.1007/3-540-44947-7 10.

[18] R. Liu and J. Mao, “Research on Improved Canny Edge Detection Algorithm,” in MATEC Web
of Conferences, vol. 232, 03053, 2018, https://doi.org/10.1051/matecconf/201823203053.

Environment for Tuning Parameters of a Multithreaded Program Developed Using a Dependency Graph 13

VK 004.42

CEPEJOBHMIIE /151 HAJTAIITYBAHHA ITAPAMETPIB
BATATOIIOTOKOBOI IPOT'PAMM, PO3POBJIEHOI HA OCHOBI I'PA®Y
3AJIEZKHOCTI

KoctaHTUH HecTtepeHko

HanionansHuii TeXHIYHUN yHiBEepcHTET Y KpaiHu

«KuiBcpkuit monitexHiuyHmi iHCTUTYT iMeHi [ropst Cikopcerkoroy, Kuis, Ykpaina
https://orcid.org/0000-0003-3921-4324

IHHa CTteueHko

HarnionansHuii TeXHIYHUN yHIBEpcHTET Y KpaiHu

«KuiBcpkuit monitexHiuyHMiA iHCTUTYT iMeHi [ropst Cikopcerkoroy, Kuis, Ykpaina
https://orcid.org/0000-0002-4601-0058

3 nosiBO0 6araTosIEpHUX LHEHTPAIbHUX MPOLIECOPIB 3aCTOCYBaHHS 0araTonoTOKOBOCTI CTAJI0
HaWOUTHII TIOMIMPEHO TPAKTUKOI s 30UTHIICHHS IIBUAKOMIII BUKOHAaHHS mporpam. I[Ipote
po3poOKka 0araToOMOTOKOBOT MPOTpaMH € JOCHTh CKJIAIHUM MpOoIec. 3 METOI CIPOIIEHHS I[HOTO
MpoIleCy Ta TMOKPAIIeHHS IMBHIKOII pPe3yabTyIOUoi MpOTpamMHu, YacTO BHKOPUCTOBYIOTHCS
PI3HOMAaHITHI METOIM YIIPABJIIHHS BUKOHAHHSAM MPOTPaMH Yy MOTOKaX.

OfHMM 3 TaKUX METOJIB € METOJI YIIPABJIiHHSI BUKOHAHHSAM 3aJ1a4 0araTrornoToKOBOI MporpamMu
3a 3aJ]aHUM TpadoM 3aNeKHOCTeH. MeToT T03BOJISIE CYTTEBO 3MEHIITUTH PECYPCOEMHICTh TPOIIECy
pPO3pOOKH MpoTpaMu, a TaKOX TMIABUIIUTH IIBUAKOMIIO PO3pOOJEHOI MpoTrpaMH 3a pPaxyHOK
BUKOPHUCTAHHS HEOJOKYIOYOTO MiAXOAY A0 0araTormoTOKOBOTO MTPOTrpaMyBaHHSI.

[IpoTe akTyabHOIO 3IUIIAETHCS MPoOIeMa e()eKTUBHOCTI BUKOPHUCTAHHS 00YHCIIIOBAILHOTO
pecypcy, BUPIIIUTH SIKY BAAETHCS TUTBKHA PETEILHOIO PO3POOKOTO MapaieIbHIUX 00UHUCIIeHb. 30KpeMa,
BH3HAUYEHHS IMapaMeTpiB 0araTOMOTOKOBOI IMpoTpamMu, M0 3a0e3MeuyroTh HaOUIbIT e(pEeKTUBHE
BUKOPHUCTAHHSI 00UHCIIOBATIBLHOTO PECYPCY, € PECYPCOBUTPATHUM Ta CKJIAJHUM 3aBIAHHSM HaBITh
JUTsl BACOKOKBaTipikoBaHOTO (haxiBIIs.

Y nmaHoMy JAOCHIIDKEHHI PO3MVISIHYTI ICHYIOYl MIAXOAW JO HaJaIITyBaHHS IlapaMmeTpiB
0araTornoTOKOBOI MPOrpaMH, 110 3a0€3NeUyI0Th HAaO LTI eeKTUBHE 11 BAKOHAHHS. 3alIPOIIOHOBAHO
BUKOPUCTOBYBATH CEpEIOBUIIE Uil HaJAIITyBaHHS MapamMeTpiB 0araTOMOTOKOBOI MpOrpaMmu, Ha
OCHOB1 METOJly YIpaBJIiHHS BUKOHAHHSM 3a/lay 0araTomoTOKOBOI IMporpaMu 3a 3aJaHuM rpadom
3asieykHOCTEN. EKciepuMeHTanbHO OYII0 10BEIEHO TOYHICTh PE3yIbTaTiB 00YMCICHHS €PEeKTUBHOCTI
BUKOPHUCTAHHS 0OYUCIIIOBAILHOTO Pecypcy, OTpUMaHHUX 3a JAOMOMOTOI0 cepenoBuia. Ha mpuxmasni
OMHCAHO TPOIEC 3aCTOCYBAaHHS CepeloBHUINA JUIsl PO3poOKH OaraTomnoTOKOBOI MpPOTrpaMu.
BuxopucrtanHs cepefoBHIlla CHpPUSE TAKOX CIPOIICHHIO MPOIECY HAaJAIITyBaHHS MapaMeTpiB
6araTomoTOKOBOI IPOTpaMHu.

KnrouoBi cnoBa: nporpamHe 3a0e3neyeHHs, 6araTonoToKOBICTh, OOUHUCIIOBANIBLHI pecypcH, rpad
3aNIe)KHOCTEH, MapaliejbHe mporpaMmyBaHHs MOBOO C++.

