Information, Computing and Intelligent Systems, 2025, No. 6, 132 — 151

UDC 004.94, 628.477 https://doi.org/10.20535/2786-8729.6.2025/333736

WASTE MANAGEMENT MODEL WITH TIMED COLORED
PETRI NETS

Hryhorii Rozhkov *

National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
https://orcid.org/0009-0009-5343-8974

Klymenko Iryna

National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
http://orcid.org/0000-0001-5345-8806

*Corresponding author: hryhoriirozhkov@gmail.com

Waste management is a key element in the functioning of modern cities. This paper presents a new
model of a waste collection system, described as a discrete-event system (DES), implemented using
Timed Colored Petri Nets (TCPNs) in combination with an integrated Python server. The model is
developed with consideration of container filling dynamics and variable routes, which ensures alignment
with real urban conditions.

A key element of the developed model is the interface of a vehicle routing problem with capacity
constraints, multiple trips, and time windows (MTCVRPTW), which enables vehicles to service
containers multiple times during a scheduled period while adhering to volume and time restrictions. The
model supports configuration of parameters such as operational delays, container filling and overflow
volumes, and vehicle load capacity. The simulation is implemented in CPN IDE using time series as
input data, partitioned for efficient processing. Information about container filling levels and road
conditions is periodically updated during real-time simulation, enhancing scalability and performance.
The model generates event logs—movement, unloading, overflow, and servicing—which are processed
by Python scripts to calculate performance metrics.

The main performance metrics of the waste collection system were defined, including route distance
and time, unloading efficiency, container overflow volume, servicing efficiency, and deviations of
planned routes from the schedule.

To demonstrate the operation of the model, an experiment was conducted using synthetic data
approximating real-world conditions. The locations of 10 containers, unloading points, and depots were
determined using the Google My Maps service based on coordinates of real objects in Kyiv. Realistic
route distances and travel times were generated using the Google Distance Matrix APIl. The
MTCVRPTW algorithm for two vehicles scheduled two trips per week according to static routes. The
simulation of the model generated event logs, which were then used to calculate performance metrics.
The analysis of these metrics revealed significant limitations of static route planning and highlighted the
need for adaptive strategies that account for the actual state of containers and traffic.

The proposed model is a flexible tool for evaluating, analyzing, and improving waste collection
strategies in cities.

Keywords: waste management, waste management optimization, discrete event systems, Petri nets,
vehicle routing problem.

1. Introduction
Waste Management (WM) has become an increasingly critical challenge in modern urban
environments due to rapid urbanization and population growth. The resulting surge in waste
generation demands sophisticated planning and execution to maintain public health and
environmental standards. Key objectives of an effective WM system include timely servicing of waste
containers to meet predefined service levels, minimizing container overflows to prevent
environmental pollution, and optimizing vehicle routes to reduce fuel consumption and emissions.

© The Author(s) 2025. Published by Igor Sikorsky Kyiv Polytechnic Institute.
This isan Open Access article distributed under the terms of the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), which per mits re-
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Waste Management Model with Timed Colored Petri Nets 133

However, modern WM systems are inherently complex and dynamic. Factors such as new
container service contracts, fluctuating vehicle availability, varying road conditions, and stochastic
events including vehicle breakdowns and unpredictable changes in container fill levels introduce
significant planning uncertainty. Additionally, geospatial elements like multiple depots and unload
stations, as well as heterogeneity in both container and vehicle types (e.g., residential, commercial,
hazardous waste), further complicate the routing and scheduling process. Some vehicles may support
multi-type waste collection, while others are restricted to specific categories, and service times can
vary considerably depending on waste type.

Manual planning remains the prevailing method in many cities, including Kyiv, requiring
substantial human resources and frequent route adjustments. Yet, this approach is inefficient and
prone to suboptimal outcomes. Automating the process through an appropriate formulation of the
Vehicle Routing Problem (VRP) tailored to the specific requirements of WM offers a scalable and
adaptive alternative.

Given that WM systems evolve in response to discrete, event-driven changes, modeling them
as DES is a natural and effective approach. Colored Petri Net (CPN), combined with Python-based
simulation, provide a robust framework for capturing dynamic interactions among container states,
vehicle movements, and network conditions in real-time.

Considering the aforementioned aspects, a simulation-based prototype model becomes essential
to validate such automation. This model should enable the evaluation of alternative collection
strategies by generating objective performance metrics such as total travel distance, service
frequency, and operational workload under varied conditions. The framework must provide a tool for
evaluating route optimization techniques that enhance operational efficiency, reduce costs, and
support sustainable urban WM.

2. Literature review and problem statement

The Kyiv municipal WM company [1] is a prime example of the city's WM system. The
company runs a fleet of around 250 vehicles of various types, spread across six depot centers and 10
unloading facilities, each designed to handle specific waste categories. The waste collection
infrastructure includes a range of container types and designs. Waste collection is organized on
weekly route schedules. However, unexpected events like vehicle breakdowns, driver absences, and
container overflows are currently handled manually by human dispatchers. The company also offers
an interactive mapping service that shows the geographical distribution of container sets. Each set is
marked with its location, the number and type of containers, their weekly accumulated load, and the
associated service schedule. Most containers are serviced on a fixed-day schedule. In contrast, some
containers operate on a load-based collection principle; these are assumed to be equipped with smart
container sensors that periodically report their fill levels to the system.

To choose the most appropriate mathematical tool to model the WM system several
mathematical models were analyzed, which are presented below.

Finite State Machines (FSMs) serve as a basic modeling tool for systems with a finite number
of states and transitions. While FSMs are simple and easy to understand, they lack the expressive
power to effectively model complex, concurrent systems. In contrast, Petri Nets can explicitly
represent concurrency and synchronization, making them more suitable for modeling DES in WM.
However, FSMs can still be effective for modeling simple sequential processes within a Petri Net
framework [2].

Markov Chains (MCs) are probabilistic models used to analyze systems with uncertain
transitions. They are helpful for modeling stochastic processes, such as demand uncertainty in VRP.
However, MCs are limited in their capacity to represent concurrency and synchronization, both of
which are critical in WM systems. Petri Nets, especially stochastic Petri Nets, can model both
deterministic and stochastic behavior, making them a more comprehensive tool for these applications
[31 [4].

Queueing Models (QMs) analyze systems with waiting lines, such as customers awaiting
service. They are especially beneficial for assessing performance metrics like waiting times, queue

134 Information, Computing and Intelligent Systems N© 6, 2025

lengths, and service rates. While QMs are effective for analyzing specific aspects of WM systems,
such as the waiting time for waste collection vehicles, they do not capture the overall system
dynamics, including routing and scheduling. Petri Nets, in contrast, can integrate queueing theory
within their modeling framework to provide a more holistic view of the system [5].

Process Algebras (PAs) are formal languages designed for modeling and analyzing concurrent
systems that provide a mathematical framework for specifying and verifying system behavior.
Although PAs are powerful tools for theoretical analysis, they can be challenging to implement in
practical modeling scenarios. Petri Nets, with their graphical representation and intuitive semantics,
often provide a more accessible option for practitioners, leading to a user-friendly approach to
modeling DES [6].

Simulation-based Models (SBMs) are widely utilized for analyzing and optimizing complex
systems. They allow for the simulation of system behavior across various scenarios, making them
particularly beneficial for assessing the impact of different routing strategies or WM policies. Petri
Nets can be combined with simulation tools, such as ExtendSim, to deliver a more detailed and
accurate analysis of system performance. For example, a study on container terminal handling
systems integrated Petri Nets with simulation tools to optimize the handling process and enhance
efficiency [7].

Petri Nets are a well-established graphical and mathematical formalism within the broader field
of DES modeling, particularly effective for describing systems with concurrency, synchronization,
and resource sharing. Petri Net models provide formal analysis techniques for properties such as
reachability, liveness, and boundedness. They comprise places (representing states or conditions) and
transitions (representing events or actions), linked by arcs that define the flow of tokens (representing
resources or entities) through the system. Several extensions of standard Petri Nets have been
developed to enhance their modeling capabilities. Timed Petri Nets (TPNs) add transition delays for
modeling temporal aspects, while Colored Petri Nets (CPNs) assign data types to tokens and support
functional inscriptions. Their combination, Timed Colored Petri Nets (TCPNSs), enables modeling of
complex real-time systems with concurrency and conflict resolution. In contrast, Hierarchical Petri
Nets (HPNs) introduce an architectural mechanism for modularity by allowing transitions to be
refined into sub-nets, thus supporting structured model decomposition. This hierarchical principle can
also be applied within TCPN. It is common in the literature that the term CPN implicitly refers to
TCPN, since most practical applications rely on both color and time extensions; therefore, in this
article the terms CPN and TCPN are used interchangeably.

In the context of WM, TPNs have been effectively employed to model and analyze various
system aspects. For instance, Stochastic Petri Nets have been utilized to address uncertainties in
demand and vehicle routing, while CPNs have been used to model complex logistics networks
featuring multiple vehicle types and dynamic routing requirements [3] [8].

The matrix analysis of the DES modeling tools is presented in Table 1, where “++” denotes
strong support or native capability, and “+” denotes partial or indirect support.

The VRP is a critical component of WM optimization, as it directly influences the efficiency
and effectiveness of collection operations in urban settings. A comprehensive overview of VRPs in
the context of WM is provided in [9]. The authors have proposed solution methods to VRPs and
formulated following constraints, which served as the basis for defining the requirements and
limitations for the development of the VRP algorithm interface in the present study.

Capacity Constraints limit the amount of waste that can be collected by a vehicle, ensuring that
vehicle does not overload during collection.

Demand Constraints ensure that all customer demands are met, meaning that service level is
met and all containers are services with enough frequency.

Labour Constraints impose limits on the workforce available for waste collection. This includes
restrictions on the number of working hours for employees and the duration of shifts for collection
crews. Such constraints can affect the overall efficiency of waste collection operations.

Feasibility Constraints prevent the formulation of infeasible solutions, they ensure that all
customers are visited in a logical sequence and routes are feasible and practical. An example includes

Waste Management Model with Timed Colored Petri Nets 135

constraints that eliminate subtours, which are routes that visit only a subset of customers, also it must
be guaranteed that vehicle unloads before returning to the depot.

Driver Lunch Break Constraints account for mandatory breaks for drivers, which can affect the
scheduling and timing of waste collection routes. Properly incorporating these breaks into route
planning is essential to avoid conflicts with time windows.

Table 1. Comparison of DES models

Criterion FSMs | MCs | QMs | PAs | SBMs | TPNs
Concurrency modeling + + ++
Stochastic behavior support ++ + + ++ ++
Timing constraints support + ++ + ++
Sequential process modeling ++ + + + + +
Graphical representation + + ++
Formal verification capability + + + ++ ++
Scalability to complex systems + + + + +
Integration with simulation engines + ++ ++
Ease of implementation ++ + + + +
Support for routing and scheduling + + ++

A Smart WM model using Stochastic Petri Nets is proposed in [10], simulating random waste
drop-offs and enabling the evaluation of various collection strategies. The model supports
parameterization to identify optimal collector levels and reduce vehicle visits, based on assumptions
about average drop-off frequency and travel time. It emphasizes real-time inventory control using
sensor data but lacks integration of time-series inputs or detailed routing logic. While stochastic
timing allows to model probabilistic behavior, it restricts the ability to simulate specific temporal
scenarios. A major limitation is scalability: a system with 100 collectors leads to over 30,000 places
and 70,000 transitions, creating significant graphical complexity. This hinders formal analysis and
makes it difficult for users to embed custom algorithms such as ILP-based VRP models, reducing the
model’s flexibility for tailored applications.

A practical and effective algorithm for WM route planning, accommodating multiple trips per
period, service frequency obligations, and varying road conditions, is the Multi-Trip Vehicle Routing
Problem with Time Windows (MT-VRPTW) presented in [11]. This approach extends the classic
VRP by allowing vehicles to perform multiple trips within a planning horizon, such as a week, and
incorporates time windows for servicing containers. The paper demonstrates that adopting a multi-
trip vehicle routing strategy with a one-week planning horizon leads to better performance in logistics
operations. They proved that weekly scheduling reduces the total travel distance compared to
traditional daily scheduling. The weekly plan also resulted in a 33.52% decrease in the number of
vehicles required.

The study [12] introduces Colored Petri Net Markup Language (CPN ML) and its foundational
role in modeling systems using Petri Nets. CPN ML is a powerful language that facilitates the
declaration of color sets, variables, functions, and constants, which are essential for defining the
attributes of net elements. The chapter explains that Petri Nets are represented as bipartite directed
graphs, consisting of places (depicted as circles or ovals) and transitions (represented as bars). In this
context, tokens serve as dynamic objects that move between places as transitions fire, allowing for
the modeling of complex systems. The chapter emphasizes the importance of color sets in
distinguishing different types of tokens, which enhances the expressiveness of the models.

136 Information, Computing and Intelligent Systems N© 6, 2025

Additionally, it highlights the integration of CPN ML with CPN Tools, a simulation system developed
at the University of Aarhus, which supports the creation, simulation, and analysis of Petri Net models
in various applications, particularly in telecommunications.

The current literature shows that there are still important gaps in how Petri Net models are used
to support VRP in WM. While Petri Nets are useful for building dynamic models that simulate waste
collection and help identify inefficiencies, existing approaches often lack a flexible and practical way
to design, test, and compare different VRP algorithms in realistic urban settings. Although route
optimization can reduce travel distance, fuel use, and emissions, it remains difficult to apply Petri Net
models effectively in real-world waste collection scenarios, especially in cities with complex layouts.
One major gap is that many models do not include VRP methods that are specific to the challenges
of waste collection. Another issue is that it's often hard to insert or change routing algorithms in these
models, making it less convenient to test new strategies. Additionally, there is a lack of well-defined
and useful performance metrics — such as how often containers overflow, how well vehicles are used,
or how long services take - which are needed to evaluate and improve WM systems. So, this article
is devoted to creating a better Petri Net-based model that supports flexible algorithm integration for
evaluating WM systems, defining objective metrics to measure system performance generated
through simulation.

3. The aim and objectives of the study

This study aims to develop an improved Petri Net-based simulation model for urban WM
systems that supports flexible integration of routing algorithms and enables formal evaluation of
system performance. The proposed model addresses limitations in existing approaches by
incorporating real-world constraints such as road congestion, service-level agreements, vehicle
resource availability, and multi-trip planning. It also enables the simulation of realistic operational
scenarios and the generation of objective performance metrics.

The objectives of the study are as follows:

1. To design and implement a simulation model that supports experimentation with different
routing algorithms under practical constraints;

2. To formalize a set of performance metrics for evaluating vehicle routing and overall system
efficiency;

3. To perform experimental analysis using the developed model to demonstrate its applicability
in assessing collection strategies and identifying system bottlenecks.

4. The study materials and methods of modeling the WM problem
4.1 Petri Net modeling

In this article the TCPN, which includes TPN functionality, is proposed. Events, such as vehicle
drive, park, serve, and unload operations; container fill levels change; and route conditions change
cause concurrency in the WM system. Timed transitions are used to model state changes in the
concurrent WM system. The time is divided into discrete points with a minimal period of 1 second.
Places represent system states, and transitions correspond to state changes. A transition is executable
when all its input places contain tokens available at the current simulation time and, if applicable, a
guard condition evaluates to true. Transitions may introduce delays on output arcs to simulate non-
instantaneous processes. The simulation is governed by a global, non-decreasing model time
represented in discrete seconds. When no transitions are immediately enabled, time advances
discretely to the earliest future point at which a transition becomes enabled. The integration of TPN
with route optimization algorithm is a natural fit for modeling WM.

4.2 Modeling tools and services
Google My Maps is an interactive mapping service that enables the manual marking of locations
on a real-world map. It has been used to annotate the geographic positions of waste containers, depot
sites, and unloading stations. The service supports exporting maps in the kml format, an XML-based

Waste Management Model with Timed Colored Petri Nets 137

structure that can be parsed using custom Python scripts to extract and process location data for
simulation inputs.

The modeling and simulation of the system were performed using CPN IDE, a modernized
successor to the discontinued CPN Tools. CPN IDE provides a graphical interface for building and
simulating TPN models. It supports modular design through sub-nets and operates in two modes: an
editor for model construction and a simulation mode that supports both animated (step-by-step) and
fast-forward (multi-step) execution. For debugging purposes, breakpoint monitors and fast-forward
simulations were employed to analyze model behavior in response to specific state transitions.

While CPN ML, the functional language used within CPN IDE, is suitable for defining TPN
logic, it lacks expressive support for complex algorithmic tasks such as vehicle routing or data
analysis. Therefore, an external service integration approach, similar to an approach described in [13],
was adopted to couple CPN ML with a Python 3 socket server. This enabled efficient prototyping of
routing algorithms and metric collection. A known limitation of CPN IDE is its inability to report
compilation errors originating from helper functions defined outside action block. Such functions
were temporarily moved within action blocks during debugging, as a workaround.

Python 3 has been employed as the primary language for route computation, simulation
integration, and metric extraction from simulation logs. The pandas library was used extensively to
transform and analyze event data produced by the model, enabling the computation of detailed
performance metrics. Additionally, the Plotly graphing library has been utilized to produce interactive
diagrams illustrating vehicle state timelines and route execution patterns.

4.3 Input tokens loading from files
There is limited documentation about loading token multisets from file in CPN ML. The
following approach was utilized to initialize timed and untimed token multisets from files. There is
an example provided for loading pARTITION tokens from file which are needed to load partitioned
datasets into the WM model. Figure 1 defines a LoadPartitions transition along with CPN ML action
code block and CPN ML declarations.

colset PARTITION = time timed; v
globref csp0 = empty: PARTITION timed ms;

action
let
val arg ent = TextIO.openln (

“partitions.txt”
)

fun read all tokens file =

case TextIO.inputLine file of
NONE => empty PARTITION
| SOME line =>
let
val input stream = TextIO.openString line
val token = PARTITION'timed.input ms input stream
val _ = TextIO.closelIn input_stream
in
token ++ read all tokens file

end;
val data = read_all tokens arg_ent; (* partitions.txt format
val = TextIO.closelIn arg ent; .
i - - 1°0@0
n 1°10800@10800
csp0 := data;

0 vy

end;

Fig 1. An approach to load PARTITION multiset from file

138 Information, Computing and Intelligent Systems N© 6, 2025

Action block loads tokens from an external text file and assigns it to the global reference
variable csp0. The input file must contain one token per line. The file is opened for reading, and a
recursive function read_all_tokens processes each line by converting it into a timed PARTITION
token using PARTITION' timed.input ms (for untimed multisets PARTITION. input ms should
be used instead). The resulting tokens are combined into a multiset. Once all tokens are read, the input
stream is closed, and the constructed multiset is assigned to csp0. The token multiset is read from
that global variable and tokens are created in Partitions place.

4.4 Input data partitioning

The CPN IDE simulation environment exhibits notable performance degradation when places
contain more than 1,000 tokens, rendering visual and animated simulations impractical. To address
this limitation, a data partitioning strategy was devised and implemented for the input time-series
datasets, namely container_states and route_states, which represent container fill level increase and
dynamic route conditions, respectively. For the container states dataset, the input data is segmented
into multiple files, each corresponding to a fixed time interval (e.g., two-hour intervals, with the first
partition covering the period from 0 to 7200 seconds). Additionally, metadata describing the available
partitions is maintained in a separate file. This metadata is represented as a multiset of timed integer
tokens, where each token denotes the logical identifier of a partition and its timestamp corresponds
to the earliest event time within that partition. The simulation loads data in two stages:

1. All the partition tokens are loaded at the start as described in chapter 4.3.

2. As the simulation progresses, the relevant partition data is dynamically loaded into the model
once the current simulation time reaches the specified time threshold associated with each partition.
The sub-net illustrated in Figure 2 implements the described partitioning mechanism for the container
states dataset, utilizing three places and two transitions.

colset PARTITION = time timed;

colset CLIENT CAPACITY = intinf;

colset CLIENT_STATE = record id:STRING * cap:CLIENT CAPACITY timed declare input_ms;
globref csp0 = empty: PARTITION timed ms;

globref c0 = empty: CLIENT STATE timed ms;

var client state partition: PARTITION;

PARTITION

client state_partition

_— (1c0) @
fout] CLIENT STATE

Fig 2. Container states partitioned loading

The Init place contains a single token that enables the LoadPartitions transition to fire once,
loading parRTITION multiset to global variable csp0 and placing that token multiset into the
Partitions place. The formal definition of partition is

PARTITION = {(p,t)|p € N, t € T}, (1)

where, p is the partition number, t is the time of the first token in the partition. As the simulation
progresses and the model time reaches the time associated with a given PARTTITTON token, the token
becomes enabled, binds to the variable client state partition, and triggers the Load
transition. This transition loads the corresponding partition data as multiset stored in global variable
c0 and outputs it to the ClientState place, thereby making the data available for subsequent simulation
steps.

Similar approach was utilized for loading route states dataset.

Waste Management Model with Timed Colored Petri Nets 139

5. Results of the study
5.1 WM model architecture and formal definition

The proposed model constitutes a formalized representation of the WM system and is capable
of assessing the efficiency of the scheduling algorithm under various conditions, simulating edge
cases, and accommodating overload scenarios. The real-world characterization of WM presented in
literature review section is intricate and encompasses a multitude of variables; therefore, the problem
is streamlined by positing the following assumptions:

1. All vehicles are homogeneous, each possessing a defined trunk volume capacity.

2. The quantification of waste is articulated in terms of its volume capacity.

3. All containers are homogeneous, with established thresholds for full capacity (exceeding
80% load) and overflow capacity (at or above 100% load). In instances of container overflow, waste
is deposited externally, resulting in environmental pollution. The collection vehicle is capable of
servicing both overflowed and non-overflowed containers, though the volume handled is constrained
by trunk capacity; thus, in cases of significant overload, there may be circumstances wherein only a
portion of the container is serviced.

4. New vehicles and containers may be integrated into the system at any point; however, such
additions are only recognized from the subsequent model period.

5. There exists a service compatibility among all combinations of container and vehicle pairs.

6. The model operates on a periodic basis, with the designated period being 604800 seconds
(equivalent to one week). The smallest discrete unit of time is defined as one second.

7. Route is the itinerary for an individual vehicle throughout a singular model period. A vehicle
can execute at most one route within a period.

8. Trip is the journey from depot to depot for the same vehicle within a Route. A vehicle begins
at the depot, visits containers, may unload several times if needed, and returns to the depot with an
empty trunk to begin another trip if required. Route may contain multiple trips.

9. A vehicle may collect the same container multiple times within a single model period.

10. All vehicles commence operations from the same depot and are required to unload their
trunks prior to returning to the depot, thereby ensuring readiness for subsequent routes.

11. Upon reaching full trunk capacity, a vehicle must proceed to unload before continuing to
the next designated location.

The model's assumptions facilitate a realistic definition of the WM system, enabling effective
simulation and evaluation of various operational scenarios.

Model entity types are formally defined as:

V = string is vehicle ID,

C = string is container ID,

T = N is a model time domain,

W = N is waste volume, measured in dm?,

L = {'depot’,"unload'} U C is location ID,

D = N is distance driven by a vehicle, measured in meters.

The model architecture components are depicted in Figure 3. A comprehensive description of
each of the individual model components, presented in a logical sequence that mirrors the order of
events that take place throughout the usage of this model.

The Model inputs consist of a series of files that contain timed multisets. In particular, time
series container 1D tokens are loaded from clients.txt, and specify containers as they appear in the
system, formally defined as

Cp ={(c,t)|[ceC,teT} (2)

Time series vehicle ID tokens are loaded from vehicles.txt, define vehicles as they appear in the
system, formally defined as

Vip ={(v,t)lveV,t eT}. 3)

140 Information, Computing and Intelligent Systems N© 6, 2025

CPN IDE Python socket
server

CPN Model

Python analytics

scripts Model VRP algorithm

parameters

Vehicle Routes

Events Model inputs VRP algorithm inputs /
Fig 3. Model architecture components

Additionally, client_states partitions.txt and route_states_partitions.txt declare partitions (1)
for container states and route states datasets correspondingly. Each partition’s container states
dataset is loaded from client_states {i}.txt, that contains container volume incremental updates from
the current partition’s start time until the next partition’s start time. Container states dataset is
defined as

C_STATE = {(c,w,t)|[ce C,w e W,t € T)}, 4)

where, w is the amount of waste added to container ¢ at time t.

Each partition's route states dataset is loaded from route_states_{i}.csv, which contains route
states replacements from the current partition’s start time until the next partition’s start time. Route
states dataset is defined as

R_STATE = {(sloc, eloc, et,ed, t)|sloc € L,eloc € L,et € T,ed € D,t € T}, (5)

where, sloc, eloc are start and end locations, et, ed are estimated time and distance travelled, t is a
time of the route record availability.

The CPN model is hierarchical and consists of the following sub-nets:

1. Sub-nets init_clients, init_vehicles, init_client_states, init_route_states load corresponding
tokens from files which are formally defined by (2-5). Sub-net init_clients is presented in Figure 2
and init_vehicles is implemented in the same way, utilizing data partitioning. Sub-nets
init_client_states and init_route_states are implemented similarly but without data partitioning.

2. Sub-net scheduler emits a token when period starts to open a latch to train vehicle routes,
also it emits another token to a different place when period ends to store collected events as files.

3. Sub-net vrp_algorithm is depicted in and implements integration with Python socket server.

4. Sub-net route_execution is depicted in Figure 4 and implements vehicle route execution
mechanics.

5. Sub-net main glues all above submodels into a single TCPN model.

The Model parameters consist of: vehicle_cap_max, which represents the maximum allowable
value of the vehicle's capacity measured in dms3, and client_cap_full, which signifies the threshold
value of the fill also measured in dm3; in real-world systems, this particular value typically hovers
around 80% of the total volume of the container. Additionally, client_cap_overflow is defined as the
maximum volume that the container can hold, and if this threshold is surpassed, individuals may place

Waste Management Model with Timed Colored Petri Nets 141

waste outside the container, thereby contributing to environmental pollution. It is also possible to
change service and unload time delays within the model itself.

The Python socket server listens for incoming requests from vrp_algorithm sub-net to plan
vehicle routes. The communication is done utilizing the library proposed in [13]. For each algorithm
invocation new socket connection is established. The inputs are written to files and parameters are
sent via the socket connection. The following transition blocks until the resulting vehicle routes file
name is received via established connection. Finally, the connection is closed and
VEHICLE_ROUTES token is obtainet.

The VRP algorithm inputs are recorded in files, which encompass a set of containers, a set of
vehicles that are available for route scheduling and the map data which represents route time and
distance information at different time periods. The rest of parameters that are captured include the
current time, the start scheduling time, the end scheduling time, vehicle_cap_max, client_cap_full,
client_cap_overflow, and the iteration number, all of which are transmitted as part of the socket
command.

The VRP algorithm is declared as a Python function that has formal definition as

weENw, eW,w,eW,w,eW,t; €T, t, €T,t€T,C, SC,V, EV) — RS, (6)

where, p is model iteration period index (e.g., number of the week for weekly scheduling), w,, is
vehicle_cap_max, wy is client_cap_full, w, is client_cap_overflow, t, is scheduling window start, ¢,
is the scheduling window end, ¢ is routes creation invocation time, C; is set of available container IDs
at time t, V; is set of available vehicle IDs at time t. The constraints w, = wy, t, = t, hold.

The result RS is a set of route schedules for the available vehicles, defined as a set of tuples

RS ={(v,ls,t)|lveV,ls € LS, t € N}, (7

where, each route schedule contains vehicle ID v, list of scheduled locations Is and route start time
ts. Location schedule LS is represented as an ordered list of tuples consisting of location ID lid and
earliest time the vehicle can leave the location leaveat

LS = [(lid, leaveat)|lid € L,leaveat € N], t; < leaveat < t,. (8)

The Vehicle Routes created with Python MTCVRPTW algorithm are written to file as a single
VEHICLE ROUTES token and filename is send to CPN model via socket connection. The token is
subsequently read by the CPN model for simulation. The VEHICLE ROUTES is a list of
VEHICLE ROUTE tokens that are formally defined by (7).

The sub-net route_execution is presented in Figure 4.

Arc inscriptions are bind operational variables. Color vErICcLE 1D is formally defined by (3).
Color cLIENT STATES isalistof cLTENT STATE which is defined by (4). Color ROUTES is defined
by (5). Color MoDEL META represents list of vehicles involved in current route schedule and period
number.

Vehicle routes execution is implemented as FSM, that begins when first token in
PreparedRoute place becomes available and finishes with token availability in FinishedRoutes place.
Places Driving, Unloading, Serving, Depot, Waiting represent vehicle states. Transitions Drive,
Serve, Park, Unload, WaitAtDepot, WaitAtUnload, WaitAtDepot represent vehicle state changes.
Places ClientStates and ClientStateUpdates represent list of current container fill levels and requests
to reduce container fill level after serve operation correspondingly. Purple places and transitions
capture execution events into global variables.

Vehicle route execution starts with a transition StartRoute which consumes corresponding
token from FreeVehicle. The token is moved to Driving place to represent the vehicle which is driving
to depot to begin its route. After that, transition Park is activated and token is moved to Depot place.
WaitAtDepot will not delay the vehicle at the first time and the token becomes immediately available
in Waiting place. The vehicle is located at sloc at this point and is ready to drive to the next location
eloc. The Drive transition picks up route information state (5) for sloc, eloc pair, such as drive time
and distance, and sends updated token to Driving place. The new token has updated current location

142 Information, Computing and Intelligent Systems N© 6, 2025

sloc to eloc value, increased vehicle drive distance and incremented time to a point when vehicle is
available at sloc. The token can be moved to one of Unloading, Depot, Serving places from the Drive
place depending on the sloc type. The transitions WaitAtDepot, WaitAtUnload, WaitAtDepot may
delay tokens if the corresponding vehicle arrives earlier than the expected leaveat timestamp, and in
such cases, wait time is measured as the difference between expected and actual arrival. The Serve
transition reduces container load and increases vehicle trunk load, it can also insert unload as next
location before the actual scheduled location in case the vehicle trunk becomes full. When vehicle
has visited all its assigned locations its state is moved to FinishedRoute place which contains tokens
representing cumulative vehicle state computed during route execution. The FinishRoute transition
releases vehicle to FreeVehicle place and removes vehicle from the list in ModelMeta place. After all
the vehicles finish their routes the transition RoutesFinished is triggered and FinishedRoutes contains
a token. The expected vehicle route schedule serves as a benchmark for comparing with actual
behavior, allowing for detailed performance analysis of the routing algorithm.

mm_batch'

MODEL_META BATCH

1° (#day mm_batch) @ (time())

VEHICLE_STATE

res_vehicle states

CLIENT_STATES

P_HIGH 3 P_HIGH 3 - served client — CLIENT_ STATE

VEHICLE ROUTE VEHICLE ROUTE VEHICLE_ROUTE Eerved client

VEHICLE ROUTE

Fig 4. Sub-net that executes vehicle routes

The model captures Events during state transitions, which are written to the file system when
the 604800-second period is finished.
Drive segment events:

D=[wll,tst.,d)|veV,Il;eLl, eLt;eT,t, €T, dE D], 9)

where, v is vehicle ID, [, [, are start and end locations, tg, t, are timestamps of departure and arrival,
d is the drive distance.
Unload events:

U=[(dy,t,w)lveV,d,eD,t, €T, w, € W], (10)

where, v is vehicle ID, d,, is total distance travelled before the unload, t,, is finish time of the unload,
w,, is unload volume.

Waste Management Model with Timed Colored Petri Nets 143

Container fill level events:
S = [(c, te, wys, by, b,)|c € C,w, € W,bs = boolean, b, = boolean], (11)

where, c is container ID, ¢, is a timestamp of change, wy is updated container volume at ¢t., by is

container fullness flag, b, is a container overflow flag.
Container service events:

R=[(w,cw,o,rt)|veEV,ceC,w. € W,o = boolean,r = boolean, t; € T], (12)

where, v is vehicle ID, c is container 1D, w, is waste collected volume, o is overflow flag at the time
of service, r is service completion flag, t; is a timestamp of service.
Vehicle drive expected E, and actual E,, events:

E, =1, e.t)|lveEV,Ll, €L,e, =string,t €T], (13)

where, e, is started_drive event type, t is time when vehicle v must leave location [,. The actual
dataset has same structure

E,=[(wlg e t)|lveV,l, €Le, =string, t €T], (14)

where, e, is one of the finished_wait, finished_drive, serve, unload, depot event types, [, is location
of vehicle v at time t.

5.2 WM effectiveness metrics

The model effectiveness metrics are calculated by the Analytics scripts from the event datasets
described by expressions (9 - 14). Direct calculation in TPN requires many aggregation places with
complex logic, which overloads the model, distracting the user from the core logic. This separation
of simulation and analysis enhances the modularity of the system, simplifies the model structure, and
enables greater flexibility in defining and refining metric computations without modifying the core
model. The following metrics are calculated.

Drive metrics are utilized to evaluate vehicle efficiency, the distribution of travel workload, and
overall operational performance, thereby supporting the assessment of routing strategies in WM
simulations. They are calculated based on dataset (9). The recorded route segments are grouped by
vehicle identifier, and detailed metrics are computed on both per-vehicle and global levels. For each
vehicle, the total, mean, median, minimum, maximum, and standard deviation of drive distances and
drive times are calculated. Subsequently, these metrics are aggregated across all vehicles to generate
a comprehensive system-wide summary.

Unload metrics are calculated based on dataset (10). These values are aggregated to compute
the minimum, maximum, average, median, and standard deviation across all events. The total waste
removed from the system is obtained by summing all discharge volumes. Additionally, the number
of unload operations is counted for each vehicle to assess their relative utilization. These metrics
provide a quantitative basis for analyzing routing efficiency, temporal distribution of unloading
actions, and load management across the vehicle fleet.

Overflow metrics are key waste collection performance metrics based on dataset (11). For each
container, it detects periods of overflow, defined as consecutive timestamps where the container
remains overfilled, and computes both the duration and volume of overflow for each such episode.
The volume is estimated as the difference between the last recorded capacity during the overflow and
the capacity at the overflow start. Additionally, total waste generated per container is calculated by
summing capacity values whenever a drop in fill level indicates a collection event. Then overflow
durations and volumes are aggregated to compute descriptive statistics (total, average, median, min,
max, and standard deviation), and the containers with the most and least severe overflow durations
and volumes are identified.

144 Information, Computing and Intelligent Systems N© 6, 2025

Container service metrics are quantitative indicators related to service duration, service volume,
and visit frequency. They are calculated based on dataset (12). The number of times each container
was serviced during the observation period is first aggregated, yielding a per-container service
frequency. Descriptive statistics are then computed for both service time and collected volume,
including total sum, minimum and maximum values, arithmetic mean, median, and standard
deviation. These metrics are used to characterize the temporal distribution and operational workload
of waste collection, enabling the evaluation of consistency, service regularity, and overall system
balance across containers.

Route metrics evaluate the temporal accuracy and efficiency of vehicle operations by comparing
actual and expected schedules, calculated based on datasets (13, 14). Lateness is quantified by
measuring how much later a vehicle completes service at a location compared to its expected
departure time, and only positive delays are aggregated to assess deviations from the planned route.
Earliness is measured as the time spent waiting at a location after service has been completed,
reflecting how much earlier the vehicle arrived relative to its scheduled departure; however, waits at
the depot are excluded since early returns there are permissible. Both lateness and earliness metrics
are expressed through descriptive statistics, including total delay or wait time, average, median,
minimum, maximum, and standard deviation. Additionally, wait times are grouped per service
location to identify spatial patterns in early arrival behavior, providing insight into scheduling
alignment and temporal slack across the service network.

5.3 Model simulation experiment
Model parameters were configured with vehicle_cap_max set to 20000 dm3, client_cap_full
set to 4000 dm3 and client_cap_overflow set to 5000 dm?. There are 2 vehicles in the system
{v;,v,}. and 10 containers {cy, ..., €10}
Google My Maps service was used to create 10 containers, a depot, and an unload location as
presented in Figure 5.

~7 WM locations : 9

T—' Individual styles

9 unload 9
° depot 9)

Qo2 Q9

° c3

9 c4 9

Qs @

9 co 9 £
o c7 %,

Qcs 9

°c9
Q cio

9

Base map

Fig 5. WM system locations

Waste Management Model with Timed Colored Petri Nets 145

The KML file was exported, and locations were extracted to a separate file locations.csv,
containing:

name, lat, lon

unload, 50.3553941,30.5355109
depot,50.4830364,30.4533355
cl1,50.4792403,30.5331494
c2,50.4778194,30.5294658
c3,50.4696738,30.5112153
c4,50.4713126,30.5084258
c5,50.4572033,30.5055653
c6,50.4749274,30.4390745
c7,50.4552136,30.5208752
c8,50.4476171,30.5037949
c9,50.436302,30.5384705
c10,50.4219645,30.5248047.

A tool was developed to compute time-dependent travel distances and durations between
predefined locations using the Google Distance Matrix API. Based on a locations.csv file containing
coordinates for the depot, unload point, and ten containers, batched API queries were issued for all
origin—destination pairs at 3-hour intervals over a seven-day horizon, beginning from the upcoming
Monday. To comply with API constraints, the origin and destination sets were dynamically
partitioned. The resulting data, comprising distance, typical duration, and duration under traffic, were
stored in route_states.csv, with each entry timestamped relative to the scenario start. A total of 12
distinct locations (the depot, unload point, and container locations) were processed, creating 12 x 11
=132 unique origin—destination pairs per query. By sampling travel times at three-hour intervals over
a seven-day planning horizon (24h / 3h = 8 intervals per day x 7 days = 56 time steps), a total of 132
x 56 = 7,392 route records were produced in route_states.csv. Each record corresponds to one origin-
destination pair at a specific timestamp, thereby enabling fine-grained, time-aware routing analyses.
The output was partitioned into 56 files, each containing 132 records.

A script was developed to simulate the temporal evolution of container fill levels for a set of
waste collection containers over a seven-day period, partitioned into 2-hour intervals. Each container
was defined with parameters including an initial capacity and a fixed fill interval (i.e., time required
to accumulate 200 dm?® of waste). Containers were loaded from the locations.csv file, and periodic
records were generated for each 2-hour interval during which a container filled incrementally. For
each update, the container ID, timestamp, and current capacity were recorded. The final output,
written to client_states.csv, consists of a chronologically sorted sequence of capacity updates. In total,
8,400 records were generated, covering 12 locations across 336 time steps (every 2 hours over 7
days). This data serves as a synthetic input stream for time-aware waste collection models. The script
produced 84 time partitions, each representing a 2-hour interval within the simulation horizon.

The embedding of a fully featured VRP algorithm was considered beyond the scope of this
article. However, to demonstrate the tool in operation, a simple multi-trip route planning algorithm
was developed that deterministically generates weekly waste collection schedules for a fixed number
of vehicles and containers over a seven-day planning horizon. In the evaluated configuration, the
algorithm was executed for 10 containers and 2 vehicles. Containers were assigned to vehicles using
a round-robin strategy, with each vehicle consistently responsible for servicing a distinct subset of 5
containers throughout the week. Each vehicle was scheduled to perform exactly two trips per week,
beginning at 01:00 on predetermined days. Specifically, vehicle v; was scheduled to operate on days
0 and 3 (corresponding to Monday and Thursday), while vehicle v, was assigned to days 1 and 4
(Tuesday and Friday), ensuring an even distribution of workload and temporal coverage. Each trip
was designed to begin at the depot, include sequential visits to all assigned containers with fixed
service durations (1 hour per container) and inter-container travel times (30 minutes), and conclude
with a 2-hour pre-unload window followed by arrival at the unload location. Each vehicle returned to
the depot after completing each trip, aligning accurately with downstream simulations.

146 Information, Computing and Intelligent Systems N2 6, 2025

The unload operation delay was specified as 1800 seconds (30 minutes), and the serve operation
was defined as 300 seconds (5 minutes). The model simulation for a one-week period produced a
route diagram presented in Figure 5, in which expected route location rules were visualized using the
earliest-leave-at principle. For each planned route segment (red bar), an accompanying bar was shown
to represent the actual route execution.

n —
o ||||‘I_|‘|I‘I|

v2_expected

Vehicle

v2_actual

Mon Tue Wed Thu Fri
Day of Week

Fig 5. Route execution diagram, planned vs actual

Vehicle State
B driving

serve

vl_expected waiting

depot

|
u
B unload
u
|

& [+ 1Y G o &,

- |-|I.II-I
% a:G% B G GO0 < %, %, GG CCp %, %, G
% k % % % %

¥ % %,
% a9, 0
‘4

R
<)
.@b

expected_driving

Q
)
&

Vehicle

Day of Week
Fig 6. Route execution diagram section, planned vs actual
The Drive metrics are represented in Table 2-4.

Table 2. Global Drive Metrics Across All VVehicles

Metric Total Mean Median Min Max StdDev

Drive Distance (m) 341,959 11,398.63 8,214 1,657 | 24,029 | 7,802.89

Drive Time (S) 30,146 1,004.87 878.5 225 1,851 503.20

The vehicle v, traveled farther (183,311 m) and longer (15,946) than v; (158,648 m and
14,200 s), indicating a higher workload or longer routes. Vehicle v, had greater variability in segment
lengths and times. Overall, the system logged 341,959 m and 30,146 s of driving, with average

Waste Management Model with Timed Colored Petri Nets 147

segments of 11,399 m and 1,005 s. High standard deviations and extreme values (up to 24,029 m and
1,851 s) highlight uneven routing and dispersed service points, emphasizing the importance of route
optimization to balance workloads and reduce inefficiencies.

Table 3. Per-Vehicle Drive Distance Metrics

Vehicle | Total (m) Mean (m) Median (m) | Min(m) | Max(m) | StdDev (m)

121 158,648 10,576.53 6,796 1,657 24,029 8,959.58

v, 183,311 12,220.73 10,167 4,649 24,029 6,663.09

Table 4. Per-Vehicle Drive Time Metrics

Vehicle Total (s) Mean (s) Median (s) | Min(s) | Max(s) | StdDev (s)
2 14,200 946.67 806 225 1,851 591.88
v, 15,946 1,063.07 885 402 1,816 408.58

The unload metrics are provided in Table 5. The vehicles v, and v, unloaded 3 times each. The
total recorded unload capacity was 82,600 dm3.

There is variation in distances (39,058 to 159,282 m) and durations (17,534 to 364,711 s). The
average capacity discharged per unload was 13,767 dm3, indicating efficient consolidation during
trips. However, the large standard deviations across all unload parameters reveal inconsistency in
vehicle routing and container targeting strategies.

The overflow metrics are provided in Table 6.

Table 5. Unload Metrics

Metric Min Max Mean Median Std Dev
Distance Traveled (m) 39,058 159,282 98,576.5 104,441 47,416.39
Unload Time (5) 17,534 364,711 232,457.33 275,224.5 | 141,356.43

Capacity (dm3) 600 20,000 13,766.67 14,700 7,130.12

Table 6. Overflow metrics

Metric Total Max Min | Median | Average | Std Dev | Max Min

Overflow |, 15 384 | 208,800 | 57,600 | 86,369.5 | 102,619.2 | 40.432.68 | 208:800| 57,600

ooy (o)) | ()

Overflow

Volume | 56200 | 5800 | 1,600 | 2300 | 2810 | 114336 | o0 | 1000
(dm3) (c7) (1)

A total overflow delay of 2,052,384 seconds was recorded, with an average delay of
approximately 102,619 seconds per overflow incident. The most affected container, c,, experienced
the maximum overflow duration of 208,800 seconds, while ¢, had the lowest at 57,600 seconds.
Similarly, the corresponding overflow volume ranged from 1,600 dm? to 5,800 dm3, with an average

148 Information, Computing and Intelligent Systems N© 6, 2025

of 2,810 dm?3. These findings suggest that certain containers, such as c, are particularly vulnerable
to delayed service, due to route scheduling inefficiencies.
The container service metrics are provided in Table 7. All the containers were serviced twice.

Table 7. Container Service Time & VVolume metrics

Metric Total Min Max Mean Median Std Dev
Served Time (s) 3,638,476 3,825 361,459 | 181,923.8 | 181,154.5 | 140,937.7

Served Volume (dmsd) 82,600 0 7,400 4,130 4,100 3,052.02

A total of 82,600 dm? of waste was collected, with an average of 4,130 dm? per container and a
high standard deviation of 3,052 dm?, indicating uneven fill levels at the time of service. The mean
service duration of 181,923 s highlights the need to optimize collection timing to reduce overflow
and idle waiting.

The route metrics are presented in Table 8-9.

Table 8. Vehicle Lateness and Earliness

Metric Total Count Avg Median Min Max Std Dev
Lateness 9,136 4 2,284.0 2,361.5 1,521 2,892 618.29
Earliness 23,064 18 1,281.33 1,078 915 2,438 415.80

For locations with a single recorded wait, all statistical measures coincide. The observed wait
times were 1398 seconds at c,, 1357 seconds at c,, 1093 seconds at cg, and 918 seconds at c,,. For
other locations a vehicle has waited twice and the metrics are present in Table 9.

Table 9. Per-Location Wait Time Statistics (seconds)

Location cy c3 Cs cy Cg Co unload
Avg 1056 985 1574 1436 976 920 2202
Median 1056 985 1574 1436 976 920 2202
Min 1049 966 1573 1427 958 915 1966
Max 1063 1004 1575 1445 994 925 2438

Std Dev 9.90 26.87 1.41 12.73 25.46 7.07 333.75

A total 0f 9,136 s of service lateness and 23,064 s of earliness were recorded, with fewer late
events (4) but longer average delays (2,284 s), compared to shorter, more frequent early waits (1,281 s
across 18 cases). These timing mismatches highlight the need for better synchronization between
demand and route execution, especially for high-frequency containers. Container wait times ranged
from 918 s (cqp) to 1,574 s (cg), With ¢, c;, and c, experiencing higher delays, while ¢4 and ¢, were
serviced more efficiently. The unload site averaged 2,202s of waiting, indicating possible
bottlenecks, and high standard deviations at locations like cg and c; point to inconsistent
responsiveness due to route variability.

Waste Management Model with Timed Colored Petri Nets 149

6. Discussion of the results

Figure 6 presents a segment of the weekly schedule for vehicle v,, specifically illustrating the
execution of its second trip. This visualization juxtaposes the actual state timeline (bottom row) and
the expected drive segments (top row), demonstrating the CPN IDE model’s temporal accuracy and
responsiveness to dynamic conditions. Notably, an unplanned unload operation occurred after
servicing container c-, triggered by vehicle capacity exhaustion. Upon returning from this unload
operation, the vehicle proceeded directly to containers c, and cs without intermediate wait times. This
behavior correctly reflects a schedule violation in the form of lateness - the vehicle was behind
schedule and thus bypassed any idle period. Following these service completions, the vehicle initiated
another unload, after which it returned to the depot. Unlike earlier segments, a waiting period is
observed at the depot. This indicates that the vehicle arrived earlier than its planned departure for the
next trip segment, and as expected by the model’s earliest-leave-at principle, the vehicle correctly
waited until the designated time window. This scenario validates the underlying TPN model’s
correctness: the simulation adheres to a time-guarded execution policy where vehicles depart only
when permitted and adapt to runtime events (e.g., capacity overflows). The absence of premature
departures and adaptive recovery from overflows illustrates the model’s ability to enforce both
temporal constraints and route reactivity, critical for smart waste collection systems where timing
precision and resource limitations are operationally interdependent.

The experimental results provide a comprehensive insight into the performance of the waste
collection system via metrics. Collectively, the results demonstrate that although service counts were
evenly distributed, variations in overflow frequency, waste generation, and service responsiveness
indicate that static scheduling is suboptimal. Instead, adaptive routing strategies, incorporating
container fill predictions and route-time balancing, are essential to enhance operational performance
and reduce service delays and overflows.

Several areas for future model improvement have been identified. These include the
incorporation of smart container sensors and real-time handling of dynamic requests. Additionally,
the introduction of stochastic events, such as vehicle breakdowns, could further enhance the model's
robustness and realism.

Conclusion

The CPN model for the WM system was developed in this study, utilizing the CPN IDE
simulation environment. For the flexibility and convenience, the model has been integrated with the
Python socket server. The interface for MTCVRPTW algorithm has been designed and incorporated
into the Python socket server. The model produces simulated events of different types into files. A
key advantage of the developed model is its flexibility to incorporate custom user algorithms and
adapt to diverse environmental setups.

The WM effectiveness metrics for container overflow, container service, vehicle unload
effectiveness, vehicle route optimality, vehicle route schedule discrepancy were formalized and their
calculation implemented with set of Python analytics scripts.

To demonstrate the model in action the experiment was conducted. The WM system used for
analysis consisted of 10 containers, depot and unload place locations in Kyiv city and 2 vehicles. A
time-dependent routing dataset was generated using the Google Distance Matrix API. A total of 7,392
timestamped records were produced, capturing travel distances and durations between all location
pairs across varying traffic conditions. A synthetic container fill-level dataset was created, consisting
of 8,400 time-stamped records simulating the progressive accumulation of waste in containers over
seven days. These inputs were used to drive the simulation under realistic conditions. A deterministic
MTCVRPTW algorithm was employed, assigning containers to vehicles using a round-robin strategy.
Each vehicle was scheduled for two fixed weekly trips, following predefined routes with constant
service and travel times. This simplified approach enabled consistent and controlled evaluation within
the simulation framework. The simulation was successfully executed, producing both planned and
actual route trajectories and enabling analysis of vehicle behavior and system performance.

150 Information, Computing and Intelligent Systems N© 6, 2025

The results demonstrate the model's capability to simulate schedules that are both temporally
coherent and correct, as evidenced by the metrics obtained during simulations. Although advanced
routing logic was not embedded in this iteration, the model was structured to support future
integration. Overall, a flexible, extensible simulation environment was established to evaluate and
improve waste collection strategies under realistic operational constraints.

References

[1] The Kyiv municipal WM company “Kyivcomunservice,” Accessed: Aug. 8, 2025. [Online].
Available: https://kks.kyiv.ua/en/.

[2] C. Simon and S. Haag, “Pairing state automata and Petri nets — Simulation of processes in
logistics,” in Proc. 38th ECMS Int. Conf. on Modelling and Simulation, Jun. 2024.
https://doi.org/10.7148/2024-0474.

[3] J. I. Latorre-Biel, D. Ferone, A. A. Juan, and J. Faulin, “Combining simheuristics with Petri nets
for solving the stochastic vehicle routing problem with correlated demands,” Expert Systems with
Applications, vol. 168, p. 114240, Jan. 2021. https://doi.org/10.1016/j.eswa.2020.114240.

[4] L. Zhang and J. Li, “Logistics Distribution Process Design Based on Stochastic Petri Nets and
Big Data Algorithms,” in Proc. 2022 IEEE 2nd International Conference on Computer Systems
(ICCS), Qingdao, China, 2022, pp. 55-59. https://doi.org/10.1109/1CCS56273.2022.9987800.

[5] K. B. Priya and R. Paramasivam, “The Combination of Petri Nets and Queueing Theory,”
International Journal of Engineering and Advanced Technology (IJEAT), vol. 9, no. 1S5,
pp. 293-294, Dec. 2019. https://doi.org/10.35940/ijeat.A1065.1291S519.

[6] G. Cavone, M. Dotoli and C. Seatzu, “A Survey on Petri Net Models for Freight Logistics and
Transportation Systems,” in IEEE Transactions on Intelligent Transportation Systems, vol. 19, no.
6, pp. 1795-1813, June 2018, https://doi.org/10.1109/TITS.2017.2737788.

[7] D. Du, T. Liu, and C. Guo, “Analysis of Container Terminal Handling System Based on Petri Net
and ExtendSim,” PROMTT, wvol. 35 no. 1, pp. 87-105 Feb. 2023.
https://doi.org/10.7307/ptt.v35i1.4196.

[8] T. Kossowski, S. Samolej, and R. Davidrajuh, “Simulation in the GPenSIM Environment of the
Movement of Vehicles in the City Based on Their License Plate Numbers,” Electronics, vol. 13,
no. 4, p. 683, 2024. https://doi.org/10.3390/electronics13040683.

[9] J. Belién, L. De Boeck, and J. Van Ackere, “Municipal solid waste collection and management
problems: A literature review,” Transportation Science, vol. 48, no. 1, pp. 78-102, 2012,
https://doi.org/10.1287/trsc.1120.0448.

[10] T. Benarbia, A. M. Darcherif, and D. J. Sun, “Modelling and performance analysis of smart
waste collection system: a Petri nets and discrete event simulation approach,” International
Journal of Decision Support Systems, 2019 Vol4 No.l, pp. 18-40.
https://doi.org/10.1504/1JDSS.2019.103668.

[11] A. Ouhbi, H. Berrada, H. Boukachour, A. Farchi and H. Hachimi, “Multi-Trip Vehicle Routing
Problem with Time Windows and Resource Synchronization on Heterogeneous Facilities,”
Systems, vol. 11, no. 8, p. 412, 2023. [Online]. Available: https://www.mdpi.com/2079-
8954/11/8/412.

[12] D. A. Zaitsev, T. R. Shmeleva, and D. E. Probert, “Applying Infinite Petri Nets to the
Cybersecurity of Intelligent Networks, Grids and Clouds,” Applied Sciences, vol. 11, no. 24, p.
11870, Dec. 2021, https://doi.org/10.3390/app112411870.

[13] V. Gehlot, P. Rokowski, E. B. Sloane and N. Wickramasinghe, “Taxonomy, Tools, And A
Framework For Combining Simulation Models With Al/ML Models,” 2022 Annual Modeling and
Simulation Conference (ANNSIM), San Diego, CA, USA, 2022, pp. 18-29,
https://doi.org/10.23919/ANNSIM55834.2022.9859494.

Waste Management Model with Timed Colored Petri Nets 151

V]IK 004.94, 628.477

MOJIEJIb CUCTEMMU YIIPABJIIHHA BIAXOAAMMU 3
BUKOPUCTAHHAM YACOBUX KOJBOPOBUX MEPEXI ITETPI

F'puropiin PoxxkoB

HanionansHuii TEXHIYHUN yHiBEpCUTET Y KpaiHu

«KuiBcpkuit monitexHiuHmit iHCTUTYT iMeHi [ropst Cikopcpkoroy, Kuis, Ykpaina
https://orcid.org/0009-0009-5343-8974

IpnHa KnumeHko

HarionansHuii TEXHIYHUAN yHIBEpCHTET Y KpaiHu

«KuiBcpkuit monitexHiuHMHA iHCTHTYT iMeHi [ropst Cikopcbkoro», Kuis, Ykpaina
http://orcid.org/0000-0001-5345-8806

VYnpaBiiHHS BIIXOAAMH € KIIOYOBUM €J1EMEHTOM (DYHKI[IOHYBAHHS CydyaCHUX MICT. Y CTaTTi
MPEACTABICHO HOBY MOJENIb CHCTEMH 300py BIAXOMIB, IO OMHUCYETHCS SK JIHUCKPETHO-TIOJIIHA
cucrema (DES), peanizoBana 3a BUKOPHUCTaHHSIM 4YacoBHX KoJbOpoBUX Mepex Ilerpi (TCPNS) y
MOE€IHAHHI 3 IHTErpoBaHUM cepBepoM Ha Python. Mognens po3poliieHa 3 ypaxyBaHHSM 3MIHU
JMHAMIKH 3aIIOBHEHHS] KOHTEHHEpPIB Ta 3MIHHUX MapUIpyTiB, IO T03BOJILE AOCATTH BiINOBIAHOCTI
peaIbHUM MICBKUM YMOBaM.

KirouoBum enemeHTOM po3pobieHoi Mojieni € IHTepdelic anropuTMy MjaaHyBaHHS MaplIpyTiB
TPAHCIIOPTHHUX 3ac00iB 3 OOMEKEHHSIMH Ha BAaHTAKOMICTKICTh, 3 KUTbKOMA MOI3AKaMU Ta YaCOBUMHU
BikHamu (MTCVRPTW), mo mo3BoJisse TpaHCIOPTHHM 3aco0aM Oaratopa3oBO OOCIYTOBYBaTH
KOHTEHHEpH 3a TUTAHOBHM TMepioj, MOTPUMYIOUHMCh OOMEXeHb 3a oOcsirom i1 dacoM. Moaenb
MATPUMY€E HaAJAIITYBaHHS TAaKWUX IapaMeTpiB, K 3aTPUMKH B poOOTi, OOCAT 3allOBHEHHS Ta
MEPENOBHEHHS KOHTEHHEpIB, a TaKOXX BaHTAXOMICTKICTh Ky30Ba aBTOMOOUIL. CHUMYIIAIiO
peanizoBano B CPN IDE 3 BHKOpHCTaHHSM 4YacOBUX PSAIIB SK BXIAHHX JaHUX, PO3AUICHHUX Ha
napTullii s ehpekTuBHOT 00poOKu. [H(DOopMarlisi Tpo HaMOBHEHHS KOHTEWHEPIB 1 TOPOKHI YMOBHU
MEepiOUYHO JOBAaHTAXKYETbCA IIiJ] 4Yac MOJICIIOBAHHS B peaJbHOMY 4aci, 0[O0 MiABUILYE
MacIITa0OBaHICTh 1 NPOAYKTUBHICTb. MoJenb TIeHepye JIOTH TOdIA: PyX, PO3BaHTaKEHHS,
MIEPETIOBHEHHS Ta 00CIIyroByBaHHS, AKi 00pooistoThes Python-ckpuntamu asns po3paxyHKy METPHK
€(heKTHUBHOCTI.

Byno Bu3Haue€HO OCHOBHI METPUKUA €()EKTUBHOCTI CHUCTEMH CMITTE300pYy, IO BKIIOYAIOTH
BIJICTaHb Ta Yac MapuIpPyTiB, ePEKTUBHICTh PO3BAHTAKCHHs, OOCAT MEPENOBHEHHS KOHTCHHEPIB,
e(eKTHBHICTh OOCIIYTOBYBAaHHS 1 BIIXUJICHHS 3aIUIaHOBAHUX MApUIPYTIB Bia rpadika.

Jns nemoHctpanii po6oTu Mojeni Oyao MPOBEACHO EKCIEPUMEHT 13 BHKOPUCTAHHSIM
CUHTETUYHUX JaHHX, HAOMIKEHUX 10 peanbHuX yMoB. PosramyBanHs 10 KOHTeHHepiB, TOUYKHU
pO3BaHTaXEHHsI Ta Jieno Oyno BU3HA4YEHO 3a Aonomoror cepricy Google My Maps Ha OCHOBI
KOOpJUHAT peajbHuX 00’ eKTiB y MicTi KuiB. ['enepairis peanicTHUHUX MapIIPYTHHUX BiJICTaHe 1 4acy
BUKOHYBanacsa 3a jgonomororo Google Distance Matrix API. Anroputm MTCVRPTW mnsa 2-x
aBTOMOOUIIB 3aljlaHyBaB IO JiBa BUIi3JM Ha TIDKICHb BIIMOBIAHO JO CTATUYHHX MAapUIPYTiB.
Cumynsnis Mojeni 3reHepyBajia JIOTH HOJIHA, sfKI OyiaM BHMKOPHCTaHI JUIsl MiAPaxyHKy METPUK
e(peKTUBHOCTI. AHaJII3 METPUK IOKa3aB 3HAuUHI OOMEXEHHs CTaTMYHOIO IUIAaHYBaHHsS MapILIpPYTIB 1
MiAKPEeCTUB HEOOXITHICTh BIPOBAKEHHS aIaITUBHUX CTPATErii, 0 BPaXOBYIOTh pealIbHUN CTaH
KOHTeWHepiB 1 Tpadik. 3anpOoNOHOBaHA MOJENb € THYYKHUM IHCTPYMEHTOM JUISl OLIHKH, aHaJi3y 1
MOKpAIIEHHs cTpaTerii 300py BiAXOIB y MICTaX.

KnrouoBi cnoBa: mozentoBaHHs 300py CMITTSI, ONTUMI3allis 300py CMITTS, TUCKPETHI CUCTEMH,
Mmepexi [letpi, 3a1aua MapupyTusanii TpaHCIIOPTHUX 3aCO0IB.

