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Waste management is a key element in the functioning of modern cities. This paper presents a new 

model of a waste collection system, described as a discrete-event system (DES), implemented using 
Timed Colored Petri Nets (TCPNs) in combination with an integrated Python server. The model is 
developed with consideration of container filling dynamics and variable routes, which ensures alignment 
with real urban conditions. 

A key element of the developed model is the interface of a vehicle routing problem with capacity 
constraints, multiple trips, and time windows (MTCVRPTW), which enables vehicles to service 
containers multiple times during a scheduled period while adhering to volume and time restrictions. The 
model supports configuration of parameters such as operational delays, container filling and overflow 
volumes, and vehicle load capacity. The simulation is implemented in CPN IDE using time series as 
input data, partitioned for efficient processing. Information about container filling levels and road 
conditions is periodically updated during real-time simulation, enhancing scalability and performance. 
The model generates event logs—movement, unloading, overflow, and servicing—which are processed 
by Python scripts to calculate performance metrics. 

The main performance metrics of the waste collection system were defined, including route distance 
and time, unloading efficiency, container overflow volume, servicing efficiency, and deviations of 
planned routes from the schedule. 

To demonstrate the operation of the model, an experiment was conducted using synthetic data 
approximating real-world conditions. The locations of 10 containers, unloading points, and depots were 
determined using the Google My Maps service based on coordinates of real objects in Kyiv. Realistic 
route distances and travel times were generated using the Google Distance Matrix API. The 
MTCVRPTW algorithm for two vehicles scheduled two trips per week according to static routes. The 
simulation of the model generated event logs, which were then used to calculate performance metrics. 
The analysis of these metrics revealed significant limitations of static route planning and highlighted the 
need for adaptive strategies that account for the actual state of containers and traffic. 

The proposed model is a flexible tool for evaluating, analyzing, and improving waste collection 
strategies in cities. 
Keywords: waste management, waste management optimization, discrete event systems, Petri nets, 

vehicle routing problem. 

 

1. Introduction 

Waste Management (WM) has become an increasingly critical challenge in modern urban 

environments due to rapid urbanization and population growth. The resulting surge in waste 

generation demands sophisticated planning and execution to maintain public health and 

environmental standards. Key objectives of an effective WM system include timely servicing of waste 

containers to meet predefined service levels, minimizing container overflows to prevent 

environmental pollution, and optimizing vehicle routes to reduce fuel consumption and emissions. 



Waste Management Model with Timed Colored Petri Nets 133 

 

However, modern WM systems are inherently complex and dynamic. Factors such as new 

container service contracts, fluctuating vehicle availability, varying road conditions, and stochastic 

events including vehicle breakdowns and unpredictable changes in container fill levels introduce 

significant planning uncertainty. Additionally, geospatial elements like multiple depots and unload 

stations, as well as heterogeneity in both container and vehicle types (e.g., residential, commercial, 

hazardous waste), further complicate the routing and scheduling process. Some vehicles may support 

multi-type waste collection, while others are restricted to specific categories, and service times can 

vary considerably depending on waste type. 

Manual planning remains the prevailing method in many cities, including Kyiv, requiring 

substantial human resources and frequent route adjustments. Yet, this approach is inefficient and 

prone to suboptimal outcomes. Automating the process through an appropriate formulation of the 

Vehicle Routing Problem (VRP) tailored to the specific requirements of WM offers a scalable and 

adaptive alternative. 

Given that WM systems evolve in response to discrete, event-driven changes, modeling them 

as DES is a natural and effective approach. Colored Petri Net (CPN), combined with Python-based 

simulation, provide a robust framework for capturing dynamic interactions among container states, 

vehicle movements, and network conditions in real-time. 

Considering the aforementioned aspects, a simulation-based prototype model becomes essential 

to validate such automation. This model should enable the evaluation of alternative collection 

strategies by generating objective performance metrics such as total travel distance, service 

frequency, and operational workload under varied conditions. The framework must provide a tool for 

evaluating route optimization techniques that enhance operational efficiency, reduce costs, and 

support sustainable urban WM. 

 

2. Literature review and problem statement 

The Kyiv municipal WM company [1] is a prime example of the city's WM system. The 

company runs a fleet of around 250 vehicles of various types, spread across six depot centers and 10 

unloading facilities, each designed to handle specific waste categories. The waste collection 

infrastructure includes a range of container types and designs. Waste collection is organized on 

weekly route schedules. However, unexpected events like vehicle breakdowns, driver absences, and 

container overflows are currently handled manually by human dispatchers. The company also offers 

an interactive mapping service that shows the geographical distribution of container sets. Each set is 

marked with its location, the number and type of containers, their weekly accumulated load, and the 

associated service schedule. Most containers are serviced on a fixed-day schedule. In contrast, some 

containers operate on a load-based collection principle; these are assumed to be equipped with smart 

container sensors that periodically report their fill levels to the system. 

To choose the most appropriate mathematical tool to model the WM system several 

mathematical models were analyzed, which are presented below. 

Finite State Machines (FSMs) serve as a basic modeling tool for systems with a finite number 

of states and transitions. While FSMs are simple and easy to understand, they lack the expressive 

power to effectively model complex, concurrent systems. In contrast, Petri Nets can explicitly 

represent concurrency and synchronization, making them more suitable for modeling DES in WM. 

However, FSMs can still be effective for modeling simple sequential processes within a Petri Net 

framework [2]. 

Markov Chains (MCs) are probabilistic models used to analyze systems with uncertain 

transitions. They are helpful for modeling stochastic processes, such as demand uncertainty in VRP. 

However, MCs are limited in their capacity to represent concurrency and synchronization, both of 

which are critical in WM systems. Petri Nets, especially stochastic Petri Nets, can model both 

deterministic and stochastic behavior, making them a more comprehensive tool for these applications 

[3] [4]. 

Queueing Models (QMs) analyze systems with waiting lines, such as customers awaiting 

service. They are especially beneficial for assessing performance metrics like waiting times, queue 
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lengths, and service rates. While QMs are effective for analyzing specific aspects of WM systems, 

such as the waiting time for waste collection vehicles, they do not capture the overall system 

dynamics, including routing and scheduling. Petri Nets, in contrast, can integrate queueing theory 

within their modeling framework to provide a more holistic view of the system [5]. 

Process Algebras (PAs) are formal languages designed for modeling and analyzing concurrent 

systems that provide a mathematical framework for specifying and verifying system behavior. 

Although PAs are powerful tools for theoretical analysis, they can be challenging to implement in 

practical modeling scenarios. Petri Nets, with their graphical representation and intuitive semantics, 

often provide a more accessible option for practitioners, leading to a user-friendly approach to 

modeling DES [6]. 

Simulation-based Models (SBMs) are widely utilized for analyzing and optimizing complex 

systems. They allow for the simulation of system behavior across various scenarios, making them 

particularly beneficial for assessing the impact of different routing strategies or WM policies. Petri 

Nets can be combined with simulation tools, such as ExtendSim, to deliver a more detailed and 

accurate analysis of system performance. For example, a study on container terminal handling 

systems integrated Petri Nets with simulation tools to optimize the handling process and enhance 

efficiency [7]. 

Petri Nets are a well-established graphical and mathematical formalism within the broader field 

of DES modeling, particularly effective for describing systems with concurrency, synchronization, 

and resource sharing. Petri Net models provide formal analysis techniques for properties such as 

reachability, liveness, and boundedness. They comprise places (representing states or conditions) and 

transitions (representing events or actions), linked by arcs that define the flow of tokens (representing 

resources or entities) through the system. Several extensions of standard Petri Nets have been 

developed to enhance their modeling capabilities. Timed Petri Nets (TPNs) add transition delays for 

modeling temporal aspects, while Colored Petri Nets (CPNs) assign data types to tokens and support 

functional inscriptions. Their combination, Timed Colored Petri Nets (TCPNs), enables modeling of 

complex real-time systems with concurrency and conflict resolution. In contrast, Hierarchical Petri 

Nets (HPNs) introduce an architectural mechanism for modularity by allowing transitions to be 

refined into sub-nets, thus supporting structured model decomposition. This hierarchical principle can 

also be applied within TCPN. It is common in the literature that the term CPN implicitly refers to 

TCPN, since most practical applications rely on both color and time extensions; therefore, in this 

article the terms CPN and TCPN are used interchangeably. 

In the context of WM, TPNs have been effectively employed to model and analyze various 

system aspects. For instance, Stochastic Petri Nets have been utilized to address uncertainties in 

demand and vehicle routing, while CPNs have been used to model complex logistics networks 

featuring multiple vehicle types and dynamic routing requirements [3] [8]. 

The matrix analysis of the DES modeling tools is presented in Table 1, where “++” denotes 

strong support or native capability, and “+” denotes partial or indirect support. 

The VRP is a critical component of WM optimization, as it directly influences the efficiency 

and effectiveness of collection operations in urban settings. A comprehensive overview of VRPs in 

the context of WM is provided in [9]. The authors have proposed solution methods to VRPs and 

formulated  following constraints, which served as the basis for defining the requirements and 

limitations for the development of the VRP algorithm interface in the present study. 

Capacity Constraints limit the amount of waste that can be collected by a vehicle, ensuring that 

vehicle does not overload during collection. 

Demand Constraints ensure that all customer demands are met, meaning that service level is 

met and all containers are services with enough frequency. 

Labour Constraints impose limits on the workforce available for waste collection. This includes 

restrictions on the number of working hours for employees and the duration of shifts for collection 

crews. Such constraints can affect the overall efficiency of waste collection operations. 

Feasibility Constraints prevent the formulation of infeasible solutions, they ensure that all 

customers are visited in a logical sequence and routes are feasible and practical. An example includes 
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constraints that eliminate subtours, which are routes that visit only a subset of customers, also it must 

be guaranteed that vehicle unloads before returning to the depot. 

Driver Lunch Break Constraints account for mandatory breaks for drivers, which can affect the 

scheduling and timing of waste collection routes. Properly incorporating these breaks into route 

planning is essential to avoid conflicts with time windows. 

 

Table 1. Comparison of DES models 

 

Criterion FSMs MCs QMs PAs SBMs TPNs 

Concurrency modeling    + + ++ 

Stochastic behavior support  ++ + + ++ ++ 

Timing constraints support  + ++  + ++ 

Sequential process modeling ++ + + + + + 

Graphical representation +    + ++ 

Formal verification capability + + + ++  ++ 

Scalability to complex systems  + + + + + 

Integration with simulation engines   +  ++ ++ 

Ease of implementation ++ + +  + + 

Support for routing and scheduling    + + ++ 

 

A Smart WM model using Stochastic Petri Nets is proposed in [10], simulating random waste 

drop-offs and enabling the evaluation of various collection strategies. The model supports 

parameterization to identify optimal collector levels and reduce vehicle visits, based on assumptions 

about average drop-off frequency and travel time. It emphasizes real-time inventory control using 

sensor data but lacks integration of time-series inputs or detailed routing logic. While stochastic 

timing allows to model probabilistic behavior, it restricts the ability to simulate specific temporal 

scenarios. A major limitation is scalability: a system with 100 collectors leads to over 30,000 places 

and 70,000 transitions, creating significant graphical complexity. This hinders formal analysis and 

makes it difficult for users to embed custom algorithms such as ILP-based VRP models, reducing the 

model’s flexibility for tailored applications. 

A practical and effective algorithm for WM route planning, accommodating multiple trips per 

period, service frequency obligations, and varying road conditions, is the Multi-Trip Vehicle Routing 

Problem with Time Windows (MT-VRPTW) presented in [11]. This approach extends the classic 

VRP by allowing vehicles to perform multiple trips within a planning horizon, such as a week, and 

incorporates time windows for servicing containers. The paper demonstrates that adopting a multi-

trip vehicle routing strategy with a one-week planning horizon leads to better performance in logistics 

operations. They proved that weekly scheduling reduces the total travel distance compared to 

traditional daily scheduling. The weekly plan also resulted in a 33.52% decrease in the number of 

vehicles required. 

The study [12] introduces Colored Petri Net Markup Language (CPN ML) and its foundational 

role in modeling systems using Petri Nets. CPN ML is a powerful language that facilitates the 

declaration of color sets, variables, functions, and constants, which are essential for defining the 

attributes of net elements. The chapter explains that Petri Nets are represented as bipartite directed 

graphs, consisting of places (depicted as circles or ovals) and transitions (represented as bars). In this 

context, tokens serve as dynamic objects that move between places as transitions fire, allowing for 

the modeling of complex systems. The chapter emphasizes the importance of color sets in 

distinguishing different types of tokens, which enhances the expressiveness of the models. 
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Additionally, it highlights the integration of CPN ML with CPN Tools, a simulation system developed 

at the University of Aarhus, which supports the creation, simulation, and analysis of Petri Net models 

in various applications, particularly in telecommunications. 

The current literature shows that there are still important gaps in how Petri Net models are used 

to support VRP in WM. While Petri Nets are useful for building dynamic models that simulate waste 

collection and help identify inefficiencies, existing approaches often lack a flexible and practical way 

to design, test, and compare different VRP algorithms in realistic urban settings. Although route 

optimization can reduce travel distance, fuel use, and emissions, it remains difficult to apply Petri Net 

models effectively in real-world waste collection scenarios, especially in cities with complex layouts. 

One major gap is that many models do not include VRP methods that are specific to the challenges 

of waste collection. Another issue is that it's often hard to insert or change routing algorithms in these 

models, making it less convenient to test new strategies. Additionally, there is a lack of well-defined 

and useful performance metrics – such as how often containers overflow, how well vehicles are used, 

or how long services take – which are needed to evaluate and improve WM systems. So, this article 

is devoted to creating a better Petri Net-based model that supports flexible algorithm integration for 

evaluating WM systems, defining objective metrics to measure system performance generated 

through simulation. 

 

3. The aim and objectives of the study 

This study aims to develop an improved Petri Net-based simulation model for urban WM 

systems that supports flexible integration of routing algorithms and enables formal evaluation of 

system performance. The proposed model addresses limitations in existing approaches by 

incorporating real-world constraints such as road congestion, service-level agreements, vehicle 

resource availability, and multi-trip planning. It also enables the simulation of realistic operational 

scenarios and the generation of objective performance metrics. 

The objectives of the study are as follows: 

1. To design and implement a simulation model that supports experimentation with different 

routing algorithms under practical constraints; 

2. To formalize a set of performance metrics for evaluating vehicle routing and overall system 

efficiency; 

3. To perform experimental analysis using the developed model to demonstrate its applicability 

in assessing collection strategies and identifying system bottlenecks. 

 

4. The study materials and methods of modeling the WM problem 

4.1 Petri Net modeling 

In this article the TCPN, which includes TPN functionality, is proposed. Events, such as vehicle 

drive, park, serve, and unload operations; container fill levels change; and route conditions change 

cause concurrency in the WM system. Timed transitions are used to model state changes in the 

concurrent WM system. The time is divided into discrete points with a minimal period of 1 second. 

Places represent system states, and transitions correspond to state changes. A transition is executable 

when all its input places contain tokens available at the current simulation time and, if applicable, a 

guard condition evaluates to true. Transitions may introduce delays on output arcs to simulate non-

instantaneous processes. The simulation is governed by a global, non-decreasing model time 

represented in discrete seconds. When no transitions are immediately enabled, time advances 

discretely to the earliest future point at which a transition becomes enabled. The integration of TPN 

with route optimization algorithm is a natural fit for modeling WM. 

 

4.2 Modeling tools and services 

Google My Maps is an interactive mapping service that enables the manual marking of locations 

on a real-world map. It has been used to annotate the geographic positions of waste containers, depot 

sites, and unloading stations. The service supports exporting maps in the kml format, an XML-based 
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structure that can be parsed using custom Python scripts to extract and process location data for 

simulation inputs. 

The modeling and simulation of the system were performed using CPN IDE, a modernized 

successor to the discontinued CPN Tools. CPN IDE provides a graphical interface for building and 

simulating TPN models. It supports modular design through sub-nets and operates in two modes: an 

editor for model construction and a simulation mode that supports both animated (step-by-step) and 

fast-forward (multi-step) execution. For debugging purposes, breakpoint monitors and fast-forward 

simulations were employed to analyze model behavior in response to specific state transitions. 

While CPN ML, the functional language used within CPN IDE, is suitable for defining TPN 

logic, it lacks expressive support for complex algorithmic tasks such as vehicle routing or data 

analysis. Therefore, an external service integration approach, similar to an approach described in [13], 

was adopted to couple CPN ML with a Python 3 socket server. This enabled efficient prototyping of 

routing algorithms and metric collection. A known limitation of CPN IDE is its inability to report 

compilation errors originating from helper functions defined outside action block. Such functions 

were temporarily moved within action blocks during debugging, as a workaround. 

Python 3 has been employed as the primary language for route computation, simulation 

integration, and metric extraction from simulation logs. The pandas library was used extensively to 

transform and analyze event data produced by the model, enabling the computation of detailed 

performance metrics. Additionally, the Plotly graphing library has been utilized to produce interactive 

diagrams illustrating vehicle state timelines and route execution patterns. 

 

4.3 Input tokens loading from files 

There is limited documentation about loading token multisets from file in CPN ML. The 

following approach was utilized to initialize timed and untimed token multisets from files. There is 

an example provided for loading PARTITION tokens from file which are needed to load partitioned 

datasets into the WM model. Figure 1 defines a LoadPartitions transition along with CPN ML action 

code block and CPN ML declarations. 
 

 
Fig 1. An approach to load PARTITION multiset from file 
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Action block loads tokens from an external text file and assigns it to the global reference 

variable csp0. The input file must contain one token per line. The file is opened for reading, and a 

recursive function read_all_tokens processes each line by converting it into a timed PARTITION 

token using PARTITION'timed.input_ms (for untimed multisets PARTITION.input_ms should 

be used instead). The resulting tokens are combined into a multiset. Once all tokens are read, the input 

stream is closed, and the constructed multiset is assigned to csp0. The token multiset is read from 

that global variable and tokens are created in Partitions place. 

 

4.4 Input data partitioning 

The CPN IDE simulation environment exhibits notable performance degradation when places 

contain more than 1,000 tokens, rendering visual and animated simulations impractical. To address 

this limitation, a data partitioning strategy was devised and implemented for the input time-series 

datasets, namely container_states and route_states, which represent container fill level increase and 

dynamic route conditions, respectively. For the container states dataset, the input data is segmented 

into multiple files, each corresponding to a fixed time interval (e.g., two-hour intervals, with the first 

partition covering the period from 0 to 7200 seconds). Additionally, metadata describing the available 

partitions is maintained in a separate file. This metadata is represented as a multiset of timed integer 

tokens, where each token denotes the logical identifier of a partition and its timestamp corresponds 

to the earliest event time within that partition. The simulation loads data in two stages: 

1. All the partition tokens are loaded at the start as described in chapter 4.3. 

2. As the simulation progresses, the relevant partition data is dynamically loaded into the model 

once the current simulation time reaches the specified time threshold associated with each partition. 

The sub-net illustrated in Figure 2 implements the described partitioning mechanism for the container 

states dataset, utilizing three places and two transitions. 

 

  
Fig 2. Container states partitioned loading 

 

The Init place contains a single token that enables the LoadPartitions transition to fire once, 

loading PARTITION multiset to global variable csp0 and placing that token multiset into the 

Partitions place. The formal definition of partition is 

 𝑃𝐴𝑅𝑇𝐼𝑇𝐼𝑂𝑁 = {(𝑝, 𝑡)|𝑝 ∈ ℕ, 𝑡 ∈ 𝑇}, (1) 

where, 𝑝 is the partition number, 𝑡 is the time of the first token in the partition. As the simulation 

progresses and the model time reaches the time associated with a given PARTITION token, the token 

becomes enabled, binds to the variable client_state_partition, and triggers the Load 

transition. This transition loads the corresponding partition data as multiset stored in global variable 

c0 and outputs it to the ClientState place, thereby making the data available for subsequent simulation 

steps. 

Similar approach was utilized for loading route states dataset. 
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5. Results of the study 

5.1 WM model architecture and formal definition 

The proposed model constitutes a formalized representation of the WM system and is capable 

of assessing the efficiency of the scheduling algorithm under various conditions, simulating edge 

cases, and accommodating overload scenarios. The real-world characterization of WM presented in 

literature review section is intricate and encompasses a multitude of variables; therefore, the problem 

is streamlined by positing the following assumptions: 

1. All vehicles are homogeneous, each possessing a defined trunk volume capacity.  

2. The quantification of waste is articulated in terms of its volume capacity. 

3. All containers are homogeneous, with established thresholds for full capacity (exceeding 

80% load) and overflow capacity (at or above 100% load). In instances of container overflow, waste 

is deposited externally, resulting in environmental pollution. The collection vehicle is capable of 

servicing both overflowed and non-overflowed containers, though the volume handled is constrained 

by trunk capacity; thus, in cases of significant overload, there may be circumstances wherein only a 

portion of the container is serviced.  

4. New vehicles and containers may be integrated into the system at any point; however, such 

additions are only recognized from the subsequent model period.  

5. There exists a service compatibility among all combinations of container and vehicle pairs.  

6. The model operates on a periodic basis, with the designated period being 604800 seconds 

(equivalent to one week). The smallest discrete unit of time is defined as one second. 

7. Route is the itinerary for an individual vehicle throughout a singular model period. A vehicle 

can execute at most one route within a period. 

8. Trip is the journey from depot to depot for the same vehicle within a Route. A vehicle begins 

at the depot, visits containers, may unload several times if needed, and returns to the depot with an 

empty trunk to begin another trip if required. Route may contain multiple trips.  

9. A vehicle may collect the same container multiple times within a single model period. 

10. All vehicles commence operations from the same depot and are required to unload their 

trunks prior to returning to the depot, thereby ensuring readiness for subsequent routes.  

11. Upon reaching full trunk capacity, a vehicle must proceed to unload before continuing to 

the next designated location. 

The model's assumptions facilitate a realistic definition of the WM system, enabling effective 

simulation and evaluation of various operational scenarios. 

Model entity types are formally defined as: 

𝑉 ≡ 𝑠𝑡𝑟𝑖𝑛𝑔 is vehicle ID, 

𝐶 ≡ 𝑠𝑡𝑟𝑖𝑛𝑔 is container ID, 

𝑇 ≡ ℕ is a model time domain, 

𝑊 ≡ ℕ is waste volume, measured in dm³, 

𝐿 ≡ {′𝑑𝑒𝑝𝑜𝑡′, ′𝑢𝑛𝑙𝑜𝑎𝑑′}  ∪  𝐶 is location ID, 

𝐷 ≡ ℕ is distance driven by a vehicle, measured in meters. 

The model architecture components are depicted in Figure 3. A comprehensive description of 

each of the individual model components, presented in a logical sequence that mirrors the order of 

events that take place throughout the usage of this model. 

The Model inputs consist of a series of files that contain timed multisets. In particular, time 

series container ID tokens are loaded from clients.txt, and specify containers as they appear in the 

system, formally defined as 

 𝐶𝐼𝐷 = {(𝑐, 𝑡)|𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇}, (2) 

Time series vehicle ID tokens are loaded from vehicles.txt, define vehicles as they appear in the 

system, formally defined as 

 𝑉𝐼𝐷 = {(𝑣, 𝑡)|𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇} . (3) 
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Fig 3. Model architecture components 

 

Additionally, client_states_partitions.txt and route_states_partitions.txt declare partitions (1) 

for container states and route states datasets correspondingly. Each partition’s container states 

dataset is loaded from client_states_{i}.txt , that contains container volume incremental updates from 

the current partition’s start_time until the next partition’s start_time. Container states dataset is 

defined as 

 𝐶_𝑆𝑇𝐴𝑇𝐸 = {(𝑐, 𝑤, 𝑡)|𝑐 ∈ 𝐶, 𝑤 ∈ 𝑊, 𝑡 ∈ 𝑇)}, (4) 

where, 𝑤 is the amount of waste added to container 𝑐 at time 𝑡. 

Each partition's route states dataset is loaded from route_states_{i}.csv, which contains route 

states replacements from the current partition’s start_time until the next partition’s start_time. Route 

states dataset is defined as 

 𝑅_𝑆𝑇𝐴𝑇𝐸 = {(𝑠𝑙𝑜𝑐, 𝑒𝑙𝑜𝑐, 𝑒𝑡, 𝑒𝑑, 𝑡)|𝑠𝑙𝑜𝑐 ∈ 𝐿, 𝑒𝑙𝑜𝑐 ∈ 𝐿, 𝑒𝑡 ∈ 𝑇, 𝑒𝑑 ∈ 𝐷, 𝑡 ∈ 𝑇}, (5) 

where, 𝑠𝑙𝑜𝑐, 𝑒𝑙𝑜𝑐 are start and end locations, 𝑒𝑡, 𝑒𝑑 are estimated time and distance travelled, 𝑡 is a 

time of the route record availability. 

The CPN model is hierarchical and consists of the following sub-nets: 

1. Sub-nets init_clients, init_vehicles, init_client_states, init_route_states load corresponding 

tokens from files which are formally defined by (2-5). Sub-net init_clients is presented in Figure 2 

and init_vehicles is implemented in the same way, utilizing data partitioning. Sub-nets 

init_client_states and init_route_states are implemented similarly but without data partitioning. 

2. Sub-net scheduler emits a token when period starts to open a latch to train vehicle routes, 

also it emits another token to a different place when period ends to store collected events as files. 

3. Sub-net vrp_algorithm is depicted in and implements integration with Python socket server. 

4. Sub-net route_execution is depicted in Figure 4  and implements vehicle route execution 

mechanics. 

5. Sub-net main glues all above submodels into a single TCPN model. 

The Model parameters consist of: vehicle_cap_max, which represents the maximum allowable 

value of the vehicle's capacity measured in dm³, and client_cap_full, which signifies the threshold 

value of the fill also measured in dm³; in real-world systems, this particular value typically hovers 

around 80% of the total volume of the container. Additionally, client_cap_overflow is defined as the 

maximum volume that the container can hold, and if this threshold is surpassed, individuals may place 
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waste outside the container, thereby contributing to environmental pollution. It is also possible to 

change service and unload time delays within the model itself. 

The Python socket server listens for incoming requests from vrp_algorithm sub-net to plan 

vehicle routes. The communication is done utilizing the library proposed in [13]. For each algorithm 

invocation new socket connection is established. The inputs are written to files and parameters are 

sent via the socket connection. The following transition blocks until the resulting vehicle routes file 

name is received via established connection. Finally, the connection is closed and 

VEHICLE_ROUTES token is obtainet. 

The VRP algorithm inputs are recorded in files, which encompass a set of containers, a set of 

vehicles that are available for route scheduling and the map data which represents route time and 

distance information at different time periods. The rest of parameters that are captured include the 

current time, the start scheduling time, the end scheduling time, vehicle_cap_max, client_cap_full, 

client_cap_overflow, and the iteration number, all of which are transmitted as part of the socket 

command. 

The VRP algorithm is declared as a Python function that has formal definition as 

 (𝑝 ∈ ℕ, 𝑤𝑣 ∈ 𝑊, 𝑤𝑓 ∈ 𝑊, 𝑤𝑜 ∈ 𝑊, 𝑡𝑠 ∈ 𝑇, 𝑡𝑒 ∈ 𝑇, 𝑡 ∈ 𝑇, 𝐶𝑡 ⊆ 𝐶, 𝑉𝑡 ⊆ 𝑉) ⟶ 𝑅𝑆, (6) 

where, 𝑝 is model iteration period index (e.g., number of the week for weekly scheduling), 𝑤𝑣 is 

vehicle_cap_max, 𝑤𝑓  is client_cap_full, 𝑤𝑜 is client_cap_overflow, 𝑡𝑠 is scheduling window start,  𝑡𝑒 

is the scheduling window end, 𝑡 is routes creation invocation time, 𝐶𝑡 is set of available container IDs 

at time 𝑡, 𝑉𝑡 is set of available vehicle IDs at time 𝑡. The constraints 𝑤𝑜 ≥ 𝑤𝑓 , 𝑡𝑒 ≥ 𝑡𝑠 hold. 

The result 𝑅𝑆 is a set of route schedules for the available vehicles, defined as a set of tuples 

 𝑅𝑆 = {(𝑣, 𝑙𝑠, 𝑡)|𝑣 ∈ 𝑉, 𝑙𝑠 ∈ 𝐿𝑆, 𝑡 ∈ ℕ}, (7) 

where, each route schedule contains vehicle ID 𝑣, list of scheduled locations 𝑙𝑠 and route start time 

𝑡𝑠. Location schedule 𝐿𝑆 is represented as an ordered list of tuples consisting of location ID 𝑙𝑖𝑑 and 

earliest time the vehicle can leave the location 𝑙𝑒𝑎𝑣𝑒𝑎𝑡 

 𝐿𝑆 = [(𝑙𝑖𝑑, 𝑙𝑒𝑎𝑣𝑒𝑎𝑡)|𝑙𝑖𝑑 ∈ 𝐿, 𝑙𝑒𝑎𝑣𝑒𝑎𝑡 ∈ ℕ], 𝑡𝑠 < 𝑙𝑒𝑎𝑣𝑒𝑎𝑡 < 𝑡𝑒 . (8) 

The Vehicle Routes created with Python MTCVRPTW algorithm are written to file as a single 

VEHICLE_ROUTES token and filename is send to CPN model via socket connection. The token is 

subsequently read by the CPN model for simulation. The VEHICLE_ROUTES is a list of 

VEHICLE_ROUTE tokens that are formally defined by (7). 

The sub-net route_execution is presented in Figure 4. 

Arc inscriptions are bind operational variables. Color VEHICLE_ID is formally defined by (3). 

Color CLIENT_STATES is a list of CLIENT_STATE which is defined by (4). Color ROUTES is defined 

by (5). Color MODEL_META represents list of vehicles involved in current route schedule and period 

number. 

Vehicle routes execution is implemented as FSM, that begins when first token in 

PreparedRoute place becomes available and finishes with token availability in FinishedRoutes place. 

Places Driving, Unloading, Serving, Depot, Waiting represent vehicle states. Transitions Drive, 

Serve, Park, Unload, WaitAtDepot, WaitAtUnload, WaitAtDepot represent vehicle state changes. 

Places ClientStates and ClientStateUpdates represent list of current container fill levels and requests 

to reduce container fill level after serve operation correspondingly. Purple places and transitions 

capture execution events into global variables. 

Vehicle route execution starts with a transition StartRoute which consumes corresponding 

token from FreeVehicle. The token is moved to Driving place to represent the vehicle which is driving 

to depot to begin its route. After that, transition Park is activated and token is moved to Depot place. 

WaitAtDepot will not delay the vehicle at the first time and the token becomes immediately available 

in Waiting place. The vehicle is located at 𝑠𝑙𝑜𝑐 at this point and is ready to drive to the next location 

𝑒𝑙𝑜𝑐. The Drive transition picks up route information state (5) for 𝑠𝑙𝑜𝑐, 𝑒𝑙𝑜𝑐 pair, such as drive time 

and distance, and sends updated token to Driving place. The new token has updated current location 
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𝑠𝑙𝑜𝑐 to 𝑒𝑙𝑜𝑐 value, increased vehicle drive distance and incremented time to a point when vehicle is 

available at 𝑠𝑙𝑜𝑐. The token can be moved to one of Unloading, Depot, Serving places from the Drive 

place depending on the 𝑠𝑙𝑜𝑐 type. The transitions WaitAtDepot, WaitAtUnload, WaitAtDepot may 

delay tokens if the corresponding vehicle arrives earlier than the expected 𝑙𝑒𝑎𝑣𝑒𝑎𝑡 timestamp, and in 

such cases, wait time is measured as the difference between expected and actual arrival. The Serve 

transition reduces container load and increases vehicle trunk load, it can also insert unload as next 

location before the actual scheduled location in case the vehicle trunk becomes full. When vehicle 

has visited all its assigned locations its state is moved to FinishedRoute place which contains tokens 

representing cumulative vehicle state computed during route execution. The FinishRoute transition 

releases vehicle to FreeVehicle place and removes vehicle from the list in ModelMeta place. After all 

the vehicles finish their routes the transition RoutesFinished is triggered and FinishedRoutes contains 

a token. The expected vehicle route schedule serves as a benchmark for comparing with actual 

behavior, allowing for detailed performance analysis of the routing algorithm. 

 

 
 

Fig 4. Sub-net that executes vehicle routes 

 

The model captures Events during state transitions, which are written to the file system when 

the 604800-second period is finished. 

Drive segment events: 

 𝐷 = [(𝑣, 𝑙𝑠, 𝑙𝑒, 𝑡𝑠, 𝑡𝑒 , 𝑑)|𝑣 ∈ 𝑉, 𝑙𝑠 ∈ 𝐿, 𝑙𝑒 ∈ 𝐿, 𝑡𝑠 ∈ 𝑇, 𝑡𝑒 ∈ 𝑇, 𝑑 ∈ 𝐷], (9) 

where, 𝑣 is vehicle ID, 𝑙𝑠, 𝑙𝑒 are start and end locations, 𝑡𝑠, 𝑡𝑒  are timestamps of departure and arrival, 

𝑑 is the drive distance. 

Unload events: 

 𝑈 = [(𝑣, 𝑑𝑢 , 𝑡𝑢 , 𝑤𝑢)|𝑣 ∈ 𝑉, 𝑑𝑢 ∈ 𝐷, 𝑡𝑢 ∈ 𝑇, 𝑤𝑢 ∈ 𝑊], (10) 

where, 𝑣 is vehicle ID, 𝑑𝑢 is total distance travelled before the unload, 𝑡𝑢 is finish time of the unload, 

𝑤𝑢 is unload volume. 
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Container fill level events: 

 𝑆 = [(𝑐, 𝑡𝑐 , 𝑤𝑓, 𝑏𝑓 , 𝑏𝑜)|𝑐 ∈ 𝐶, 𝑤𝑐 ∈ 𝑊, 𝑏𝑓 ≡ 𝑏𝑜𝑜𝑙𝑒𝑎𝑛, 𝑏𝑜 ≡ 𝑏𝑜𝑜𝑙𝑒𝑎𝑛], (11) 

where, 𝑐 is container ID, 𝑡𝑐 is a timestamp of change, 𝑤𝑓  is updated container volume at 𝑡𝑐, 𝑏𝑓  is 

container fullness flag, 𝑏𝑜 is a container overflow flag. 

Container service events: 

 𝑅 = [(𝑣, 𝑐, 𝑤𝑐 , 𝑜, 𝑟, 𝑡𝑠)|𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶, 𝑤𝑐 ∈ 𝑊, 𝑜 ≡ 𝑏𝑜𝑜𝑙𝑒𝑎𝑛, 𝑟 ≡ 𝑏𝑜𝑜𝑙𝑒𝑎𝑛, 𝑡𝑠 ∈ 𝑇], (12) 

where, 𝑣 is vehicle ID, 𝑐 is container ID, 𝑤𝑐 is waste collected volume, 𝑜 is overflow flag at the time 

of service, 𝑟 is service completion flag, 𝑡𝑠 is a timestamp of service. 

Vehicle drive expected 𝐸𝑒  and actual 𝐸𝑎  events: 

 𝐸𝑒 = [(𝑣, 𝑙𝑒, 𝑒𝑒, 𝑡)|𝑣 ∈ 𝑉, 𝑙𝑒 ∈ 𝐿, 𝑒𝑒 ≡ 𝑠𝑡𝑟𝑖𝑛𝑔, 𝑡 ∈ 𝑇], (13) 

where, 𝑒𝑒 is started_drive event type, 𝑡 is time when vehicle 𝑣 must leave location 𝑙𝑒. The actual 

dataset has same structure 

 𝐸𝑎 = [(𝑣, 𝑙𝑎 , 𝑒𝑎 , 𝑡)|𝑣 ∈ 𝑉, 𝑙𝑎 ∈ 𝐿, 𝑒𝑎 ≡ 𝑠𝑡𝑟𝑖𝑛𝑔, 𝑡 ∈ 𝑇], (14) 

where, 𝑒𝑐 is one of the finished_wait, finished_drive, serve, unload, depot event types, 𝑙𝑎 is location 

of vehicle 𝑣 at time 𝑡. 

 

5.2 WM effectiveness metrics 

The model effectiveness metrics are calculated by the Analytics scripts from the event datasets 

described by expressions (9 – 14). Direct calculation in TPN requires many aggregation places with 

complex logic, which overloads the model, distracting the user from the core logic. This separation 

of simulation and analysis enhances the modularity of the system, simplifies the model structure, and 

enables greater flexibility in defining and refining metric computations without modifying the core 

model. The following metrics are calculated. 

Drive metrics are utilized to evaluate vehicle efficiency, the distribution of travel workload, and 

overall operational performance, thereby supporting the assessment of routing strategies in WM 

simulations. They are calculated based on dataset (9). The recorded route segments are grouped by 

vehicle identifier, and detailed metrics are computed on both per-vehicle and global levels. For each 

vehicle, the total, mean, median, minimum, maximum, and standard deviation of drive distances and 

drive times are calculated. Subsequently, these metrics are aggregated across all vehicles to generate 

a comprehensive system-wide summary. 

Unload metrics are calculated based on dataset (10). These values are aggregated to compute 

the minimum, maximum, average, median, and standard deviation across all events. The total waste 

removed from the system is obtained by summing all discharge volumes. Additionally, the number 

of unload operations is counted for each vehicle to assess their relative utilization. These metrics 

provide a quantitative basis for analyzing routing efficiency, temporal distribution of unloading 

actions, and load management across the vehicle fleet. 

Overflow metrics are key waste collection performance metrics based on dataset (11). For each 

container, it detects periods of overflow, defined as consecutive timestamps where the container 

remains overfilled, and computes both the duration and volume of overflow for each such episode. 

The volume is estimated as the difference between the last recorded capacity during the overflow and 

the capacity at the overflow start. Additionally, total waste generated per container is calculated by 

summing capacity values whenever a drop in fill level indicates a collection event. Then overflow 

durations and  volumes are aggregated to compute descriptive statistics (total, average, median, min, 

max, and standard deviation), and the containers with the most and least severe overflow durations 

and volumes are identified. 
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Container service metrics are quantitative indicators related to service duration, service volume, 

and visit frequency. They are calculated based on dataset (12). The number of times each container 

was serviced during the observation period is first aggregated, yielding a per-container service 

frequency. Descriptive statistics are then computed for both service time and collected volume, 

including total sum, minimum and maximum values, arithmetic mean, median, and standard 

deviation. These metrics are used to characterize the temporal distribution and operational workload 

of waste collection, enabling the evaluation of consistency, service regularity, and overall system 

balance across containers. 

Route metrics evaluate the temporal accuracy and efficiency of vehicle operations by comparing 

actual and expected schedules, calculated based on datasets (13, 14). Lateness is quantified by 

measuring how much later a vehicle completes service at a location compared to its expected 

departure time, and only positive delays are aggregated to assess deviations from the planned route. 

Earliness is measured as the time spent waiting at a location after service has been completed, 

reflecting how much earlier the vehicle arrived relative to its scheduled departure; however, waits at 

the depot are excluded since early returns there are permissible. Both lateness and earliness metrics 

are expressed through descriptive statistics, including total delay or wait time, average, median, 

minimum, maximum, and standard deviation. Additionally, wait times are grouped per service 

location to identify spatial patterns in early arrival behavior, providing insight into scheduling 

alignment and temporal slack across the service network. 

 

5.3 Model simulation experiment 

Model parameters were configured with vehicle_cap_max set to 20000 dm³, client_cap_full 

set to 4000 dm³ and client_cap_overflow set to 5000 dm³. There are 2 vehicles in the system 

{𝑣1, 𝑣2}. and 10 containers {𝑐1, … , 𝑐10}. 

Google My Maps service was used to create 10 containers, a depot, and an unload location as 

presented in Figure 5. 

 

 
 

Fig 5. WM system locations  
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The KML file was exported, and locations were extracted to a separate file locations.csv, 

containing: 

 
name,lat,lon 

unload,50.3553941,30.5355109 

depot,50.4830364,30.4533355 

c1,50.4792403,30.5331494 

c2,50.4778194,30.5294658 

c3,50.4696738,30.5112153 

c4,50.4713126,30.5084258 

c5,50.4572033,30.5055653 

c6,50.4749274,30.4390745 

c7,50.4552136,30.5208752 

c8,50.4476171,30.5037949 

c9,50.436302,30.5384705 

c10,50.4219645,30.5248047. 

 

A tool was developed to compute time-dependent travel distances and durations between 

predefined locations using the Google Distance Matrix API. Based on a locations.csv file containing 

coordinates for the depot, unload point, and ten containers, batched API queries were issued for all 

origin–destination pairs at 3-hour intervals over a seven-day horizon, beginning from the upcoming 

Monday. To comply with API constraints, the origin and destination sets were dynamically 

partitioned. The resulting data, comprising distance, typical duration, and duration under traffic, were 

stored in route_states.csv, with each entry timestamped relative to the scenario start. A total of 12 

distinct locations (the depot, unload point, and container locations) were processed, creating 12 × 11 

= 132 unique origin–destination pairs per query. By sampling travel times at three-hour intervals over 

a seven-day planning horizon (24h / 3h = 8 intervals per day × 7 days = 56 time steps), a total of 132 

× 56 = 7,392 route records were produced in route_states.csv. Each record corresponds to one origin-

destination pair at a specific timestamp, thereby enabling fine-grained, time-aware routing analyses. 

The output was partitioned into 56 files, each containing 132 records. 

A script was developed to simulate the temporal evolution of container fill levels for a set of 

waste collection containers over a seven-day period, partitioned into 2-hour intervals. Each container 

was defined with parameters including an initial capacity and a fixed fill interval (i.e., time required 

to accumulate 200 dm³ of waste). Containers were loaded from the locations.csv file, and periodic 

records were generated for each 2-hour interval during which a container filled incrementally. For 

each update, the container ID, timestamp, and current capacity were recorded. The final output, 

written to client_states.csv, consists of a chronologically sorted sequence of capacity updates. In total, 

8,400 records were generated, covering 12 locations across 336 time steps (every 2 hours over 7 

days). This data serves as a synthetic input stream for time-aware waste collection models. The script 

produced 84 time partitions, each representing a 2-hour interval within the simulation horizon. 

The embedding of a fully featured VRP algorithm was considered beyond the scope of this 

article. However, to demonstrate the tool in operation, a simple multi-trip route planning algorithm 

was developed that deterministically generates weekly waste collection schedules for a fixed number 

of vehicles and containers over a seven-day planning horizon. In the evaluated configuration, the 

algorithm was executed for 10 containers and 2 vehicles. Containers were assigned to vehicles using 

a round-robin strategy, with each vehicle consistently responsible for servicing a distinct subset of 5 

containers throughout the week. Each vehicle was scheduled to perform exactly two trips per week, 

beginning at 01:00 on predetermined days. Specifically, vehicle 𝑣1 was scheduled to operate on days 

0 and 3 (corresponding to Monday and Thursday), while vehicle 𝑣2 was assigned to days 1 and 4 

(Tuesday and Friday), ensuring an even distribution of workload and temporal coverage. Each trip 

was designed to begin at the depot, include sequential visits to all assigned containers with fixed 

service durations (1 hour per container) and inter-container travel times (30 minutes), and conclude 

with a 2-hour pre-unload window followed by arrival at the unload location. Each vehicle returned to 

the depot after completing each trip, aligning accurately with downstream simulations. 
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The unload operation delay was specified as 1800 seconds (30 minutes), and the serve operation 

was defined as 300 seconds (5 minutes). The model simulation for a one-week period produced a 

route diagram presented in Figure 5, in which expected route location rules were visualized using the 

earliest-leave-at principle. For each planned route segment (red bar), an accompanying bar was shown 

to represent the actual route execution. 

 

 
 

Fig 5. Route execution diagram, planned vs actual 

 

 
 

Fig 6. Route execution diagram section, planned vs actual 

 

The Drive metrics are represented in Table 2–4. 

 

Table 2. Global Drive Metrics Across All Vehicles 

 

Metric Total Mean Median Min Max StdDev 

Drive Distance (m) 341,959 11,398.63 8,214 1,657 24,029 7,802.89 

Drive Time (s) 30,146 1,004.87 878.5 225 1,851 503.20 

 

The vehicle 𝑣2 traveled farther (183,311 m) and longer (15,946 s) than 𝑣1 (158,648 m and 

14,200 s), indicating a higher workload or longer routes. Vehicle 𝑣1 had greater variability in segment 

lengths and times. Overall, the system logged 341,959 m and 30,146 s of driving, with average 
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segments of 11,399 m and 1,005 s. High standard deviations and extreme values (up to 24,029 m and 

1,851 s) highlight uneven routing and dispersed service points, emphasizing the importance of route 

optimization to balance workloads and reduce inefficiencies. 

 

Table 3. Per-Vehicle Drive Distance Metrics 

 

Vehicle Total (m) Mean (m) Median (m) Min (m) Max (m) StdDev (m) 

𝑣1 158,648 10,576.53 6,796 1,657 24,029 8,959.58 

𝑣2 183,311 12,220.73 10,167 4,649 24,029 6,663.09 

 

Table 4. Per-Vehicle Drive Time Metrics 

 

Vehicle Total (s) Mean (s) Median (s) Min (s) Max (s) StdDev (s) 

𝑣1 14,200 946.67 806 225 1,851 591.88 

𝑣2 15,946 1,063.07 885 402 1,816 408.58 

 

The unload metrics are provided in Table 5. The vehicles 𝑣1 and 𝑣2 unloaded 3 times each. The 

total recorded unload capacity was 82,600 dm³. 

There is variation in distances (39,058 to 159,282 m) and durations (17,534 to 364,711 s). The 

average capacity discharged per unload was 13,767 dm³, indicating efficient consolidation during 

trips. However, the large standard deviations across all unload parameters reveal inconsistency in 

vehicle routing and container targeting strategies. 

The overflow metrics are provided in Table 6. 

 

Table 5. Unload Metrics 

 

Metric Min Max Mean Median Std Dev 

Distance Traveled (m) 39,058 159,282 98,576.5 104,441 47,416.39 

Unload Time (s) 17,534 364,711 232,457.33 275,224.5 141,356.43 

Capacity (dm³) 600 20,000 13,766.67 14,700 7,130.12 

 

Table 6. Overflow metrics 

 

Metric Total Max Min Median Average Std Dev Max Min 

Overflow 

Delay (s) 
2,052,384 208,800 57,600 86,369.5 102,619.2 40,432.68 

208,800 

(𝑐7) 

57,600 

(𝑐1) 

Overflow 

Volume 

(dm³) 

56,200 5,800 1,600 2,300 2,810 1,143.36 
5,800 

(𝑐7) 

1,600 

(𝑐1) 

 

A total overflow delay of 2,052,384 seconds was recorded, with an average delay of 

approximately 102,619 seconds per overflow incident. The most affected container, 𝑐7, experienced 

the maximum overflow duration of 208,800 seconds, while 𝑐1 had the lowest at 57,600 seconds. 

Similarly, the corresponding overflow volume ranged from 1,600 dm³ to 5,800 dm³, with an average 
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of 2,810 dm³. These findings suggest that certain containers, such as 𝑐7, are particularly vulnerable 

to delayed service, due to route scheduling inefficiencies. 

The container service metrics are provided in Table 7. All the containers were serviced twice. 

 

Table 7. Container Service Time & Volume metrics 

 

Metric Total Min Max Mean Median Std Dev 

Served Time (s) 3,638,476 3,825 361,459 181,923.8 181,154.5 140,937.7 

Served Volume (dm³) 82,600 0 7,400 4,130 4,100 3,052.02 

 

A total of 82,600 dm³ of waste was collected, with an average of 4,130 dm³ per container and a 

high standard deviation of 3,052 dm³, indicating uneven fill levels at the time of service. The mean 

service duration of 181,923 s highlights the need to optimize collection timing to reduce overflow 

and idle waiting. 

The route metrics are presented in Table 8–9. 

 

Table 8. Vehicle Lateness and Earliness 

 

Metric Total Count Avg Median Min Max Std Dev 

Lateness 9,136 4 2,284.0 2,361.5 1,521 2,892 618.29 

Earliness 23,064 18 1,281.33 1,078 915 2,438 415.80 

 

For locations with a single recorded wait, all statistical measures coincide. The observed wait 

times were 1398 seconds at c1, 1357 seconds at c4, 1093 seconds at c5, and 918 seconds at c10. For 

other locations a vehicle has waited twice and the metrics are present in Table 9. 

 

Table 9. Per-Location Wait Time Statistics (seconds) 

 

Location 𝒄𝟐 𝒄𝟑 𝒄𝟔 𝒄𝟕 𝒄𝟖 𝒄𝟗 unload 

Avg 1056 985 1574 1436 976 920 2202 

Median 1056 985 1574 1436 976 920 2202 

Min 1049 966 1573 1427 958 915 1966 

Max 1063 1004 1575 1445 994 925 2438 

Std Dev 9.90 26.87 1.41 12.73 25.46 7.07 333.75 

 

A total of 9,136 s of service lateness and 23,064 s of earliness were recorded, with fewer late 

events (4) but longer average delays (2,284 s), compared to shorter, more frequent early waits (1,281 s 

across 18 cases). These timing mismatches highlight the need for better synchronization between 

demand and route execution, especially for high-frequency containers. Container wait times ranged 

from 918 s (𝑐10) to 1,574 s (𝑐6), with 𝑐6, 𝑐7, and 𝑐4 experiencing higher delays, while 𝑐9 and 𝑐10 were 

serviced more efficiently. The unload site averaged 2,202 s of waiting, indicating possible 

bottlenecks, and high standard deviations at locations like 𝑐8 and 𝑐3 point to inconsistent 

responsiveness due to route variability. 
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6. Discussion of the results 

Figure 6 presents a segment of the weekly schedule for vehicle 𝑣1, specifically illustrating the 

execution of its second trip. This visualization juxtaposes the actual state timeline (bottom row) and 

the expected drive segments (top row), demonstrating the CPN IDE model’s temporal accuracy and 

responsiveness to dynamic conditions. Notably, an unplanned unload operation occurred after 

servicing container 𝑐7, triggered by vehicle capacity exhaustion. Upon returning from this unload 

operation, the vehicle proceeded directly to containers 𝑐4 and 𝑐5 without intermediate wait times. This 

behavior correctly reflects a schedule violation in the form of lateness – the vehicle was behind 

schedule and thus bypassed any idle period. Following these service completions, the vehicle initiated 

another unload, after which it returned to the depot. Unlike earlier segments, a waiting period is 

observed at the depot. This indicates that the vehicle arrived earlier than its planned departure for the 

next trip segment, and as expected by the model’s earliest-leave-at principle, the vehicle correctly 

waited until the designated time window. This scenario validates the underlying TPN model’s 

correctness: the simulation adheres to a time-guarded execution policy where vehicles depart only 

when permitted and adapt to runtime events (e.g., capacity overflows). The absence of premature 

departures and adaptive recovery from overflows illustrates the model’s ability to enforce both 

temporal constraints and route reactivity, critical for smart waste collection systems where timing 

precision and resource limitations are operationally interdependent. 

The experimental results provide a comprehensive insight into the performance of the waste 

collection system via metrics. Collectively, the results demonstrate that although service counts were 

evenly distributed, variations in overflow frequency, waste generation, and service responsiveness 

indicate that static scheduling is suboptimal. Instead, adaptive routing strategies, incorporating 

container fill predictions and route-time balancing, are essential to enhance operational performance 

and reduce service delays and overflows. 

Several areas for future model improvement have been identified. These include the 

incorporation of smart container sensors and real-time handling of dynamic requests. Additionally, 

the introduction of stochastic events, such as vehicle breakdowns, could further enhance the model's 

robustness and realism. 

 

Conclusion 

The CPN model for the WM system was developed in this study, utilizing the CPN IDE 

simulation environment. For the flexibility and convenience, the model has been integrated with the 

Python socket server. The interface for MTCVRPTW algorithm has been designed and incorporated 

into the Python socket server. The model produces simulated events of different types into files. A 

key advantage of the developed model is its flexibility to incorporate custom user algorithms and 

adapt to diverse environmental setups. 

The WM effectiveness metrics for container overflow, container service, vehicle unload 

effectiveness, vehicle route optimality, vehicle route schedule discrepancy were formalized and their 

calculation implemented with set of Python analytics scripts. 

To demonstrate the model in action the experiment was conducted. The WM system used for 

analysis consisted of 10 containers, depot and unload place locations in Kyiv city and 2 vehicles. A 

time-dependent routing dataset was generated using the Google Distance Matrix API. A total of 7,392 

timestamped records were produced, capturing travel distances and durations between all location 

pairs across varying traffic conditions. A synthetic container fill-level dataset was created, consisting 

of 8,400 time-stamped records simulating the progressive accumulation of waste in containers over 

seven days. These inputs were used to drive the simulation under realistic conditions. A deterministic 

MTCVRPTW algorithm was employed, assigning containers to vehicles using a round-robin strategy. 

Each vehicle was scheduled for two fixed weekly trips, following predefined routes with constant 

service and travel times. This simplified approach enabled consistent and controlled evaluation within 

the simulation framework. The simulation was successfully executed, producing both planned and 

actual route trajectories and enabling analysis of vehicle behavior and system performance. 
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The results demonstrate the model's capability to simulate schedules that are both temporally 

coherent and correct, as evidenced by the metrics obtained during simulations. Although advanced 

routing logic was not embedded in this iteration, the model was structured to support future 

integration. Overall, a flexible, extensible simulation environment was established to evaluate and 

improve waste collection strategies under realistic operational constraints. 
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Управління відходами є ключовим елементом функціонування сучасних міст. У статті 

представлено нову модель системи збору відходів, що описується як дискретно-подійна 

система (DES), реалізована за використанням часових кольорових мереж Петрі (TCPNs) у 

поєднанні з інтегрованим сервером на Python. Модель розроблена з урахуванням зміни 

динаміки заповнення контейнерів та змінних маршрутів, що дозволяє досягти відповідності 

реальним міським умовам. 

Ключовим елементом розробленої моделі є інтерфейс алгоритму планування маршрутів 

транспортних засобів з обмеженнями на вантажомісткість, з кількома поїздками та часовими 

вікнами (MTCVRPTW), що дозволяє транспортним засобам багаторазово обслуговувати 

контейнери за плановий період, дотримуючись обмежень за обсягом і часом. Модель 

підтримує налаштування таких параметрів, як затримки в роботі, обсяг заповнення та 

переповнення контейнерів, а також вантажомісткість кузова автомобіля. Симуляцію 

реалізовано в CPN IDE з використанням часових рядів як вхідних даних, розділених на 

партиції для ефективної обробки. Інформація про наповнення контейнерів і дорожні умови 

періодично довантажується під час моделювання в реальному часі, що підвищує 

масштабованість і продуктивність. Модель генерує логи подій: рух, розвантаження, 

переповнення та обслуговування, які обробляються Python-скриптами для розрахунку метрик 

ефективності. 

Було визначено основні метрики ефективності системи сміттєзбору, що включають 

відстань та час маршрутів, ефективність розвантаження, обсяг переповнення контейнерів, 

ефективність обслуговування і відхилення запланованих маршрутів від графіка. 

Для демонстрації роботи моделі було проведено експеримент із використанням 

синтетичних даних, наближених до реальних умов. Розташування 10 контейнерів, точки 

розвантаження та депо було визначено за допомогою сервісу Google My Maps на основі 

координат реальних об’єктів у місті Київ. Генерація реалістичних маршрутних відстаней і часу 

виконувалася за допомогою Google Distance Matrix API. Алгоритм MTCVRPTW для 2-х 

автомобілів запланував по два виїзди на тиждень відповідно до статичних маршрутів. 

Симуляція моделі згенерувала логи подій, які були використані для підрахунку метрик 

ефективності. Аналіз метрик показав значні обмеження статичного планування маршрутів і 

підкреслив необхідність впровадження адаптивних стратегій, що враховують реальний стан 

контейнерів і трафік. Запропонована модель є гнучким інструментом для оцінки, аналізу і 

покращення стратегій збору відходів у містах. 

Ключові слова: моделювання збору сміття, оптимізація збору сміття, дискретні системи, 

мережі Петрі, задача маршрутизації транспортних засобів. 


