
Information, Computing and Intelligent Systems, 2025, No. 6, 132 – 151

© The Author(s) 2025. Published by Igor Sikorsky Kyiv Polytechnic Institute.

This is an Open Access article distributed under the terms of the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), which permits re-

use, distribution, and reproduction in any medium, provided the original work is properly cited.

UDC 004.94, 628.477 https://doi.org/10.20535/2786-8729.6.2025/333736

WASTE MANAGEMENT MODEL WITH TIMED COLORED

PETRI NETS

Hryhorii Rozhkov *
National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

https://orcid.org/0009-0009-5343-8974

Klymenko Iryna
National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

http://orcid.org/0000-0001-5345-8806

*Corresponding author: hryhoriirozhkov@gmail.com

Waste management is a key element in the functioning of modern cities. This paper presents a new

model of a waste collection system, described as a discrete-event system (DES), implemented using
Timed Colored Petri Nets (TCPNs) in combination with an integrated Python server. The model is
developed with consideration of container filling dynamics and variable routes, which ensures alignment
with real urban conditions.

A key element of the developed model is the interface of a vehicle routing problem with capacity
constraints, multiple trips, and time windows (MTCVRPTW), which enables vehicles to service
containers multiple times during a scheduled period while adhering to volume and time restrictions. The
model supports configuration of parameters such as operational delays, container filling and overflow
volumes, and vehicle load capacity. The simulation is implemented in CPN IDE using time series as
input data, partitioned for efficient processing. Information about container filling levels and road
conditions is periodically updated during real-time simulation, enhancing scalability and performance.
The model generates event logs—movement, unloading, overflow, and servicing—which are processed
by Python scripts to calculate performance metrics.

The main performance metrics of the waste collection system were defined, including route distance
and time, unloading efficiency, container overflow volume, servicing efficiency, and deviations of
planned routes from the schedule.

To demonstrate the operation of the model, an experiment was conducted using synthetic data
approximating real-world conditions. The locations of 10 containers, unloading points, and depots were
determined using the Google My Maps service based on coordinates of real objects in Kyiv. Realistic
route distances and travel times were generated using the Google Distance Matrix API. The
MTCVRPTW algorithm for two vehicles scheduled two trips per week according to static routes. The
simulation of the model generated event logs, which were then used to calculate performance metrics.
The analysis of these metrics revealed significant limitations of static route planning and highlighted the
need for adaptive strategies that account for the actual state of containers and traffic.

The proposed model is a flexible tool for evaluating, analyzing, and improving waste collection
strategies in cities.
Keywords: waste management, waste management optimization, discrete event systems, Petri nets,

vehicle routing problem.

1. Introduction

Waste Management (WM) has become an increasingly critical challenge in modern urban

environments due to rapid urbanization and population growth. The resulting surge in waste

generation demands sophisticated planning and execution to maintain public health and

environmental standards. Key objectives of an effective WM system include timely servicing of waste

containers to meet predefined service levels, minimizing container overflows to prevent

environmental pollution, and optimizing vehicle routes to reduce fuel consumption and emissions.

Waste Management Model with Timed Colored Petri Nets 133

However, modern WM systems are inherently complex and dynamic. Factors such as new

container service contracts, fluctuating vehicle availability, varying road conditions, and stochastic

events including vehicle breakdowns and unpredictable changes in container fill levels introduce

significant planning uncertainty. Additionally, geospatial elements like multiple depots and unload

stations, as well as heterogeneity in both container and vehicle types (e.g., residential, commercial,

hazardous waste), further complicate the routing and scheduling process. Some vehicles may support

multi-type waste collection, while others are restricted to specific categories, and service times can

vary considerably depending on waste type.

Manual planning remains the prevailing method in many cities, including Kyiv, requiring

substantial human resources and frequent route adjustments. Yet, this approach is inefficient and

prone to suboptimal outcomes. Automating the process through an appropriate formulation of the

Vehicle Routing Problem (VRP) tailored to the specific requirements of WM offers a scalable and

adaptive alternative.

Given that WM systems evolve in response to discrete, event-driven changes, modeling them

as DES is a natural and effective approach. Colored Petri Net (CPN), combined with Python-based

simulation, provide a robust framework for capturing dynamic interactions among container states,

vehicle movements, and network conditions in real-time.

Considering the aforementioned aspects, a simulation-based prototype model becomes essential

to validate such automation. This model should enable the evaluation of alternative collection

strategies by generating objective performance metrics such as total travel distance, service

frequency, and operational workload under varied conditions. The framework must provide a tool for

evaluating route optimization techniques that enhance operational efficiency, reduce costs, and

support sustainable urban WM.

2. Literature review and problem statement

The Kyiv municipal WM company [1] is a prime example of the city's WM system. The

company runs a fleet of around 250 vehicles of various types, spread across six depot centers and 10

unloading facilities, each designed to handle specific waste categories. The waste collection

infrastructure includes a range of container types and designs. Waste collection is organized on

weekly route schedules. However, unexpected events like vehicle breakdowns, driver absences, and

container overflows are currently handled manually by human dispatchers. The company also offers

an interactive mapping service that shows the geographical distribution of container sets. Each set is

marked with its location, the number and type of containers, their weekly accumulated load, and the

associated service schedule. Most containers are serviced on a fixed-day schedule. In contrast, some

containers operate on a load-based collection principle; these are assumed to be equipped with smart

container sensors that periodically report their fill levels to the system.

To choose the most appropriate mathematical tool to model the WM system several

mathematical models were analyzed, which are presented below.

Finite State Machines (FSMs) serve as a basic modeling tool for systems with a finite number

of states and transitions. While FSMs are simple and easy to understand, they lack the expressive

power to effectively model complex, concurrent systems. In contrast, Petri Nets can explicitly

represent concurrency and synchronization, making them more suitable for modeling DES in WM.

However, FSMs can still be effective for modeling simple sequential processes within a Petri Net

framework [2].

Markov Chains (MCs) are probabilistic models used to analyze systems with uncertain

transitions. They are helpful for modeling stochastic processes, such as demand uncertainty in VRP.

However, MCs are limited in their capacity to represent concurrency and synchronization, both of

which are critical in WM systems. Petri Nets, especially stochastic Petri Nets, can model both

deterministic and stochastic behavior, making them a more comprehensive tool for these applications

[3] [4].

Queueing Models (QMs) analyze systems with waiting lines, such as customers awaiting

service. They are especially beneficial for assessing performance metrics like waiting times, queue

134 Information, Computing and Intelligent Systems № 6, 2025

lengths, and service rates. While QMs are effective for analyzing specific aspects of WM systems,

such as the waiting time for waste collection vehicles, they do not capture the overall system

dynamics, including routing and scheduling. Petri Nets, in contrast, can integrate queueing theory

within their modeling framework to provide a more holistic view of the system [5].

Process Algebras (PAs) are formal languages designed for modeling and analyzing concurrent

systems that provide a mathematical framework for specifying and verifying system behavior.

Although PAs are powerful tools for theoretical analysis, they can be challenging to implement in

practical modeling scenarios. Petri Nets, with their graphical representation and intuitive semantics,

often provide a more accessible option for practitioners, leading to a user-friendly approach to

modeling DES [6].

Simulation-based Models (SBMs) are widely utilized for analyzing and optimizing complex

systems. They allow for the simulation of system behavior across various scenarios, making them

particularly beneficial for assessing the impact of different routing strategies or WM policies. Petri

Nets can be combined with simulation tools, such as ExtendSim, to deliver a more detailed and

accurate analysis of system performance. For example, a study on container terminal handling

systems integrated Petri Nets with simulation tools to optimize the handling process and enhance

efficiency [7].

Petri Nets are a well-established graphical and mathematical formalism within the broader field

of DES modeling, particularly effective for describing systems with concurrency, synchronization,

and resource sharing. Petri Net models provide formal analysis techniques for properties such as

reachability, liveness, and boundedness. They comprise places (representing states or conditions) and

transitions (representing events or actions), linked by arcs that define the flow of tokens (representing

resources or entities) through the system. Several extensions of standard Petri Nets have been

developed to enhance their modeling capabilities. Timed Petri Nets (TPNs) add transition delays for

modeling temporal aspects, while Colored Petri Nets (CPNs) assign data types to tokens and support

functional inscriptions. Their combination, Timed Colored Petri Nets (TCPNs), enables modeling of

complex real-time systems with concurrency and conflict resolution. In contrast, Hierarchical Petri

Nets (HPNs) introduce an architectural mechanism for modularity by allowing transitions to be

refined into sub-nets, thus supporting structured model decomposition. This hierarchical principle can

also be applied within TCPN. It is common in the literature that the term CPN implicitly refers to

TCPN, since most practical applications rely on both color and time extensions; therefore, in this

article the terms CPN and TCPN are used interchangeably.

In the context of WM, TPNs have been effectively employed to model and analyze various

system aspects. For instance, Stochastic Petri Nets have been utilized to address uncertainties in

demand and vehicle routing, while CPNs have been used to model complex logistics networks

featuring multiple vehicle types and dynamic routing requirements [3] [8].

The matrix analysis of the DES modeling tools is presented in Table 1, where “++” denotes

strong support or native capability, and “+” denotes partial or indirect support.

The VRP is a critical component of WM optimization, as it directly influences the efficiency

and effectiveness of collection operations in urban settings. A comprehensive overview of VRPs in

the context of WM is provided in [9]. The authors have proposed solution methods to VRPs and

formulated following constraints, which served as the basis for defining the requirements and

limitations for the development of the VRP algorithm interface in the present study.

Capacity Constraints limit the amount of waste that can be collected by a vehicle, ensuring that

vehicle does not overload during collection.

Demand Constraints ensure that all customer demands are met, meaning that service level is

met and all containers are services with enough frequency.

Labour Constraints impose limits on the workforce available for waste collection. This includes

restrictions on the number of working hours for employees and the duration of shifts for collection

crews. Such constraints can affect the overall efficiency of waste collection operations.

Feasibility Constraints prevent the formulation of infeasible solutions, they ensure that all

customers are visited in a logical sequence and routes are feasible and practical. An example includes

Waste Management Model with Timed Colored Petri Nets 135

constraints that eliminate subtours, which are routes that visit only a subset of customers, also it must

be guaranteed that vehicle unloads before returning to the depot.

Driver Lunch Break Constraints account for mandatory breaks for drivers, which can affect the

scheduling and timing of waste collection routes. Properly incorporating these breaks into route

planning is essential to avoid conflicts with time windows.

Table 1. Comparison of DES models

Criterion FSMs MCs QMs PAs SBMs TPNs

Concurrency modeling + + ++

Stochastic behavior support ++ + + ++ ++

Timing constraints support + ++ + ++

Sequential process modeling ++ + + + + +

Graphical representation + + ++

Formal verification capability + + + ++ ++

Scalability to complex systems + + + + +

Integration with simulation engines + ++ ++

Ease of implementation ++ + + + +

Support for routing and scheduling + + ++

A Smart WM model using Stochastic Petri Nets is proposed in [10], simulating random waste

drop-offs and enabling the evaluation of various collection strategies. The model supports

parameterization to identify optimal collector levels and reduce vehicle visits, based on assumptions

about average drop-off frequency and travel time. It emphasizes real-time inventory control using

sensor data but lacks integration of time-series inputs or detailed routing logic. While stochastic

timing allows to model probabilistic behavior, it restricts the ability to simulate specific temporal

scenarios. A major limitation is scalability: a system with 100 collectors leads to over 30,000 places

and 70,000 transitions, creating significant graphical complexity. This hinders formal analysis and

makes it difficult for users to embed custom algorithms such as ILP-based VRP models, reducing the

model’s flexibility for tailored applications.

A practical and effective algorithm for WM route planning, accommodating multiple trips per

period, service frequency obligations, and varying road conditions, is the Multi-Trip Vehicle Routing

Problem with Time Windows (MT-VRPTW) presented in [11]. This approach extends the classic

VRP by allowing vehicles to perform multiple trips within a planning horizon, such as a week, and

incorporates time windows for servicing containers. The paper demonstrates that adopting a multi-

trip vehicle routing strategy with a one-week planning horizon leads to better performance in logistics

operations. They proved that weekly scheduling reduces the total travel distance compared to

traditional daily scheduling. The weekly plan also resulted in a 33.52% decrease in the number of

vehicles required.

The study [12] introduces Colored Petri Net Markup Language (CPN ML) and its foundational

role in modeling systems using Petri Nets. CPN ML is a powerful language that facilitates the

declaration of color sets, variables, functions, and constants, which are essential for defining the

attributes of net elements. The chapter explains that Petri Nets are represented as bipartite directed

graphs, consisting of places (depicted as circles or ovals) and transitions (represented as bars). In this

context, tokens serve as dynamic objects that move between places as transitions fire, allowing for

the modeling of complex systems. The chapter emphasizes the importance of color sets in

distinguishing different types of tokens, which enhances the expressiveness of the models.

136 Information, Computing and Intelligent Systems № 6, 2025

Additionally, it highlights the integration of CPN ML with CPN Tools, a simulation system developed

at the University of Aarhus, which supports the creation, simulation, and analysis of Petri Net models

in various applications, particularly in telecommunications.

The current literature shows that there are still important gaps in how Petri Net models are used

to support VRP in WM. While Petri Nets are useful for building dynamic models that simulate waste

collection and help identify inefficiencies, existing approaches often lack a flexible and practical way

to design, test, and compare different VRP algorithms in realistic urban settings. Although route

optimization can reduce travel distance, fuel use, and emissions, it remains difficult to apply Petri Net

models effectively in real-world waste collection scenarios, especially in cities with complex layouts.

One major gap is that many models do not include VRP methods that are specific to the challenges

of waste collection. Another issue is that it's often hard to insert or change routing algorithms in these

models, making it less convenient to test new strategies. Additionally, there is a lack of well-defined

and useful performance metrics – such as how often containers overflow, how well vehicles are used,

or how long services take – which are needed to evaluate and improve WM systems. So, this article

is devoted to creating a better Petri Net-based model that supports flexible algorithm integration for

evaluating WM systems, defining objective metrics to measure system performance generated

through simulation.

3. The aim and objectives of the study

This study aims to develop an improved Petri Net-based simulation model for urban WM

systems that supports flexible integration of routing algorithms and enables formal evaluation of

system performance. The proposed model addresses limitations in existing approaches by

incorporating real-world constraints such as road congestion, service-level agreements, vehicle

resource availability, and multi-trip planning. It also enables the simulation of realistic operational

scenarios and the generation of objective performance metrics.

The objectives of the study are as follows:

1. To design and implement a simulation model that supports experimentation with different

routing algorithms under practical constraints;

2. To formalize a set of performance metrics for evaluating vehicle routing and overall system

efficiency;

3. To perform experimental analysis using the developed model to demonstrate its applicability

in assessing collection strategies and identifying system bottlenecks.

4. The study materials and methods of modeling the WM problem

4.1 Petri Net modeling

In this article the TCPN, which includes TPN functionality, is proposed. Events, such as vehicle

drive, park, serve, and unload operations; container fill levels change; and route conditions change

cause concurrency in the WM system. Timed transitions are used to model state changes in the

concurrent WM system. The time is divided into discrete points with a minimal period of 1 second.

Places represent system states, and transitions correspond to state changes. A transition is executable

when all its input places contain tokens available at the current simulation time and, if applicable, a

guard condition evaluates to true. Transitions may introduce delays on output arcs to simulate non-

instantaneous processes. The simulation is governed by a global, non-decreasing model time

represented in discrete seconds. When no transitions are immediately enabled, time advances

discretely to the earliest future point at which a transition becomes enabled. The integration of TPN

with route optimization algorithm is a natural fit for modeling WM.

4.2 Modeling tools and services

Google My Maps is an interactive mapping service that enables the manual marking of locations

on a real-world map. It has been used to annotate the geographic positions of waste containers, depot

sites, and unloading stations. The service supports exporting maps in the kml format, an XML-based

Waste Management Model with Timed Colored Petri Nets 137

structure that can be parsed using custom Python scripts to extract and process location data for

simulation inputs.

The modeling and simulation of the system were performed using CPN IDE, a modernized

successor to the discontinued CPN Tools. CPN IDE provides a graphical interface for building and

simulating TPN models. It supports modular design through sub-nets and operates in two modes: an

editor for model construction and a simulation mode that supports both animated (step-by-step) and

fast-forward (multi-step) execution. For debugging purposes, breakpoint monitors and fast-forward

simulations were employed to analyze model behavior in response to specific state transitions.

While CPN ML, the functional language used within CPN IDE, is suitable for defining TPN

logic, it lacks expressive support for complex algorithmic tasks such as vehicle routing or data

analysis. Therefore, an external service integration approach, similar to an approach described in [13],

was adopted to couple CPN ML with a Python 3 socket server. This enabled efficient prototyping of

routing algorithms and metric collection. A known limitation of CPN IDE is its inability to report

compilation errors originating from helper functions defined outside action block. Such functions

were temporarily moved within action blocks during debugging, as a workaround.

Python 3 has been employed as the primary language for route computation, simulation

integration, and metric extraction from simulation logs. The pandas library was used extensively to

transform and analyze event data produced by the model, enabling the computation of detailed

performance metrics. Additionally, the Plotly graphing library has been utilized to produce interactive

diagrams illustrating vehicle state timelines and route execution patterns.

4.3 Input tokens loading from files

There is limited documentation about loading token multisets from file in CPN ML. The

following approach was utilized to initialize timed and untimed token multisets from files. There is

an example provided for loading PARTITION tokens from file which are needed to load partitioned

datasets into the WM model. Figure 1 defines a LoadPartitions transition along with CPN ML action

code block and CPN ML declarations.

Fig 1. An approach to load PARTITION multiset from file

138 Information, Computing and Intelligent Systems № 6, 2025

Action block loads tokens from an external text file and assigns it to the global reference

variable csp0. The input file must contain one token per line. The file is opened for reading, and a

recursive function read_all_tokens processes each line by converting it into a timed PARTITION

token using PARTITION'timed.input_ms (for untimed multisets PARTITION.input_ms should

be used instead). The resulting tokens are combined into a multiset. Once all tokens are read, the input

stream is closed, and the constructed multiset is assigned to csp0. The token multiset is read from

that global variable and tokens are created in Partitions place.

4.4 Input data partitioning

The CPN IDE simulation environment exhibits notable performance degradation when places

contain more than 1,000 tokens, rendering visual and animated simulations impractical. To address

this limitation, a data partitioning strategy was devised and implemented for the input time-series

datasets, namely container_states and route_states, which represent container fill level increase and

dynamic route conditions, respectively. For the container states dataset, the input data is segmented

into multiple files, each corresponding to a fixed time interval (e.g., two-hour intervals, with the first

partition covering the period from 0 to 7200 seconds). Additionally, metadata describing the available

partitions is maintained in a separate file. This metadata is represented as a multiset of timed integer

tokens, where each token denotes the logical identifier of a partition and its timestamp corresponds

to the earliest event time within that partition. The simulation loads data in two stages:

1. All the partition tokens are loaded at the start as described in chapter 4.3.

2. As the simulation progresses, the relevant partition data is dynamically loaded into the model

once the current simulation time reaches the specified time threshold associated with each partition.

The sub-net illustrated in Figure 2 implements the described partitioning mechanism for the container

states dataset, utilizing three places and two transitions.

Fig 2. Container states partitioned loading

The Init place contains a single token that enables the LoadPartitions transition to fire once,

loading PARTITION multiset to global variable csp0 and placing that token multiset into the

Partitions place. The formal definition of partition is

 𝑃𝐴𝑅𝑇𝐼𝑇𝐼𝑂𝑁 = {(𝑝, 𝑡)|𝑝 ∈ ℕ, 𝑡 ∈ 𝑇}, (1)

where, 𝑝 is the partition number, 𝑡 is the time of the first token in the partition. As the simulation

progresses and the model time reaches the time associated with a given PARTITION token, the token

becomes enabled, binds to the variable client_state_partition, and triggers the Load

transition. This transition loads the corresponding partition data as multiset stored in global variable

c0 and outputs it to the ClientState place, thereby making the data available for subsequent simulation

steps.

Similar approach was utilized for loading route states dataset.

Waste Management Model with Timed Colored Petri Nets 139

5. Results of the study

5.1 WM model architecture and formal definition

The proposed model constitutes a formalized representation of the WM system and is capable

of assessing the efficiency of the scheduling algorithm under various conditions, simulating edge

cases, and accommodating overload scenarios. The real-world characterization of WM presented in

literature review section is intricate and encompasses a multitude of variables; therefore, the problem

is streamlined by positing the following assumptions:

1. All vehicles are homogeneous, each possessing a defined trunk volume capacity.

2. The quantification of waste is articulated in terms of its volume capacity.

3. All containers are homogeneous, with established thresholds for full capacity (exceeding

80% load) and overflow capacity (at or above 100% load). In instances of container overflow, waste

is deposited externally, resulting in environmental pollution. The collection vehicle is capable of

servicing both overflowed and non-overflowed containers, though the volume handled is constrained

by trunk capacity; thus, in cases of significant overload, there may be circumstances wherein only a

portion of the container is serviced.

4. New vehicles and containers may be integrated into the system at any point; however, such

additions are only recognized from the subsequent model period.

5. There exists a service compatibility among all combinations of container and vehicle pairs.

6. The model operates on a periodic basis, with the designated period being 604800 seconds

(equivalent to one week). The smallest discrete unit of time is defined as one second.

7. Route is the itinerary for an individual vehicle throughout a singular model period. A vehicle

can execute at most one route within a period.

8. Trip is the journey from depot to depot for the same vehicle within a Route. A vehicle begins

at the depot, visits containers, may unload several times if needed, and returns to the depot with an

empty trunk to begin another trip if required. Route may contain multiple trips.

9. A vehicle may collect the same container multiple times within a single model period.

10. All vehicles commence operations from the same depot and are required to unload their

trunks prior to returning to the depot, thereby ensuring readiness for subsequent routes.

11. Upon reaching full trunk capacity, a vehicle must proceed to unload before continuing to

the next designated location.

The model's assumptions facilitate a realistic definition of the WM system, enabling effective

simulation and evaluation of various operational scenarios.

Model entity types are formally defined as:

𝑉 ≡ 𝑠𝑡𝑟𝑖𝑛𝑔 is vehicle ID,

𝐶 ≡ 𝑠𝑡𝑟𝑖𝑛𝑔 is container ID,

𝑇 ≡ ℕ is a model time domain,

𝑊 ≡ ℕ is waste volume, measured in dm³,

𝐿 ≡ {′𝑑𝑒𝑝𝑜𝑡′, ′𝑢𝑛𝑙𝑜𝑎𝑑′} ∪ 𝐶 is location ID,

𝐷 ≡ ℕ is distance driven by a vehicle, measured in meters.

The model architecture components are depicted in Figure 3. A comprehensive description of

each of the individual model components, presented in a logical sequence that mirrors the order of

events that take place throughout the usage of this model.

The Model inputs consist of a series of files that contain timed multisets. In particular, time

series container ID tokens are loaded from clients.txt, and specify containers as they appear in the

system, formally defined as

 𝐶𝐼𝐷 = {(𝑐, 𝑡)|𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇}, (2)

Time series vehicle ID tokens are loaded from vehicles.txt, define vehicles as they appear in the

system, formally defined as

 𝑉𝐼𝐷 = {(𝑣, 𝑡)|𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇} . (3)

140 Information, Computing and Intelligent Systems № 6, 2025

Fig 3. Model architecture components

Additionally, client_states_partitions.txt and route_states_partitions.txt declare partitions (1)

for container states and route states datasets correspondingly. Each partition’s container states

dataset is loaded from client_states_{i}.txt , that contains container volume incremental updates from

the current partition’s start_time until the next partition’s start_time. Container states dataset is

defined as

 𝐶_𝑆𝑇𝐴𝑇𝐸 = {(𝑐, 𝑤, 𝑡)|𝑐 ∈ 𝐶, 𝑤 ∈ 𝑊, 𝑡 ∈ 𝑇)}, (4)

where, 𝑤 is the amount of waste added to container 𝑐 at time 𝑡.

Each partition's route states dataset is loaded from route_states_{i}.csv, which contains route

states replacements from the current partition’s start_time until the next partition’s start_time. Route

states dataset is defined as

 𝑅_𝑆𝑇𝐴𝑇𝐸 = {(𝑠𝑙𝑜𝑐, 𝑒𝑙𝑜𝑐, 𝑒𝑡, 𝑒𝑑, 𝑡)|𝑠𝑙𝑜𝑐 ∈ 𝐿, 𝑒𝑙𝑜𝑐 ∈ 𝐿, 𝑒𝑡 ∈ 𝑇, 𝑒𝑑 ∈ 𝐷, 𝑡 ∈ 𝑇}, (5)

where, 𝑠𝑙𝑜𝑐, 𝑒𝑙𝑜𝑐 are start and end locations, 𝑒𝑡, 𝑒𝑑 are estimated time and distance travelled, 𝑡 is a

time of the route record availability.

The CPN model is hierarchical and consists of the following sub-nets:

1. Sub-nets init_clients, init_vehicles, init_client_states, init_route_states load corresponding

tokens from files which are formally defined by (2-5). Sub-net init_clients is presented in Figure 2

and init_vehicles is implemented in the same way, utilizing data partitioning. Sub-nets

init_client_states and init_route_states are implemented similarly but without data partitioning.

2. Sub-net scheduler emits a token when period starts to open a latch to train vehicle routes,

also it emits another token to a different place when period ends to store collected events as files.

3. Sub-net vrp_algorithm is depicted in and implements integration with Python socket server.

4. Sub-net route_execution is depicted in Figure 4 and implements vehicle route execution

mechanics.

5. Sub-net main glues all above submodels into a single TCPN model.

The Model parameters consist of: vehicle_cap_max, which represents the maximum allowable

value of the vehicle's capacity measured in dm³, and client_cap_full, which signifies the threshold

value of the fill also measured in dm³; in real-world systems, this particular value typically hovers

around 80% of the total volume of the container. Additionally, client_cap_overflow is defined as the

maximum volume that the container can hold, and if this threshold is surpassed, individuals may place

Waste Management Model with Timed Colored Petri Nets 141

waste outside the container, thereby contributing to environmental pollution. It is also possible to

change service and unload time delays within the model itself.

The Python socket server listens for incoming requests from vrp_algorithm sub-net to plan

vehicle routes. The communication is done utilizing the library proposed in [13]. For each algorithm

invocation new socket connection is established. The inputs are written to files and parameters are

sent via the socket connection. The following transition blocks until the resulting vehicle routes file

name is received via established connection. Finally, the connection is closed and

VEHICLE_ROUTES token is obtainet.

The VRP algorithm inputs are recorded in files, which encompass a set of containers, a set of

vehicles that are available for route scheduling and the map data which represents route time and

distance information at different time periods. The rest of parameters that are captured include the

current time, the start scheduling time, the end scheduling time, vehicle_cap_max, client_cap_full,

client_cap_overflow, and the iteration number, all of which are transmitted as part of the socket

command.

The VRP algorithm is declared as a Python function that has formal definition as

 (𝑝 ∈ ℕ, 𝑤𝑣 ∈ 𝑊, 𝑤𝑓 ∈ 𝑊, 𝑤𝑜 ∈ 𝑊, 𝑡𝑠 ∈ 𝑇, 𝑡𝑒 ∈ 𝑇, 𝑡 ∈ 𝑇, 𝐶𝑡 ⊆ 𝐶, 𝑉𝑡 ⊆ 𝑉) ⟶ 𝑅𝑆, (6)

where, 𝑝 is model iteration period index (e.g., number of the week for weekly scheduling), 𝑤𝑣 is

vehicle_cap_max, 𝑤𝑓 is client_cap_full, 𝑤𝑜 is client_cap_overflow, 𝑡𝑠 is scheduling window start, 𝑡𝑒

is the scheduling window end, 𝑡 is routes creation invocation time, 𝐶𝑡 is set of available container IDs

at time 𝑡, 𝑉𝑡 is set of available vehicle IDs at time 𝑡. The constraints 𝑤𝑜 ≥ 𝑤𝑓 , 𝑡𝑒 ≥ 𝑡𝑠 hold.

The result 𝑅𝑆 is a set of route schedules for the available vehicles, defined as a set of tuples

 𝑅𝑆 = {(𝑣, 𝑙𝑠, 𝑡)|𝑣 ∈ 𝑉, 𝑙𝑠 ∈ 𝐿𝑆, 𝑡 ∈ ℕ}, (7)

where, each route schedule contains vehicle ID 𝑣, list of scheduled locations 𝑙𝑠 and route start time

𝑡𝑠. Location schedule 𝐿𝑆 is represented as an ordered list of tuples consisting of location ID 𝑙𝑖𝑑 and

earliest time the vehicle can leave the location 𝑙𝑒𝑎𝑣𝑒𝑎𝑡

 𝐿𝑆 = [(𝑙𝑖𝑑, 𝑙𝑒𝑎𝑣𝑒𝑎𝑡)|𝑙𝑖𝑑 ∈ 𝐿, 𝑙𝑒𝑎𝑣𝑒𝑎𝑡 ∈ ℕ], 𝑡𝑠 < 𝑙𝑒𝑎𝑣𝑒𝑎𝑡 < 𝑡𝑒 . (8)

The Vehicle Routes created with Python MTCVRPTW algorithm are written to file as a single

VEHICLE_ROUTES token and filename is send to CPN model via socket connection. The token is

subsequently read by the CPN model for simulation. The VEHICLE_ROUTES is a list of

VEHICLE_ROUTE tokens that are formally defined by (7).

The sub-net route_execution is presented in Figure 4.

Arc inscriptions are bind operational variables. Color VEHICLE_ID is formally defined by (3).

Color CLIENT_STATES is a list of CLIENT_STATE which is defined by (4). Color ROUTES is defined

by (5). Color MODEL_META represents list of vehicles involved in current route schedule and period

number.

Vehicle routes execution is implemented as FSM, that begins when first token in

PreparedRoute place becomes available and finishes with token availability in FinishedRoutes place.

Places Driving, Unloading, Serving, Depot, Waiting represent vehicle states. Transitions Drive,

Serve, Park, Unload, WaitAtDepot, WaitAtUnload, WaitAtDepot represent vehicle state changes.

Places ClientStates and ClientStateUpdates represent list of current container fill levels and requests

to reduce container fill level after serve operation correspondingly. Purple places and transitions

capture execution events into global variables.

Vehicle route execution starts with a transition StartRoute which consumes corresponding

token from FreeVehicle. The token is moved to Driving place to represent the vehicle which is driving

to depot to begin its route. After that, transition Park is activated and token is moved to Depot place.

WaitAtDepot will not delay the vehicle at the first time and the token becomes immediately available

in Waiting place. The vehicle is located at 𝑠𝑙𝑜𝑐 at this point and is ready to drive to the next location

𝑒𝑙𝑜𝑐. The Drive transition picks up route information state (5) for 𝑠𝑙𝑜𝑐, 𝑒𝑙𝑜𝑐 pair, such as drive time

and distance, and sends updated token to Driving place. The new token has updated current location

142 Information, Computing and Intelligent Systems № 6, 2025

𝑠𝑙𝑜𝑐 to 𝑒𝑙𝑜𝑐 value, increased vehicle drive distance and incremented time to a point when vehicle is

available at 𝑠𝑙𝑜𝑐. The token can be moved to one of Unloading, Depot, Serving places from the Drive

place depending on the 𝑠𝑙𝑜𝑐 type. The transitions WaitAtDepot, WaitAtUnload, WaitAtDepot may

delay tokens if the corresponding vehicle arrives earlier than the expected 𝑙𝑒𝑎𝑣𝑒𝑎𝑡 timestamp, and in

such cases, wait time is measured as the difference between expected and actual arrival. The Serve

transition reduces container load and increases vehicle trunk load, it can also insert unload as next

location before the actual scheduled location in case the vehicle trunk becomes full. When vehicle

has visited all its assigned locations its state is moved to FinishedRoute place which contains tokens

representing cumulative vehicle state computed during route execution. The FinishRoute transition

releases vehicle to FreeVehicle place and removes vehicle from the list in ModelMeta place. After all

the vehicles finish their routes the transition RoutesFinished is triggered and FinishedRoutes contains

a token. The expected vehicle route schedule serves as a benchmark for comparing with actual

behavior, allowing for detailed performance analysis of the routing algorithm.

Fig 4. Sub-net that executes vehicle routes

The model captures Events during state transitions, which are written to the file system when

the 604800-second period is finished.

Drive segment events:

 𝐷 = [(𝑣, 𝑙𝑠, 𝑙𝑒, 𝑡𝑠, 𝑡𝑒 , 𝑑)|𝑣 ∈ 𝑉, 𝑙𝑠 ∈ 𝐿, 𝑙𝑒 ∈ 𝐿, 𝑡𝑠 ∈ 𝑇, 𝑡𝑒 ∈ 𝑇, 𝑑 ∈ 𝐷], (9)

where, 𝑣 is vehicle ID, 𝑙𝑠, 𝑙𝑒 are start and end locations, 𝑡𝑠, 𝑡𝑒 are timestamps of departure and arrival,

𝑑 is the drive distance.

Unload events:

 𝑈 = [(𝑣, 𝑑𝑢 , 𝑡𝑢 , 𝑤𝑢)|𝑣 ∈ 𝑉, 𝑑𝑢 ∈ 𝐷, 𝑡𝑢 ∈ 𝑇, 𝑤𝑢 ∈ 𝑊], (10)

where, 𝑣 is vehicle ID, 𝑑𝑢 is total distance travelled before the unload, 𝑡𝑢 is finish time of the unload,

𝑤𝑢 is unload volume.

Waste Management Model with Timed Colored Petri Nets 143

Container fill level events:

 𝑆 = [(𝑐, 𝑡𝑐 , 𝑤𝑓, 𝑏𝑓 , 𝑏𝑜)|𝑐 ∈ 𝐶, 𝑤𝑐 ∈ 𝑊, 𝑏𝑓 ≡ 𝑏𝑜𝑜𝑙𝑒𝑎𝑛, 𝑏𝑜 ≡ 𝑏𝑜𝑜𝑙𝑒𝑎𝑛], (11)

where, 𝑐 is container ID, 𝑡𝑐 is a timestamp of change, 𝑤𝑓 is updated container volume at 𝑡𝑐, 𝑏𝑓 is

container fullness flag, 𝑏𝑜 is a container overflow flag.

Container service events:

 𝑅 = [(𝑣, 𝑐, 𝑤𝑐 , 𝑜, 𝑟, 𝑡𝑠)|𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶, 𝑤𝑐 ∈ 𝑊, 𝑜 ≡ 𝑏𝑜𝑜𝑙𝑒𝑎𝑛, 𝑟 ≡ 𝑏𝑜𝑜𝑙𝑒𝑎𝑛, 𝑡𝑠 ∈ 𝑇], (12)

where, 𝑣 is vehicle ID, 𝑐 is container ID, 𝑤𝑐 is waste collected volume, 𝑜 is overflow flag at the time

of service, 𝑟 is service completion flag, 𝑡𝑠 is a timestamp of service.

Vehicle drive expected 𝐸𝑒 and actual 𝐸𝑎 events:

 𝐸𝑒 = [(𝑣, 𝑙𝑒, 𝑒𝑒, 𝑡)|𝑣 ∈ 𝑉, 𝑙𝑒 ∈ 𝐿, 𝑒𝑒 ≡ 𝑠𝑡𝑟𝑖𝑛𝑔, 𝑡 ∈ 𝑇], (13)

where, 𝑒𝑒 is started_drive event type, 𝑡 is time when vehicle 𝑣 must leave location 𝑙𝑒. The actual

dataset has same structure

 𝐸𝑎 = [(𝑣, 𝑙𝑎 , 𝑒𝑎 , 𝑡)|𝑣 ∈ 𝑉, 𝑙𝑎 ∈ 𝐿, 𝑒𝑎 ≡ 𝑠𝑡𝑟𝑖𝑛𝑔, 𝑡 ∈ 𝑇], (14)

where, 𝑒𝑐 is one of the finished_wait, finished_drive, serve, unload, depot event types, 𝑙𝑎 is location

of vehicle 𝑣 at time 𝑡.

5.2 WM effectiveness metrics

The model effectiveness metrics are calculated by the Analytics scripts from the event datasets

described by expressions (9 – 14). Direct calculation in TPN requires many aggregation places with

complex logic, which overloads the model, distracting the user from the core logic. This separation

of simulation and analysis enhances the modularity of the system, simplifies the model structure, and

enables greater flexibility in defining and refining metric computations without modifying the core

model. The following metrics are calculated.

Drive metrics are utilized to evaluate vehicle efficiency, the distribution of travel workload, and

overall operational performance, thereby supporting the assessment of routing strategies in WM

simulations. They are calculated based on dataset (9). The recorded route segments are grouped by

vehicle identifier, and detailed metrics are computed on both per-vehicle and global levels. For each

vehicle, the total, mean, median, minimum, maximum, and standard deviation of drive distances and

drive times are calculated. Subsequently, these metrics are aggregated across all vehicles to generate

a comprehensive system-wide summary.

Unload metrics are calculated based on dataset (10). These values are aggregated to compute

the minimum, maximum, average, median, and standard deviation across all events. The total waste

removed from the system is obtained by summing all discharge volumes. Additionally, the number

of unload operations is counted for each vehicle to assess their relative utilization. These metrics

provide a quantitative basis for analyzing routing efficiency, temporal distribution of unloading

actions, and load management across the vehicle fleet.

Overflow metrics are key waste collection performance metrics based on dataset (11). For each

container, it detects periods of overflow, defined as consecutive timestamps where the container

remains overfilled, and computes both the duration and volume of overflow for each such episode.

The volume is estimated as the difference between the last recorded capacity during the overflow and

the capacity at the overflow start. Additionally, total waste generated per container is calculated by

summing capacity values whenever a drop in fill level indicates a collection event. Then overflow

durations and volumes are aggregated to compute descriptive statistics (total, average, median, min,

max, and standard deviation), and the containers with the most and least severe overflow durations

and volumes are identified.

144 Information, Computing and Intelligent Systems № 6, 2025

Container service metrics are quantitative indicators related to service duration, service volume,

and visit frequency. They are calculated based on dataset (12). The number of times each container

was serviced during the observation period is first aggregated, yielding a per-container service

frequency. Descriptive statistics are then computed for both service time and collected volume,

including total sum, minimum and maximum values, arithmetic mean, median, and standard

deviation. These metrics are used to characterize the temporal distribution and operational workload

of waste collection, enabling the evaluation of consistency, service regularity, and overall system

balance across containers.

Route metrics evaluate the temporal accuracy and efficiency of vehicle operations by comparing

actual and expected schedules, calculated based on datasets (13, 14). Lateness is quantified by

measuring how much later a vehicle completes service at a location compared to its expected

departure time, and only positive delays are aggregated to assess deviations from the planned route.

Earliness is measured as the time spent waiting at a location after service has been completed,

reflecting how much earlier the vehicle arrived relative to its scheduled departure; however, waits at

the depot are excluded since early returns there are permissible. Both lateness and earliness metrics

are expressed through descriptive statistics, including total delay or wait time, average, median,

minimum, maximum, and standard deviation. Additionally, wait times are grouped per service

location to identify spatial patterns in early arrival behavior, providing insight into scheduling

alignment and temporal slack across the service network.

5.3 Model simulation experiment

Model parameters were configured with vehicle_cap_max set to 20000 dm³, client_cap_full

set to 4000 dm³ and client_cap_overflow set to 5000 dm³. There are 2 vehicles in the system

{𝑣1, 𝑣2}. and 10 containers {𝑐1, … , 𝑐10}.

Google My Maps service was used to create 10 containers, a depot, and an unload location as

presented in Figure 5.

Fig 5. WM system locations

Waste Management Model with Timed Colored Petri Nets 145

The KML file was exported, and locations were extracted to a separate file locations.csv,

containing:

name,lat,lon

unload,50.3553941,30.5355109

depot,50.4830364,30.4533355

c1,50.4792403,30.5331494

c2,50.4778194,30.5294658

c3,50.4696738,30.5112153

c4,50.4713126,30.5084258

c5,50.4572033,30.5055653

c6,50.4749274,30.4390745

c7,50.4552136,30.5208752

c8,50.4476171,30.5037949

c9,50.436302,30.5384705

c10,50.4219645,30.5248047.

A tool was developed to compute time-dependent travel distances and durations between

predefined locations using the Google Distance Matrix API. Based on a locations.csv file containing

coordinates for the depot, unload point, and ten containers, batched API queries were issued for all

origin–destination pairs at 3-hour intervals over a seven-day horizon, beginning from the upcoming

Monday. To comply with API constraints, the origin and destination sets were dynamically

partitioned. The resulting data, comprising distance, typical duration, and duration under traffic, were

stored in route_states.csv, with each entry timestamped relative to the scenario start. A total of 12

distinct locations (the depot, unload point, and container locations) were processed, creating 12 × 11

= 132 unique origin–destination pairs per query. By sampling travel times at three-hour intervals over

a seven-day planning horizon (24h / 3h = 8 intervals per day × 7 days = 56 time steps), a total of 132

× 56 = 7,392 route records were produced in route_states.csv. Each record corresponds to one origin-

destination pair at a specific timestamp, thereby enabling fine-grained, time-aware routing analyses.

The output was partitioned into 56 files, each containing 132 records.

A script was developed to simulate the temporal evolution of container fill levels for a set of

waste collection containers over a seven-day period, partitioned into 2-hour intervals. Each container

was defined with parameters including an initial capacity and a fixed fill interval (i.e., time required

to accumulate 200 dm³ of waste). Containers were loaded from the locations.csv file, and periodic

records were generated for each 2-hour interval during which a container filled incrementally. For

each update, the container ID, timestamp, and current capacity were recorded. The final output,

written to client_states.csv, consists of a chronologically sorted sequence of capacity updates. In total,

8,400 records were generated, covering 12 locations across 336 time steps (every 2 hours over 7

days). This data serves as a synthetic input stream for time-aware waste collection models. The script

produced 84 time partitions, each representing a 2-hour interval within the simulation horizon.

The embedding of a fully featured VRP algorithm was considered beyond the scope of this

article. However, to demonstrate the tool in operation, a simple multi-trip route planning algorithm

was developed that deterministically generates weekly waste collection schedules for a fixed number

of vehicles and containers over a seven-day planning horizon. In the evaluated configuration, the

algorithm was executed for 10 containers and 2 vehicles. Containers were assigned to vehicles using

a round-robin strategy, with each vehicle consistently responsible for servicing a distinct subset of 5

containers throughout the week. Each vehicle was scheduled to perform exactly two trips per week,

beginning at 01:00 on predetermined days. Specifically, vehicle 𝑣1 was scheduled to operate on days

0 and 3 (corresponding to Monday and Thursday), while vehicle 𝑣2 was assigned to days 1 and 4

(Tuesday and Friday), ensuring an even distribution of workload and temporal coverage. Each trip

was designed to begin at the depot, include sequential visits to all assigned containers with fixed

service durations (1 hour per container) and inter-container travel times (30 minutes), and conclude

with a 2-hour pre-unload window followed by arrival at the unload location. Each vehicle returned to

the depot after completing each trip, aligning accurately with downstream simulations.

146 Information, Computing and Intelligent Systems № 6, 2025

The unload operation delay was specified as 1800 seconds (30 minutes), and the serve operation

was defined as 300 seconds (5 minutes). The model simulation for a one-week period produced a

route diagram presented in Figure 5, in which expected route location rules were visualized using the

earliest-leave-at principle. For each planned route segment (red bar), an accompanying bar was shown

to represent the actual route execution.

Fig 5. Route execution diagram, planned vs actual

Fig 6. Route execution diagram section, planned vs actual

The Drive metrics are represented in Table 2–4.

Table 2. Global Drive Metrics Across All Vehicles

Metric Total Mean Median Min Max StdDev

Drive Distance (m) 341,959 11,398.63 8,214 1,657 24,029 7,802.89

Drive Time (s) 30,146 1,004.87 878.5 225 1,851 503.20

The vehicle 𝑣2 traveled farther (183,311 m) and longer (15,946 s) than 𝑣1 (158,648 m and

14,200 s), indicating a higher workload or longer routes. Vehicle 𝑣1 had greater variability in segment

lengths and times. Overall, the system logged 341,959 m and 30,146 s of driving, with average

Waste Management Model with Timed Colored Petri Nets 147

segments of 11,399 m and 1,005 s. High standard deviations and extreme values (up to 24,029 m and

1,851 s) highlight uneven routing and dispersed service points, emphasizing the importance of route

optimization to balance workloads and reduce inefficiencies.

Table 3. Per-Vehicle Drive Distance Metrics

Vehicle Total (m) Mean (m) Median (m) Min (m) Max (m) StdDev (m)

𝑣1 158,648 10,576.53 6,796 1,657 24,029 8,959.58

𝑣2 183,311 12,220.73 10,167 4,649 24,029 6,663.09

Table 4. Per-Vehicle Drive Time Metrics

Vehicle Total (s) Mean (s) Median (s) Min (s) Max (s) StdDev (s)

𝑣1 14,200 946.67 806 225 1,851 591.88

𝑣2 15,946 1,063.07 885 402 1,816 408.58

The unload metrics are provided in Table 5. The vehicles 𝑣1 and 𝑣2 unloaded 3 times each. The

total recorded unload capacity was 82,600 dm³.

There is variation in distances (39,058 to 159,282 m) and durations (17,534 to 364,711 s). The

average capacity discharged per unload was 13,767 dm³, indicating efficient consolidation during

trips. However, the large standard deviations across all unload parameters reveal inconsistency in

vehicle routing and container targeting strategies.

The overflow metrics are provided in Table 6.

Table 5. Unload Metrics

Metric Min Max Mean Median Std Dev

Distance Traveled (m) 39,058 159,282 98,576.5 104,441 47,416.39

Unload Time (s) 17,534 364,711 232,457.33 275,224.5 141,356.43

Capacity (dm³) 600 20,000 13,766.67 14,700 7,130.12

Table 6. Overflow metrics

Metric Total Max Min Median Average Std Dev Max Min

Overflow

Delay (s)
2,052,384 208,800 57,600 86,369.5 102,619.2 40,432.68

208,800

(𝑐7)

57,600

(𝑐1)

Overflow

Volume

(dm³)

56,200 5,800 1,600 2,300 2,810 1,143.36
5,800

(𝑐7)

1,600

(𝑐1)

A total overflow delay of 2,052,384 seconds was recorded, with an average delay of

approximately 102,619 seconds per overflow incident. The most affected container, 𝑐7, experienced

the maximum overflow duration of 208,800 seconds, while 𝑐1 had the lowest at 57,600 seconds.

Similarly, the corresponding overflow volume ranged from 1,600 dm³ to 5,800 dm³, with an average

148 Information, Computing and Intelligent Systems № 6, 2025

of 2,810 dm³. These findings suggest that certain containers, such as 𝑐7, are particularly vulnerable

to delayed service, due to route scheduling inefficiencies.

The container service metrics are provided in Table 7. All the containers were serviced twice.

Table 7. Container Service Time & Volume metrics

Metric Total Min Max Mean Median Std Dev

Served Time (s) 3,638,476 3,825 361,459 181,923.8 181,154.5 140,937.7

Served Volume (dm³) 82,600 0 7,400 4,130 4,100 3,052.02

A total of 82,600 dm³ of waste was collected, with an average of 4,130 dm³ per container and a

high standard deviation of 3,052 dm³, indicating uneven fill levels at the time of service. The mean

service duration of 181,923 s highlights the need to optimize collection timing to reduce overflow

and idle waiting.

The route metrics are presented in Table 8–9.

Table 8. Vehicle Lateness and Earliness

Metric Total Count Avg Median Min Max Std Dev

Lateness 9,136 4 2,284.0 2,361.5 1,521 2,892 618.29

Earliness 23,064 18 1,281.33 1,078 915 2,438 415.80

For locations with a single recorded wait, all statistical measures coincide. The observed wait

times were 1398 seconds at c1, 1357 seconds at c4, 1093 seconds at c5, and 918 seconds at c10. For

other locations a vehicle has waited twice and the metrics are present in Table 9.

Table 9. Per-Location Wait Time Statistics (seconds)

Location 𝒄𝟐 𝒄𝟑 𝒄𝟔 𝒄𝟕 𝒄𝟖 𝒄𝟗 unload

Avg 1056 985 1574 1436 976 920 2202

Median 1056 985 1574 1436 976 920 2202

Min 1049 966 1573 1427 958 915 1966

Max 1063 1004 1575 1445 994 925 2438

Std Dev 9.90 26.87 1.41 12.73 25.46 7.07 333.75

A total of 9,136 s of service lateness and 23,064 s of earliness were recorded, with fewer late

events (4) but longer average delays (2,284 s), compared to shorter, more frequent early waits (1,281 s

across 18 cases). These timing mismatches highlight the need for better synchronization between

demand and route execution, especially for high-frequency containers. Container wait times ranged

from 918 s (𝑐10) to 1,574 s (𝑐6), with 𝑐6, 𝑐7, and 𝑐4 experiencing higher delays, while 𝑐9 and 𝑐10 were

serviced more efficiently. The unload site averaged 2,202 s of waiting, indicating possible

bottlenecks, and high standard deviations at locations like 𝑐8 and 𝑐3 point to inconsistent

responsiveness due to route variability.

Waste Management Model with Timed Colored Petri Nets 149

6. Discussion of the results

Figure 6 presents a segment of the weekly schedule for vehicle 𝑣1, specifically illustrating the

execution of its second trip. This visualization juxtaposes the actual state timeline (bottom row) and

the expected drive segments (top row), demonstrating the CPN IDE model’s temporal accuracy and

responsiveness to dynamic conditions. Notably, an unplanned unload operation occurred after

servicing container 𝑐7, triggered by vehicle capacity exhaustion. Upon returning from this unload

operation, the vehicle proceeded directly to containers 𝑐4 and 𝑐5 without intermediate wait times. This

behavior correctly reflects a schedule violation in the form of lateness – the vehicle was behind

schedule and thus bypassed any idle period. Following these service completions, the vehicle initiated

another unload, after which it returned to the depot. Unlike earlier segments, a waiting period is

observed at the depot. This indicates that the vehicle arrived earlier than its planned departure for the

next trip segment, and as expected by the model’s earliest-leave-at principle, the vehicle correctly

waited until the designated time window. This scenario validates the underlying TPN model’s

correctness: the simulation adheres to a time-guarded execution policy where vehicles depart only

when permitted and adapt to runtime events (e.g., capacity overflows). The absence of premature

departures and adaptive recovery from overflows illustrates the model’s ability to enforce both

temporal constraints and route reactivity, critical for smart waste collection systems where timing

precision and resource limitations are operationally interdependent.

The experimental results provide a comprehensive insight into the performance of the waste

collection system via metrics. Collectively, the results demonstrate that although service counts were

evenly distributed, variations in overflow frequency, waste generation, and service responsiveness

indicate that static scheduling is suboptimal. Instead, adaptive routing strategies, incorporating

container fill predictions and route-time balancing, are essential to enhance operational performance

and reduce service delays and overflows.

Several areas for future model improvement have been identified. These include the

incorporation of smart container sensors and real-time handling of dynamic requests. Additionally,

the introduction of stochastic events, such as vehicle breakdowns, could further enhance the model's

robustness and realism.

Conclusion

The CPN model for the WM system was developed in this study, utilizing the CPN IDE

simulation environment. For the flexibility and convenience, the model has been integrated with the

Python socket server. The interface for MTCVRPTW algorithm has been designed and incorporated

into the Python socket server. The model produces simulated events of different types into files. A

key advantage of the developed model is its flexibility to incorporate custom user algorithms and

adapt to diverse environmental setups.

The WM effectiveness metrics for container overflow, container service, vehicle unload

effectiveness, vehicle route optimality, vehicle route schedule discrepancy were formalized and their

calculation implemented with set of Python analytics scripts.

To demonstrate the model in action the experiment was conducted. The WM system used for

analysis consisted of 10 containers, depot and unload place locations in Kyiv city and 2 vehicles. A

time-dependent routing dataset was generated using the Google Distance Matrix API. A total of 7,392

timestamped records were produced, capturing travel distances and durations between all location

pairs across varying traffic conditions. A synthetic container fill-level dataset was created, consisting

of 8,400 time-stamped records simulating the progressive accumulation of waste in containers over

seven days. These inputs were used to drive the simulation under realistic conditions. A deterministic

MTCVRPTW algorithm was employed, assigning containers to vehicles using a round-robin strategy.

Each vehicle was scheduled for two fixed weekly trips, following predefined routes with constant

service and travel times. This simplified approach enabled consistent and controlled evaluation within

the simulation framework. The simulation was successfully executed, producing both planned and

actual route trajectories and enabling analysis of vehicle behavior and system performance.

150 Information, Computing and Intelligent Systems № 6, 2025

The results demonstrate the model's capability to simulate schedules that are both temporally

coherent and correct, as evidenced by the metrics obtained during simulations. Although advanced

routing logic was not embedded in this iteration, the model was structured to support future

integration. Overall, a flexible, extensible simulation environment was established to evaluate and

improve waste collection strategies under realistic operational constraints.

References

[1] The Kyiv municipal WM company “Kyivcomunservice,” Accessed: Aug. 8, 2025. [Online].

Available: https://kks.kyiv.ua/en/.

[2] C. Simon and S. Haag, “Pairing state automata and Petri nets – Simulation of processes in

logistics,” in Proc. 38th ECMS Int. Conf. on Modelling and Simulation, Jun. 2024.

https://doi.org/10.7148/2024-0474.

[3] J. I. Latorre-Biel, D. Ferone, Á. A. Juan, and J. Faulin, “Combining simheuristics with Petri nets

for solving the stochastic vehicle routing problem with correlated demands,” Expert Systems with

Applications, vol. 168, p. 114240, Jan. 2021. https://doi.org/10.1016/j.eswa.2020.114240.

[4] L. Zhang and J. Li, “Logistics Distribution Process Design Based on Stochastic Petri Nets and

Big Data Algorithms,” in Proc. 2022 IEEE 2nd International Conference on Computer Systems

(ICCS), Qingdao, China, 2022, pp. 55–59. https://doi.org/10.1109/ICCS56273.2022.9987800.

[5] K. B. Priya and R. Paramasivam, “The Combination of Petri Nets and Queueing Theory,”

International Journal of Engineering and Advanced Technology (IJEAT), vol. 9, no. 1S5,

pp. 293–294, Dec. 2019. https://doi.org/10.35940/ijeat.A1065.1291S519.

[6] G. Cavone, M. Dotoli and C. Seatzu, “A Survey on Petri Net Models for Freight Logistics and

Transportation Systems,” in IEEE Transactions on Intelligent Transportation Systems, vol. 19, no.

6, pp. 1795–1813, June 2018, https://doi.org/10.1109/TITS.2017.2737788.

[7] D. Du, T. Liu, and C. Guo, “Analysis of Container Terminal Handling System Based on Petri Net

and ExtendSim,” PROMTT, vol. 35, no. 1, pp. 87–105, Feb. 2023.

https://doi.org/10.7307/ptt.v35i1.4196.

[8] T. Kossowski, S. Samolej, and R. Davidrajuh, “Simulation in the GPenSIM Environment of the

Movement of Vehicles in the City Based on Their License Plate Numbers,” Electronics, vol. 13,

no. 4, p. 683, 2024. https://doi.org/10.3390/electronics13040683.

[9] J. Beliën, L. De Boeck, and J. Van Ackere, “Municipal solid waste collection and management

problems: A literature review,” Transportation Science, vol. 48, no. 1, pp. 78–102, 2012,

https://doi.org/10.1287/trsc.1120.0448.

[10] T. Benarbia, A. M. Darcherif, and D. J. Sun, “Modelling and performance analysis of smart

waste collection system: a Petri nets and discrete event simulation approach,” International

Journal of Decision Support Systems, 2019 Vol.4 No.1, pp. 18–40.

https://doi.org/10.1504/IJDSS.2019.103668.

[11] A. Ouhbi, H. Berrada, H. Boukachour, A. Farchi and H. Hachimi, “Multi-Trip Vehicle Routing

Problem with Time Windows and Resource Synchronization on Heterogeneous Facilities,”

Systems, vol. 11, no. 8, p. 412, 2023. [Online]. Available: https://www.mdpi.com/2079-

8954/11/8/412.

[12] D. A. Zaitsev, T. R. Shmeleva, and D. E. Probert, “Applying Infinite Petri Nets to the

Cybersecurity of Intelligent Networks, Grids and Clouds,” Applied Sciences, vol. 11, no. 24, p.

11870, Dec. 2021, https://doi.org/10.3390/app112411870.

[13] V. Gehlot, P. Rokowski, E. B. Sloane and N. Wickramasinghe, “Taxonomy, Tools, And A

Framework For Combining Simulation Models With AI/ML Models,” 2022 Annual Modeling and

Simulation Conference (ANNSIM), San Diego, CA, USA, 2022, pp. 18–29,

https://doi.org/10.23919/ANNSIM55834.2022.9859494.

Waste Management Model with Timed Colored Petri Nets 151

УДК 004.94, 628.477

МОДЕЛЬ СИСТЕМИ УПРАВЛІННЯ ВІДХОДАМИ З

ВИКОРИСТАННЯМ ЧАСОВИХ КОЛЬОРОВИХ МЕРЕЖІ ПЕТРІ

Григорій Рожков
Національний технічний університет України

«Київський політехнічний інститут імені Ігоря Сікорського», Київ, Україна

https://orcid.org/0009-0009-5343-8974

Ірина Клименко
Національний технічний університет України

«Київський політехнічний інститут імені Ігоря Сікорського», Київ, Україна
http://orcid.org/0000-0001-5345-8806

Управління відходами є ключовим елементом функціонування сучасних міст. У статті

представлено нову модель системи збору відходів, що описується як дискретно-подійна

система (DES), реалізована за використанням часових кольорових мереж Петрі (TCPNs) у

поєднанні з інтегрованим сервером на Python. Модель розроблена з урахуванням зміни

динаміки заповнення контейнерів та змінних маршрутів, що дозволяє досягти відповідності

реальним міським умовам.

Ключовим елементом розробленої моделі є інтерфейс алгоритму планування маршрутів

транспортних засобів з обмеженнями на вантажомісткість, з кількома поїздками та часовими

вікнами (MTCVRPTW), що дозволяє транспортним засобам багаторазово обслуговувати

контейнери за плановий період, дотримуючись обмежень за обсягом і часом. Модель

підтримує налаштування таких параметрів, як затримки в роботі, обсяг заповнення та

переповнення контейнерів, а також вантажомісткість кузова автомобіля. Симуляцію

реалізовано в CPN IDE з використанням часових рядів як вхідних даних, розділених на

партиції для ефективної обробки. Інформація про наповнення контейнерів і дорожні умови

періодично довантажується під час моделювання в реальному часі, що підвищує

масштабованість і продуктивність. Модель генерує логи подій: рух, розвантаження,

переповнення та обслуговування, які обробляються Python-скриптами для розрахунку метрик

ефективності.

Було визначено основні метрики ефективності системи сміттєзбору, що включають

відстань та час маршрутів, ефективність розвантаження, обсяг переповнення контейнерів,

ефективність обслуговування і відхилення запланованих маршрутів від графіка.

Для демонстрації роботи моделі було проведено експеримент із використанням

синтетичних даних, наближених до реальних умов. Розташування 10 контейнерів, точки

розвантаження та депо було визначено за допомогою сервісу Google My Maps на основі

координат реальних об’єктів у місті Київ. Генерація реалістичних маршрутних відстаней і часу

виконувалася за допомогою Google Distance Matrix API. Алгоритм MTCVRPTW для 2-х

автомобілів запланував по два виїзди на тиждень відповідно до статичних маршрутів.

Симуляція моделі згенерувала логи подій, які були використані для підрахунку метрик

ефективності. Аналіз метрик показав значні обмеження статичного планування маршрутів і

підкреслив необхідність впровадження адаптивних стратегій, що враховують реальний стан

контейнерів і трафік. Запропонована модель є гнучким інструментом для оцінки, аналізу і

покращення стратегій збору відходів у містах.

Ключові слова: моделювання збору сміття, оптимізація збору сміття, дискретні системи,

мережі Петрі, задача маршрутизації транспортних засобів.

