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Unmanned ground vehicles (UGVSs) have significant potential across various applications. These
include automation of the agricultural tasks, inspection and maintenance within construction and
industrial sectors, automation of complex assembly processes and infrastructure repairs, explosives
disposal, automation of logistical operations, search-and-rescue missions, and expeditions to hard-to-
reach or hazardous areas. However, a key challenge limiting their widespread deployment is
autonomous navigation, which remains a significant problem due to dynamic environments
characterized by constantly changing obstacle configurations, unpredictable scenarios, and the need for
rapid real-time decision-making to ensure safe and stable movement.

The object of this paper is a hybrid path planning for the autonomous navigation of unmanned ground
vehicles swarm within a simulated environment. The research aims to develop autonomous navigation
method for the unmanned ground vehicles swarm by employing a hybrid approach designed to enhance
the efficiency of obstacle avoidance and improve the adaptability to dynamic environments.

To achieve this goal, a novel autonomous swarm navigation method based on a hybrid approach is
proposed. This approach differs from existing solutions by employing the A* path planning algorithm
with incorporated traversal costs on the map for global-level navigation and the artificial potential field
(APF) algorithm, that supports linear and V-shaped formations for local-level navigation.

The research findings indicate that the proposed method allows the swarm to perform optimal path
planning, considering traversal costs, and effectively avoid local minimum problems that are inherent
to the artificial potential field method. The successful performance of the method within the simulated
environment demonstrates its potential for future validation in real-world scenarios and practical
applications involving swarms of unmanned ground vehicles operating in challenging environments. At
the same time, the study identified challenges related to swarm size scalability in narrow spaces, defining
directions for further improvements.

Keywords: unmanned ground vehicles, A* algorithm, artificial potential field algorithm, dynamic
environment, autonomous swarm navigation

1. Introduction

Autonomous unmanned ground vehicles (UGVs) have greatly impacted tasks that were once labor-
intensive and dangerous and are rapidly changing the way people do things across a wide range of
applications, from automating agricultural tasks [1] and inspections in construction and infrastructure
[2], to carrying out dangerous jobs such as explosives disposal [3]. In addition, they are at the very
heart of revolutionizing transportation processes, particularly in addressing the “last-mile” delivery
challenge [4], and they cannot be replaced when it comes to search and rescue missions and
expeditions in places with untrusted terrain [5].

In terms of efficiency, the higher one is achieved when going from single agents to coordinated
groups, called robot swarms. This idea is borrowed from the collective behavior of natural systems,
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for example, insect colonies or bird flocks, and allows a single agent to tackle a problem that is beyond
its capability. The main advantage of a swarm is that the decentralized nature allows the complex
global actions to emerge from the simple, local interactions of the individual agents, so, there is no
need for a central control node.

Despite considerable progress, many existing approaches to swarm control rely on static
methods. Nevertheless, their application potential is constrained in real-world situations that are very
dynamic due to the presence of unexpected obstacles. This clearly demonstrates the need to improve
the current algorithms and develop new ones that are not only efficient in navigation but also highly
scalable and adaptable.

So, the importance of this study is outlined by the necessity to connect the gap between the
theoretical swarm intelligence concepts and the actual demands of the dynamic environments. This
research is focused on the enhancement of existing approaches to make them capable of operating
under constantly changing conditions that improve the efficiency and reliability of current
assignments and allow deploying swarm technologies in fundamentally new scenarios that are
currently considered unreachable.

2. Literature review and problem statement

Modern methods of path planning for autonomous ground vehicles are changing at a fast pace,
a trend that is confirmed by a review [6] that evaluates 15 commonly used algorithms. The authors
classify these algorithms according to the scope of application: for the global planning, for example,
A* algorithm, for the local planning, for instance, artificial potential field (APF) method and
intelligent methods, applicable to both categories include particle swarm optimization (PSO) or deep
reinforcement learning (DRL) approaches. The emergence of hybrid algorithms is one of the major
trends which the paper emphasized. To illustrate, in these kind of systems traditional methods such
as A* are merged with intelligent approaches like genetic algorithms or DRL approach in order to
gain synergistic effects and improve performance. The authors of the article have opinion that the
future of the area is in the combination and co-optimization of several algorithms, where intelligent
and optimization-based methods will have more influence.

Despite the maturity of classical algorithms, researchers continue to explore ways for their
improvement. For instance, the work [7] proposes a multi-stage, A*-based method for route planning
in autonomous logistics systems. Firstly, a modified A* algorithm finds a safe preliminary route by
taking into account distance to the obstacles and road markings. After that, k-means clustering is
applied to find dangerous parts of the track like sharp turns. Next, these segments are smoothed with
Bézier curves, and at the same time, the problem of the oncoming lane is solved by changing the
trajectory to its mirror image. For adapting to dynamic obstacles in real time, a reinforcement learning
model is added, which allows the execution of local maneuvers. As a result, this approach ensures
the avoidance of potentially dangerous situations and significantly enhances navigational safety and
flexibility. However, the method is exclusively focused on single-agent applications, leaving the
swarm system coordination challenge open for the future work.

In contrast, the research [8] focuses on controlling a swarm of automated guided vehicles
(AGVs) in manufacturing environments. Trajectory planning for individual agents is achieved using
a potential field-based controller that generates conflict-free routes. To achieve this, the controller
accounts for attractive forces from target workstations and repulsive forces from obstacles and system
boundaries. Nevertheless, this method is based on the traditional APF technique, which suffers from
the local minima issue. Although the writers mention that this problem was not present in their
experiments, it is still important to note that the setting they used for testing was quite straightforward
and did not contain the complicated barriers that usually generate such difficulties.

The local minima issue in the APF method has been approached in a number of unconventional
ways that attempt to find a solution. For example, the study [9] introduces a hydrodynamics-inspired
method, where the terrain becomes an “artificial pool”, the vehicle is a particle with negligible weight
and the target is a “drain” that generates the fluid flow. Unlike the standard APF method, this
approach guarantees that the target will be reached, successfully bypassing the bottlenecks typical for
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U-shaped obstacles and narrow passages. However, the work is predicated on the assumption of a
static environment. This is because modeling fluid dynamics by solving the Navier-Stokes equations
is computationally intensive and performed only once for a known map. Hence, a change in the
obstacles would require a total recalculation of the flow, that being highly impractical for real world
applications.

In order to solve the problem of local minima in dynamic situations, especially with the
unpredictable obstacle, the research [10] suggests an improvement to the APF method. The algorithm
finds local minimum traps by looking at the differences in the system’s total potential energy. When
such a case is detected, the method temporarily creates a “second virtual target” in an adjacent lane
to allow the vehicle to carry out a passing maneuver. Though this algorithm has been confirmed as
effective by simulations conducted in MATLAB and CarSim, it is very narrowly targeted in terms of
its use. The approach is essentially based on the assumption that there are distinct lanes in a highly
organized road system, which limits the scope of the method to only those areas that are structured.

The local minimum problem is a challenge not only for ground systems but for vehicles in
aquatic environments as well. For example, the study [11] is an instance that extends in the scope of
underwater drones formation control by employing a four-level hierarchical system. At the behavioral
level of this framework, the APF method is applied for target following and obstacle avoidance. The
main intention for this paper, however, is on kinematic planning. It does not explain how the control
vectors which are produced by the potential field are translated into the actual commands for the
vehicles, so, this important part in the paper has left a significant void between the high-level planning
and the low-level dynamic control.

The idea of hierarchical algorithms mixing is further discussed in the paper [12], where the
hybrid bidirectional A* with a modified artificial potential field (BA*-MAPF) algorithm for
unmanned ground vehicles is introduced. For global planning, an enhanced A* algorithm is utilized.
It employs a bidirectional search strategy to reduce computation time, interpolation to eliminate
redundant nodes, and B-spline smoothing to refine the final trajectory. Meanwhile, the APF method,
responsible for local planning, has been modified to overcome the local minima problem by adjusting
the repulsive field function and introducing a distance coefficient into the attractive field function.
The hybrid nature of the approach lies in the strategy of switching from the global planner to the
enhanced APF method upon detecting dynamic obstacles near the planned route. Simulation results
also showed that the suggested algorithm is better than the standard A* and APF methods in terms of
path length, trajectory smoothness, and computation time in different static and dynamic
environments. Nevertheless, the method still has some limitations because it works with a simplified
grid model of the environment, which only allows cells to be “passable” or “impassable”. This
representation, however, quite inaccurately describes the situation in the real world. A more realistic
method would involve the cost of traversing each cell so that the path planning that is best in terms
of energy, time, or safety could be performed.

The literature review that has been completed brings out an important topic in present-day
planning research. On the one hand, there are classical algorithms that are computationally efficient,
but at their very core, they have flaws, like the local minima problem in the APF method. On the
other hand, we were able to observe the development of more complicated and modified methods
which are frequently very specialized in their application to some particular conditions (such as
structured road environments) or are based on unrealistic assumptions (for example, simplified
environment models). Moreover, a lot of articles are still very focused on single-agent systems and
do not have scalable mechanisms to coordinate swarms in complicated and changing environments.

While some studies have been carried out and are still going on, the general knowledge about
solutions that can take into account all of the complexities that the environment imposes is still quite
limited. This situation highlights the urgent need of the search for a scalable path-planning method
for unmanned ground vehicles swarm that incorporates the realistic terrain costs and guarantees a
reliable real-time response to the changes in the environment, addressing limitations of the existing
approach.
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3. The aim and objectives of the study

The object of this study is the process of path planning and navigation for unmanned ground
vehicles swarm within a complex and dynamic two-dimensional simulated environment. The swarm
operates as a single, coordinated system with a main task of moving from a starting point to a
destination point while maintaining a predefined formation and avoiding collisions.

The aim of this research is to develop a path planning algorithm for the autonomous navigation
of unmanned ground vehicles swarm. This method should utilize a hybrid approach to enhance the
efficiency of obstacle avoidance and improve adaptation to dynamic environments.

To achieve this aim, the following objectives have been defined:

— to develop method for the path planning for unmanned ground vehicles swarm in the proposed
dynamic environment and perform its simulation;

— to develop dynamic environmental model characterized by the presence of both static and
dynamic obstacles, as well as a surface with varying traversal costs.

4. The study materials and methods for hybrid path planning
4.1 The subject and hypothesis of the study

The subject of this research is a hybrid path planning algorithm that integrates a global planner
based on the A* algorithm with a local planner based on the APF method. The study investigates how
the selection of A* algorithm for global path planning in a cost-aware environment and the use of
APF for real time adapting to the local conditions (such as static and dynamic obstacles or other
members of the swarm) can give rise to a synergistic effect.

The main hypothesis of this research states that a hybrid method can provide better performance
in navigational efficiency and safety for unmanned ground vehicles swarm in dynamic environments
than the deployment of a single one. This approach combines the strengths of global path lookup,
using a modified A* algorithm, able to handle terrain costs, with local navigation, using the APF
method for real-time collision avoidance. It is expected that this combination will facilitate near-
optimal paths discovery (because of A* usage) while simultaneously ensuring the ability to avoid
unexpected obstacles or intra-swarm collisions (due to APF usage).

This main hypothesis can be broken down into two hypotheses focusing on specific aspects.

The first hypothesis (H1) admits that the hybrid mode enables the swarm to reach its destination
point faster and with a shorter total path length compared to relying solely on the APF method. The
theoretical basis for this hypothesis is in the local minima issue that the APF method has. In complex
environments, especially those with U-shaped obstacles, a swarm that is controlled by APF only
method can find itself stuck in the condition where the attractive and repulsive forces are at a balance,
hence no movement. The global path created by A* algorithm acts as a guide that helps the swarm to
escape from these traps and go along the globally optimal route.

The second hypothesis (H2) addresses the issue of scalability. It is expected that the hybrid
approach will exhibit superior scalability as the number of vehicles in the swarm increases. The global
path should provide a stable framework for the entire swarm’s movement. In contrast, with a pure
APF approach, an increase in the number of agents escalates the complexity of their mutual repulsive
forces, potentially leading to more chaotic and less predictable motion.

4.2 Hybrid path planning method for unmanned ground vehicles swarm

The proposed hybrid approach to swarm navigation is based on a two-level architecture that
consists of a global and local planner. This structure allows an effective distribution of computational
tasks: strategic planning is performed once, while the tactical response to environmental changes
occurs continuously at each step of the simulation.

At the global level, the responsibility for finding an optimal route from the starting point to the
destination point is assigned to the A* search algorithm. A* is a classical graph search algorithm that
has gained widespread adoption due to its completeness, optimality, and efficiency. Its core principle
involves minimizing an evaluation function f(n) for each cell n on the map:

fm) =g@) +hn), 1)



Hybrid Path Planning Method for Unmanned Ground Vehicles Swarm in Dynamic Environments 91

where g(n) is the cost of the path from the start cell to the current cell n, and h(n) is the heuristic
function that estimates the cost of the path from cell n to the destination cell. The Chebyshev distance
is used for the heuristic, assuming the target position coordinates are defined as (xgoal, ygoal):

ygoal - Ynl} (2)

A standard implementation of A* assumes a uniform cost for moving between adjacent cells
(typically 1 for orthogonal moves and /2 for diagonal ones). However, in real-world conditions,
traversing different types of terrain involves varying levels of difficulty. To account for this factor,
the concept of a traversal cost is introduced. The key distinction of this approach, therefore, lies in
modifying the calculation of the path cost, g(n), to incorporate this value. Specifically, the cost of
moving from a current cell n to an adjacent cell n + 1 is calculated by factoring in the terrain weight
of the destination cell:

h(?’l) = max{lxgoal - an,

cin,n+1)=dn,n+1)xwhnn+1), (3)

where d(n,n + 1) is the geometric distance between the centers of the cells, and w(n,n + 1) is the
terrain cost coefficient, which is predefined in the map configuration. For example, we can consider
a cost of 1 for a hard surface like asphalt, 5 for moderately difficult terrain such as a grass area, and
10 for difficult-to-traverse terrain like mud. Cells designated as impassable are assigned an infinite
cost and are excluded from the search space. Consequently, the A* algorithm finds a path that is
optimal not in the terms of its geometric length, but rather its cumulative traversal cost.

Once the path lookup is complete, and sequence of cells has been found, a path simplification
procedure is applied. This procedure utilizes Bresenham’s line algorithm to check for a direct line-
of-sight (LoS) between waypoints on the path. This procedure iteratively prunes intermediate
waypoints. If a direct, unobstructed line-of-sight exists between the start and end points of a path
sequence, all points in between are removed. This process compresses the path into a concise set of
key waypoints, significantly reducing the amount of data the local planner needs to process.

The global path, now represented as this set of key waypoints, is then passed to the local control
level. In a swarm with N members, one vehicle is designated as the leader, which is tasked with
moving sequentially between these waypoints. The other vehicles, acting as followers, do not
navigate directly toward the global goal. Instead, their objective is to maintain a predefined formation
relative to the leader’s current position. The target position for each follower is dynamically
calculated at every time step as a vector offset from the leader’s position. The geometry of each
formation offers distinct advantages depending on the mission assigned to the swarm. Among the
formations considered in this study are the line formation (Figure 1a), where vehicles move in single
file, making it suitable for navigating narrow passages such as tunnels, and the V-shape formation
(Figure 1b), which is better suited for environmental exploration as the vehicles do not obstruct one
another’s field of view.

Fig. 1. Swarm formation for 5 members: a — line; b — V-shape formation.
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In summary, the hybrid framework operates as follows: the A* algorithm determines the
strategic path for the entire swarm, overseeing the whole map, while local algorithms handle the
immediate, tactical movement and interaction of the vehicles within the formation.

4.3 Method for avoiding obstacles and collisions in the swarm
To implement motion at the local level, avoid collisions with static and dynamic obstacles, and
prevent intra-swarm collisions, the APF method is employed. The core concept of APF treats each
vehicle as a point mass moving within a vector field. In this field, the target generates an attractive
force, while obstacles and other vehicles generate repulsive forces. The resultant force vector, F,,.;,
which is the sum of all forces acting on the vehicle, determines its direction and velocity at the current
time step:

Fret = Faee + Fops + Fygy- (4)

Let us examine each component of this resultant force individually. The attractive force, Fy;;
directs a vehicle toward its current target. This target is role-dependent within the swarm, so for the
leader vehicle the target is the next key waypoint p,,4; 0n the global path and this force is calculated
with goal attraction coefficient, K,,,;. For a follower vehicle, the target is its ideal position within
the formation, p¢,,, and this force is calculated with the formation attraction coefficient, Ke;yp,:

K —1p;), UGV; is follower
Faz —{ rorm(Prorm = P;), UGV, is f je{1,2,..,N}. (5)

Kgoal(pgoal - pj), UGV; is not follower’

The next component is the repulsive force generated by obstacles, F,,s. This force is created
by every static (for example, wall) or dynamic obstacle that falls within a predefined influence radius
R,ps- The magnitude of the force is inversely proportional to the distance to the obstacle, increasing
towards infinity upon close approach. The total repulsive force from obstacles is the vector sum of
forces from all obstacles detected within the influence radius. It is calculated using the obstacle
repulsion coefficient K,,,s and the distance d;;, = |[p; — pi|| between the vehicle j and obstacle k as
described by the following formula:

i—i>——, if 0 < dj < Rops

Kone
FObS = Zk obs djk  Robs . (6)
0, lf djk 2 Rops

This formulation ensures that the force increases smoothly as the vehicle approaches an obstacle
and drops to zero once the obstacle is outside the defined radius of influence.

To avoid intra-swarm collisions and maintain a safe distance between vehicles, an inter-agent
repulsive force, Fy.y, is introduced. Its calculation is analogous to the obstacle repulsive force but
utilizes a different set of parameters for its influence radius and repulsion coefficient. The total
repulsive force exerted on a vehicle i is the vector sum of forces from every other vehicle j in the
swarm, calculated based on the distance d;; between them. This force is computed as follows:

Pj—pi .
( 5KUGV Jd—ijl' lf dij = Rsafe
Fyev :ZIL'V=1JK (i—;>ipj_pi if R <d;; <R ' (7)
iz | UGgv dij Rugy dizj dij ’ f safe ij = uev

0, if dij > Rygy

where Rygy is the inter-agent sensitivity radius, and R,qf. is the safety radius that triggers an
emergency mode. This mode is activated when vehicles get dangerously close (i.e., when the distance
d;j < Rsqpe)- In this event, a significantly stronger repulsive force is engaged to guarantee collision
avoidance: the inter-agent repulsion coefficient Ky, has increased fivefold.
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After calculating the total force vector F,;, it must be converted into a displacement vector for
the vehicle. At this stage, a maximum velocity limit, which depends on the terrain type, is enforced:
Umax
L E T m— (8)
where vy, is the vehicle’s maximum velocity, and cost(pygy) 1S the cost of the current cell. If the
magnitude of the calculated force vector, ||F,.:|l , exceeds this limit v;;,,;;, the vector is normalized
and scaled down to match vy,

Finally, a conflict resolution protocol is incorporated within the system. Before any vehicle
proceeds, the system verifies whether its intended trajectory would cause an overlap with another
one. If a potential intersection is detected, the movement of one of the vehicles (the one with the
higher identity) is cancelled by setting its displacement vector to zero. This ensures safe and
coordinated movement and helps to prevent collisions between vehicles in the swarm.

4.4 Simulation environment

The experiments were intended to test the effectiveness, reliability, and scalability of the
implemented algorithm, and to confirm the scientific hypotheses H1 and H2 given before. To perform
those experiments and validate the hybrid algorithm, a dedicated simulation setup was created using
the Python 3 programming language. The environment’s architecture is based on several core libraries
that provide the required functionality: numpy enables fast vector and matrix operations, which are
crucial for calculating forces and positions; matplotlib is used for the live demonstration of the
simulation and for the final results drawing. Finally, the pathfinding library offers a base
implementation of the A* algorithm, which was extended for this research to account for terrain
weights. All simulations were performed on an ASUS VivoBook laptop (model X571LH). The
system is equipped with an Intel Core i5-9300H CPU @ 2.2 GHz, 16 GB of RAM, and an NVIDIA
GeForce GTX 1650 graphics card with 4 GB of GDDR6 memory, running on a 64-bit Windows 10
Pro operating system (version 10.0.19045).

An environment was defined as a 256x256 discrete grid, where each cell has a particular cost
of movement. It is designed to represent different types of terrain: low-cost hard surface, medium-
cost grass area, high-cost mud that makes movement considerably difficult and impassable walls with
an infinite cost. The map configuration, which determines the distribution of these areas, is loaded
from an external JSON file, thus allowing both flexibility and repeatability of the experiments. The
map used in experiments was inspired by the urban layout of a district in the city of Kyiv, Ukraine.

To introduce an element of realism, the produced simulation had additionally a virtual
environment where moving obstacles were also present. To each of the obstacles were attributed an
initial position, velocity, and a route for the movement that is a series of waypoints. At each simulation
step, obstacles move along their designated paths at a constant speed. Thus, they become the dynamic
element of the environment.

The swarm can keep one of the predefined formations, such as line or V-shape as well as the
distance between the members which was initially set. The exact number of unmanned ground
vehicles in the swarm is specified by a simulation. One vehicle is randomly chosen as the leader,
while the rest vehicles are the followers. Each vehicle is characterized by its physical radius, a sensor
with limited range and a maximum velocity that is allowed.

5. Results of the research on hybrid path planning method

The primary outcome of this research is a hybrid method for the navigation of unmanned ground
vehicles swarms. The developed algorithm is based on the synergy between two navigation
approaches: global planning using the A* algorithm and local control using the APF method. The
scientific novelty is the fact that the approach is not just a combination of these methods, but their
very particular integration for the purpose of control for the swarm of unmanned ground vehicles.

In the course of this study, the developed environmental model implemented a concept that was
a departure from the one conveyed in research [12], adding an approach by which each cell is given
a traversal cost, thus enabling path planning optimizations. And in a different manner from the
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work [11], it also provides for the presence of dynamic obstacles. This required an enhancement of
the APF algorithm that became capable of avoiding collisions with all types of obstacles.

5.1 Simulation of the proposed method for the hybrid path planning

All results have been produced with the help of a simulator, which allowed the execution of
controlled experiments in reproducible conditions. The research methodology included defining a
baseline scenario and then carrying out several experiments by changing only one parameter at a time.
This approach allowed the researchers to obtain reliable data for comparison since the influence of
other factors on the system’s behavior was isolated. To increase the statistical strength of the findings,
each scenario was carried out three times, and the resulting metrics were averaged.

The baseline scenario for the experiments was defined with the following parameters: the
simulation was conducted on the standard map with five vehicles swarm, maintaining line formation.
The hybrid path planning mode was activated, and dynamic obstacles were enabled. Several key
metrics were collected during the simulations to evaluate the effectiveness of the proposed approach.
These included: the total number of simulation steps, path lookup time and final path length and cost.

A key experiment designed to showcase the hybrid algorithm’s capabilities was a simulation
conducted in a dynamic environment. In this particular case, the map was populated with several
moving obstacles, where each one moved along a path that was meant to cross the expected route of
the swarm. The experiment was an attempt to see if the hybrid method can respond in real time to the
unexpected changes in the environment. The swarm, while heading to the intermediate waypoint
(indicated by a star), is avoiding dynamic obstacle O1, that is shown on the Figure 2a and dynamic
obstacle O3, that is depicted in Figure 2b.
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Fig. 2. Swarm avoids dynamic obstacles: a — obstacle O1 moves from right to left;
b — obstacle O3 moves from left to right.

When a mobile obstacle was detected near the trajectory of the swarm, the local APF planner
produced the repulsive forces that caused the vehicles to be redirected briefly from their way. It should
be noted that once the obstacle was avoided, the attractive forces towards the next waypoint returned
the swarm to its trajectory and the formation was also recovered. This experiment definitely showed
that an architectural concept that combines strategic global planning and tactical local response is
very efficient while maneuvering in places where the environment state is not known initially.

5.2 Proposed method comparison with original artificial potential field algorithm
The research was designed around the performance comparison of two different modes of
operation: the hybrid approach and the mode that uses only the APF technique. The gathered data,
enriched with path visualizations, enabled the experimental validation of hypothesis H1. In the hybrid
case global planner avoided areas with higher traversal costs (Figure 3a). In the pure APF case, the
global planner was disabled, and the sole attractive force for the leader vehicle was the destination
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point. The results revealed that this method was able to locate shorter, but not optimal path, since it
went via high-cost terrain, as depicted in Figure 3b.
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Fig. 3. Path comparison: a — hybrid approach avoids high-cost areas; b — pure APF approach
found shorter, but not cost-efficient path.

On the other hand, the pure APF method is not always competitive when compared to the hybrid
algorithm, since it performs well only with suitable starting and destination points. To illustrate,
Figure 4b shows a scenario, where the APF-only approach could not come up with a solution because

of the local minima problem. In contrast, the hybrid algorithm solves this problem, as depicted in
Figure 4a.
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Fig. 4. Swarm path lookup: a — hybrid approach successfully found path;
b — pure APF approach was stuck because of local minima problem.
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Another experiment was dedicated to analyze swarm performance as a function of its size. A
series of simulations, where the variable parameter was the swarm members number, ranging from 3
to 11 agents was conducted. Relationship between path planning success rate (i.e., scenarios where
the leader reached the destination point), swarm size, and formation type is depicted in Figure 5.
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Fig. 5. Success rate of the hybrid algorithm depending on the formation size and type.

It is important to note, that in this series of tests, the pure APF approach was entirely unable to
reach the destination due to the local minima problem; therefore, the experiment proceeded using
only the hybrid approach.

6. Discussion of results for hybrid path planning method

This discussion is dedicated to interpret data from the previous section within the context of
stated hypotheses. The first one (/1) stated that the hybrid mode is superior to the pure APF approach
in terms of path optimality. The experimental data supported the assumption. The global path found
by A* algorithm practically breaks down a complicated navigation problem into a series of easier
ones, where each intermediate waypoint is selected so that no local minima are generated.

It is worth noting an interesting aspect revealed during the experiment (Fig. 3), where the pure
APF approach managed to find a geometrically shorter path. This can be explained if we consider
that the global planner intentionally bypassed high cost areas, and thus, was able to achieve a
minimum total traversal cost. On the other hand, the APF-only approach which did not have
information about the cost was influenced only by the distance factor. So, the hybrid approach
succeeds in path planning that is optimal to the specified criteria, which is cost for our case.

The second hypothesis concerning scalability (H2) has the results being more complex than
expected. The experiments for the hybrid approach showed that the mission success rate decreases as
the number of vehicles in the swarm increases. The reason why this happened is that the complexity
of the APF-based interactions grows with the increase in the number of agents. The sum of the
repulsive forces between the members of the swarm becomes so large that it becomes a problem to
go through narrow passages. In such cases, the swarm becomes less maneuverable, and the local
repulsive forces can overwhelm the attractive force toward the global goal, causing the swarm to halt.

Interestingly, the V-shape formation demonstrated better stability compared to the line
formation. This is due to the fact that vehicles in the line are arranged more tightly, thus resulting in
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stronger repulsive forces between them while maneuvering. On the other hand, the pure APF-based
method was completely incapable of handling the assignment in this experiment. Although the
performance of the hybrid approach degrades with an increasing number of swarm members, it is still
working, which proves its better scalability potential. So, hypothesis H2 is partially supported.

In this discussion, several focus areas for the future work can be highlighted. Major attention
requires challenge to prevent decline in the mission success rates in the large swarm scenarios. A
potential solution might employ an adaptive APF approach that control the inter-agent repulsion
coefficient (Ky¢y) to be gradually lowered as the swarm moves through a narrow passage. This would
allow the swarm to “compress” itself temporarily for the navigation through the corridors. Another
approach may involve dynamic formation switching, like changing from V-shape to line before
entering a narrow passage.

Secondly, the proposed approach employs a static leader role, which might not work in real-
world situations. Hence, there is a need to come up with a dynamic election mechanism, where the
leadership role is automatically passed to another vehicle from the swarm in case of current leader
failure. This would significantly enhance overall reliability and survivability of the swarm.

Finally, the ultimate step for the future work is transition from simulation to experimentation
with physical robotic platforms. This is essential to confirm the capability of the approach in a
practical scenario. Testing on physical hardware will enable a final decision to be made about the
usefulness and applicability of the suggested hybrid approach in the real world.

Conclusions

This research focused on ensuring efficient, reliable, and scalable movement of unmanned
ground vehicle swarms in dynamic environments. This paper proposes a hybrid real-time path
planning method in complex environments, which combines the advantages of global planning,
implemented by a modified A* algorithm, with local control based on the enhanced APF method. The
APF method improvements, adapted to swarm interaction tasks, have enabled several features typical
for dynamic environments, including following the leader, obstacle avoidance (both static and
dynamic), maintaining the specified formation, and avoiding collisions within the swarm.

Upon completion of the theoretical and experimental stages of the study, it may be stated that
all objectives have been achieved. An environmental model that adequately reflects the difficulties
of the real world was constructed. This was done by introducing maps with variable traversal costs
and the implementing of dynamic obstacles that was a key element for path planning efficiency
research in dynamic environments. The developed environmental model enabled evaluation of the
hybrid path planning method’s efficiency in real time.

The environmental model was implemented in the simulator, tailored to conducting multiple
path planning experiments. The simulations confirmed the potential of the method. Results indicate
that a swarm controlled by the hybrid approach reaches its destination, navigating the environment
with moving obstacles while maintaining formation integrity.

This simulation study produced results, proving the hypothesis that the path found in hybrid
mode is more efficient than the path found by pure APF approach was confirmed, and hypothesis
about scalability of the hybrid approach that is superior to the pure APF approach showed both the
positive and negative features of the proposed method. Experiments confirmed that the proposed
hybrid approach was shown to be better than the pure APF method in terms of path cost. However,
further comparative studies with other hybrid methods remain to be conducted. In conclusion, the
developed approach has its strengths and weaknesses that have been directly acknowledged by the
authors of the article and directions for the further work were formulated.

To sum up, this investigation contributes to the advancement of multi-agent systems. These
findings can be applied in a range of areas where the coordinated collective action of unmanned
ground vehicles is needed. The limitations encountered during this research provide starting points
for the future work, such as the development of adaptive formation control and a dynamic leadership
mechanism.
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Hazemni po6otuzoBani kommiekcu (HPK) MaroTh 3HauHMil moTeHUian s pi3HOMaHITHOTO
3aCTOCYBaHHS, 30KpeMa JJisi aBTOMaTH3allii arpoTeXHIYHUX pOOIT, IHCHEKII Ta TEXHIYHOTO
00CITyroByBaHHsSI Ha OYHIBHUIITBI Ta MPOMHCIOBOCTI, JUIsl aBTOMATH3allli CKJIAJHUX MOHTAXKHHUX
MPOIIECIB Ta PEMOHTY 1HPPACTPYKTYPH, JJIs 3HEIIKOHKEHHS BUOYXOHEOE3MEeUYHUX MPEAMETIB, IS
aBTOMAaTH3AIll] JIOTICTUYHMX IPOLIECIB, JUIsl BUPIIIEHHS 3aBAaHb MOUIYKOBO-PATYBaIbHUX OMNEpalliH,
a TaKOoX JUIS eKCITEMINIA y BaXKOJAOCTYITHUX perioHax. [IpoTe Ha MUISIXY iX BIPOBAKEHHS CTOITH
npoOiieMa aBTOHOMHOI HaBirauii, sika CTaHOBUTh CEpPHO3HUII BUKIMK dYepe3 MOCTIHHI 3MIHU
po3TanTyBaHHs TEPEIIKO, HerepeadadyBaHl CIleHapii Ta HEOOXIAHICTh IIBUIKOTO NPUAHSTTS
pireHs i 3a0e3neueHHs 0e3MeKu i CTablTbHOCTI PyXYy.

O06’eKTOM JOCITIKEHHS IIi€1 CTATT1 € MPOIIeC TIOPHUIHOTO MONIYKY IUISIXY ITiT 4aC aBTOHOMHOT
HaBiramii Mojelli por0 Ha3eMHHX POOOTH30BAaHUX KOMIUIEKCIB Yy CHMYJISI[IHHOMY CEPEIOBHIIIL.
MeToro JOCTKEHHST € CTBOPEHHS METOJy aBTOHOMHOI HaBiramii s por Ha3eMHHUX
pOOOTH30BaHUX KOMILJIEKCIB 3 BHKOPHUCTAHHSIM METOJYy TiOpWIHOI HaBiramii, 1mo 3abe3nedye
MIIBUIIECHHS €(PEKTUBHOCTI YHUKHEHHSI MIEPEIIKO]T Ta aAaNnTaIliio 0 THHAMIYHOTO CepPEIOBHIIA.

JlJis noCsSITHEeHHS JaHOT METH 3alpOTIOHOBAHO HOBHII METOJ JUIsl aBTOHOMHOI HaBiraiii poro Ha
0a3i riOpUAHOTO MIAXOMy, SKUA BIIPI3HAETHCS BiJl BIJOMHUX pIlIEHb THM, IO JJIs HaBIramii Ha
rJ100aTbHOMY PiBHI BUKOPHUCTOBYETHCS JITOPUTM MOIMIYKY A*, 110 BpaxoOBYe€ IiHY MPOXIAHOCTI Ha
KapTi, a Ui HaBiraiii Ha JOKaJbHOMY PIBHI BUKOPHUCTOBYETHCS AJTOPUTM IITYYHUX MOTCHIIIMHUX
TMOJIIB, 10 MIATPUMYE JTiHIIHHY Ta V-1o1i0Hy (hopMmaliiro poro.

Pesynbratu gocnimkeHHs MOKa3aid, M0 BUKOPUCTAHHS 3allPOIIOHOBAHOTO METOMAY JI03BOJISIE
poto OyayBaTH ONTUMAIbHI MapLIPYTH 3 ypaxXyBaHHSAM BapTOCTI IIepecyBaHHs Ta YHUKATH MPOOIeMHU
JOKANbHUX MIHIMYMIB, HMpPUTaMaHHOI METOAY IWITYYHUX HOTEHUIAHUX MOJiB. MeETOoJ YCHIIIHO
MpOSIBUB ce0e B CTUMYISLIHHOMY CEPEIOBUII, TOMY MOXHa 3pOOMTH BHCHOBOK MPO IMOTEHIIIA
MOAATBIINX JIOCHIHKEHb B pEAIbHUX YMOBaX Ta 3aCTOCYBaHb Y cepi poHOBUX OE3MUIOTHUX CUCTEM
y MIHIMBHX CepeloBUINaX. BoaHOYac [OCHIIPKEHHS BHUSBUJIO BHUKJIMKH, TIOB’S3aHI 3
MacIITabOBAHICTIO PO y BY3bKUX MPOCTOpAxX, II0 BHU3HAYa€ HAMPsIMH I MOJATBIINX
yIIOCKOHAJICHb.

KnrouoBi cnoBa: HazeMHMH pPOOOTH30BAaHMIA KOMIUIEKC, auropuT™M A*, aqroput™M MITY4YHOTO
MOTEHIIHHOTO TOJIs, TMHAMIYHE CEepeI0BUINE, aBTOHOMHA HaBiraiis poro.



