Information, Computing and Intelligent Systems, 2025, No. 6, 14 — 26

UDC 004.2:004.315 https://doi.org/10.20535/2786-8729.6.2025/333919

METHOD FOR ON-LINE ACCELERATION OF DEPENDENT
OPERATION CHAINS USING REDUNDANT CODE ON FPGA
WITH SYSTEM OF LINEAR EQUATIONS EXAMPLE

Illia Verbovskyi *

National Technical University of Ukraine

"Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
https://orcid.org/0009-0008-4782-4281

Valerii Zhabin

National Technical University of Ukraine

"Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
https://orcid.org/0000-0003-0377-3394

* Corresponding author: illyaverb@gmail.com

This study examines methods for accelerating the execution of dependent operation chains in on-line
mode through parallel processing of operands at the bit level in redundant code on field-programmable
gate arrays (FPGA). The object of research is the hardware implementation of the Thomas algorithm for
solving systems of linear equations with tridiagonal matrices on FPGA platforms. The aim is to develop
a method for accelerating dependent operation chains in on-line mode using redundant code with
minimization of pin count requirements. The methodology employs algorithmic analysis, hardware
modeling using Active HDL, performance evaluation based on timing characteristics and resource
utilization on Altera Cyclone 111 EP3C5E144 platform, with verification performed using Quartus.

The results reveal bottlenecks in traditional FPGA implementations of the Thomas algorithm and
demonstrate that the proposed optimized method provides over threefold performance improvement
while maintaining constant pin count regardless of operand bit depth. The developed computing module
architecture enables bit-wise parallel data processing and supports a modified version of the Thomas
algorithm adapted for on-line operation. The scientific novelty lies in combining redundant code with
on-line computation technigques to simultaneously achieve computational acceleration and hardware
implementation simplification. The practical value is determined by the applicability of the proposed
approach to resource-constrained FPGA platforms, ensuring efficient implementation of
computationally intensive algorithms with dependent operation chains.

Keywords: FPGA, on-line computing, digit-by-digit processing, tridiagonal systems, redundant
number systems.

1. Introduction

Modern approaches to accelerating computing in computer systems increasingly rely on
hardware solutions, particularly FPGAs, which offer high performance with low power consumption.
However, traditional methods of implementing FPGA computational algorithms face significant
limitations related to the need for a large number of contacts for parallel data input and output, as
well as the inability to combine data-dependent sequences effectively.

The acceleration of computational algorithms on reconfigurable hardware platforms is an
important area in computer architecture and computational mathematics. This research addresses
limitations in current parallel computing methods that affect many scientific and engineering
applications.

Parallel arithmetic methods implemented in operating modules (OM) enable the acceleration
of calculations in parallel systems from the program level down to the operational level. Nonetheless,
it is not possible to speed up the execution of chains of dependent operations in partial overlapping

© The Author(s) 2025. Published by Igor Sikorsky Kyiv Polytechnic Institute.
This is an Open Access article distributed under the terms of the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), which permits
re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Method for On-line Acceleration of Dependent Operation Chains Using Redundant Code on FPGA ... 15

mode. Until the OM in the chain receives an operand for its operation, it cannot begin executing it.
This means the execution of dependent operations in the chain halts. The final result of the
calculations is obtained only after completing all operations in the sequence of data-dependent
operations.

Therefore, implementing parallel branches of algorithms in different OMs does not accelerate
the receipt of the final result. Analyzing the efficiency of performing computational algorithms on
FPGAs using on-line calculation techniques and a redundant number system will be examined
through an example of solving systems of linear algebraic equations (SLE) with the Thomas
algorithm.

This problem is essential because data-dependent computational sequences are common in
mathematical modeling, numerical analysis, and scientific computing. The difficulty in parallelizing
such operations creates a bottleneck that limits the performance of computational systems across
multiple scientific domains.

At various stages of this method, it becomes necessary to perform chains of data-dependent
operations that can be executed in a partially overlapped manner over time when using a redundant
number system. This method is widely used across different fields of science and technology, from
modeling complex physical processes to computer graphics problems. The Thomas algorithm is one
of the most efficient algorithms for solving such systems, with a linear time complexity of O(n),
compared to the estimated O (n3) complexity of the standard Gaussian method [1].

Research into optimizing data-dependent computational algorithms on FPGA platforms using
advanced numerical techniques is a relevant scientific direction. Addressing these limitations in
parallel computation methods is necessary for improving computational capabilities. This
improvement is needed in various fields of science and technology. Therefore, studies in this area are
both timely and essential.

2. Literature review and problem statement

The problems of hardware implementation of numerical methods are actively explored in
modern scientific literature. In particular, the issues related to optimizing FPGA calculations are
discussed in the works [2—3], which demonstrate the effectiveness of the on-line mode for computing
functions. Research [4] shows the advantages of this approach when working with various functions.

Modern research on FPGA-based numerical methods actively investigates optimization through
redundant numeral systems (RNS) and online arithmetic. Recent studies demonstrate that integrating
RNS variants, such as R-RNS, into high-performance architectures can decrease latency and energy
consumption [5], while enhanced FPGA-based redundant adders further improve timing efficiency
[6]. RRNS designs also boost fault tolerance without excessive hardware cost [7].

The implementation of various methods for solving SLE on an FPGA is examined in papers
[8-10], where the authors mainly focus on classical algorithms, such as the Gaussian method and LU
decomposition. However, insufficient attention is given to specific methods for sparse matrices,
especially tridiagonal ones. Particular focus should be on studies [11-14], which are dedicated to
using redundant numeral systems to optimize calculations.

Studies on FPGA implementations of the Thomas algorithm for tridiagonal systems
demonstrate gains from batching, vectorization, and heterogeneous integration with OpenCL [15-
16]. Advanced Thomas-Thomas and Thomas-PCR schemes with high-bandwidth memory (HBM)
outperform GPU counterparts in speed and power efficiency [17].

Nonetheless, these papers primarily analyze individual arithmetic operations rather than their
combinations as part of high-level algorithms like the Thomas algorithm. Therefore, there is a need
for a comprehensive study of the potential. This study should combine an on-line computational mode
with a redundant number system. The goal is to improve the implementation of the FPGA Thomas
algorithm.

16 Information, Computing and Intelligent Systems N2 6, 2025

3. The aim and objectives of the study

The aim of the study is to develop a method for speeding up the execution of dependent
operation chains in on-line mode through parallel processing of operands at the bit level in redundant
code on an FPGA, while reducing the number of required pins. This will be demonstrated by
implementing the Thomas algorithm for solving systems of linear equations. The objectives of the
study are:

— To analyze the computational structure of dependent operation chains in the Thomas
algorithm and assess the limitations of conventional FPGA implementations regarding pin count and
processing speed.

— To create an optimized method that allows parallel processing of operands at the bit level
using redundant code representation in on-line mode, while minimizing the FPGA pins needed for
data input and output operations.

To achieve the stated objectives, it is important to examine the computational structure of the
Thomas algorithm with an emphasis on dependent operation chains, analyze the properties of
redundant number systems that support bit-level parallel processing, and explore on-line computation
techniques that help reduce the number of FPGA pins required.

4. The study materials and methods for accelerating dependent operation chains
in on-line mode
4.1. Research methodology and approach

The study employs a combined theoretical and experimental approach to develop and validate
the proposed method. The research methodology includes: algorithmic analysis method for
identifying computational bottlenecks and dependencies in the Thomas algorithm structure; hardware
modeling approach using FPGA development tools to simulate and test the proposed architecture;
performance evaluation methodology based on timing analysis and resource utilization metrics;
comparative analysis method to assess the efficiency of the proposed approach against conventional
implementations.

The research is conducted using Active HDL with VHDL code for FPGA implementation and
Quartus for functional verification. The target hardware platform is an Altera Cyclone 111 EP3C5E144
FPGA selected for its balanced performance and resource characteristics suitable for the proposed
algorithm implementation.

4.2. Thomas algorithm for tridiagonal matrices
Considering a tridiagonal system of linear algebraic equations of the form:

b 0
I[1 Zl]I[xl] [dl]
|a2 2 & ||x2| |d2 |
| as by - |ix3|:id3 |, 1)
| . Cn-1 |
Lo an by bl L,
where a, b, c — matrix coefficients, d — right vector, x — solution vector.
The Thomas algorithm consists of two stages:
— Straight stroke — calculation of factors
c; = Z—i; ¢/ = bi_ccf_lai, i=2n-—1, (2)
, d , _ di—di_ja; .
dl:b_i; dizm,lzln. (3)

Method for On-line Acceleration of Dependent Operation Chains Using Redundant Code on FPGA ... 17

— Reverse — calculation of the desired values x
Xp = dp, 4)

xp=d;—¢xip;i=n—1n-2,..1 (5)

The algorithm works well for tridiagonal systems but has chains of data-dependent operations,
which lowers its efficiency on computing modules that support at least the level of parallelism in
operations. To combine dependent operations, parallel calculation at the bit level is necessary.

The analysis of dependent operation chains in the Thomas algorithm reveals the need for
alternative arithmetic representations that can support bit-level parallelism while reducing hardware
resource requirements.

4.3. Redundant number system
Quasi-canonical redundant numeral systems, which differ from canonical numeral systems by
only one additional digit, can be considered quite convenient. For example, at the base k = 2, the
canonical system has numbers x € {0,1}, and quasi-canonical — x € {—1,0,1}. For example, to
compute a fractional-rational function for rational values mir:
m

7 = Z?:l H?:Zs—lxk (6)

T B)
j=1Yj

the values of the arguments and the result of the function will be:

X = Xl x2970, (0 < X < 29), (7)
Y= Sl y2i, (207 <1 <29), ©
Z=¥5, 2207, (022<™2), 7z €{-1,01},)

where x,;,yj; € {0,1} —operand digits, g — place of the comma [18].

In redundant numeral systems, when performing addition and subtraction, transfers or
borrowings in higher digits do not occur. The output digit at the OM cannot change during
transmission between the OMs.

The implementation of redundant number systems provides the foundation for on-line
computation techniques that enable early initiation of dependent operations with minimized pin count.

4.4. Principles of on-line computing
Additionally, in on-line mode, all basic algebraic operations are executed in OM from higher
digits. This enables you to begin performing operations immediately after receiving the highest bits
of operands, without waiting for the lower bits. This fact allows dependent operations to be combined,
which speeds up the calculation of the final result.
Let the partial operands on the i-th bar be denoted as: be denoted as:

in = Xg1Xk2 ...xkiOO 00, (10)

18 Information, Computing and Intelligent Systems N2 6, 2025

and the partial result as
Zi = 7175 ...2;00 ...00, (12)
then, at each i-th cycle of the calculation, a transformation is performed:

Ni - 2Ri—1 + Fl'! (13)

Ri = Ni — Zj, (14)

where N;, R; — internal variables, F; — function from partial operands, and z; determined by the
conditions:

-1, N; < —271
z; =40, —27'<N;<27. (15)
1, 271 <N,

For basic arithmetic operations, the function F; is as follows:

F; =27P(x; £ yy), (16)

Fi =27P(x;Y; + y:iXi—1), (17)

where p is the delay parameter, which determines the number of cycles required to start forming the
result from the higher digits. Performing dependent operations in partial overlapping mode allows the
use of operations within the redundant number system. These systems differ from canonical systems
because the number of distinct digits is greater than the base of the numeral system.

4.5. General structure of the computing module

To implement the Thomas algorithm in on-line mode, a system of interconnected operating
modules has been developed.

Each module includes: input buffers for the accumulation of partial operands; a function
calculation unit F;; a block for the formation of the result digit z;; registers for storing intermediate
variables; an output buffer to pass the result to the next module. The interaction between modules is
organized according to the principle of a pipeline. In this system, the results of some operations are
transmitted to the input of others. This transmission happens in parallel with the calculation of
subsequent bits.

4.6. Optimized algorithm for the on-line mode

To adapt the Thomas algorithm to the on-line mode of calculations, a modified algorithm has
been developed. This algorithm optimizes the order of operations for the maximum time combination.
The key feature of the proposed approach is the possibility of starting the calculation immediately.
Specifically, coefficients can be calculated after obtaining the first significant digits of coefficients.
This happens without waiting for them to complete their full calculation. Similarly, the reverse stroke
of the algorithm can be started even before the complete completion of the forward stroke.

The operating tree presented in Fig. 1 illustrates the hierarchical organization of computational
operations and demonstrates how the modified algorithm enables parallel execution of dependent
operations. The structure shows that operations at different levels can be initiated as soon as the
required input data becomes available, eliminating the need to wait for complete results from previous
stages.

Method for On-line Acceleration of Dependent Operation Chains Using Redundant Code on FPGA ... 19

Forward stroke Reverse stroke

\

‘\
DIV /(&2 ",
1

1

W DIV

P MUL (b2) (MUL

.

1

! [

! "' .

' .

1 L ,
’ ,

' .l

[A ‘. —

v . g ‘ Ve Y

1

{(suB) (c2) (suB)!i(x2~sus)
A A o S . N

i MUL (b3) (MUL (d3)} MUL

- "
' e Lt
v
. i l : .
.
o e 'l‘
e - g E e
~

i(suB) (c3) (suB)!:

N mmmmm———————-

- - '/' ! - -
- “«

MUL (b4) MUL & (dd4)!' MUL

vy .
s
. A
A D, L__~
v ¥ T T
Vs q Va R
'

'suB (suB) ! :
DIV HH———{xd) !

Fig. 1. Operating tree of the modified Thomas algorithm showing distribution of operations by
levels and dependencies between forward and reverse strokes

This approach significantly reduces the overall computation time while maintaining the
algorithmic correctness of the Thomas method.

4.7. Implementation features for floating-point numbers
To handle floating-point numbers in on-line mode, a specialized unit has been developed that
processes the order and mantissa separately. The order is fully transmitted before the start of the
mantissa transmission, allowing the circuit to be preconfigured for correct operand alignment [19].
The processing algorithm is based on the technique presented in [19], with modifications to improve
efficiency specifically for operations related to the Thomas algorithm. An example of how the system
functions with similar methods can be found in [20].

5. Results of investigating the acceleration of dependent operation chains execution in
on-line mode
5.1. Analysis of computational structure and bottlenecks identification
To assess the computational characteristics of dependent operation chains in the Thomas
algorithm, a systematic analysis was conducted using VHDL models of the developed computing

20 Information, Computing and Intelligent Systems N2 6, 2025

modules. The analysis identified key bottlenecks in conventional FPGA implementations, particularly
the sequential nature of coefficient calculations and the linear increase in pin count requirements with
operand bit depth.

The main evaluation criteria established for bottleneck identification were: number of cycles
required to calculate the result; number of FPGA logic elements involved; maximum operating
frequency; system throughput (number of operations per unit of time); pin count requirements for
data input/output.

5.2. Development and validation of the optimized implementation method
The developed method integrating on-line arithmetic techniques with redundant number
systems was implemented and validated through synthesis and simulation in the FPGA design
environment using test vectors of different dimensions based on Altera Cyclone 111 EP3C5E144.
Scientific novelty: The proposed method uniquely combines bit-level parallel processing in
redundant code with on-line computation to achieve simultaneous acceleration of dependent
operations and minimization of pin count requirements.

5.2.1. Performance comparison results
The proposed on-line approach is compared with the standard sequential implementation of the
Thomas algorithm based on conventional binary arithmetic as described in [1, 10]. The classical
approach follows the traditional two-phase execution: complete forward elimination followed by
complete backward substitution, implemented using standard arithmetic units with parallel operand
processing [8, 15]. The simulation results for various system parameters are shown in Fig. 2.

10000 7 V‘ >0
- - =
2000 %er: %% /ﬁ ///,;% / % 50

0

200

Ticks count
Pins count

o

32 (16) 64 (16) 128 (16) 32(32) 64 (32)

Matrix dimension (bit size of operands)

—_

wrrr Offline, ticks =Z-Z-2-% Online, ticks Offline, pins Online, pins

Fig. 2. Compare the time and number of pins for offline and on-line modes.

Figure 2 demonstrates the performance comparison between the classical sequential approach
(offline mode) and the proposed method (on-line mode). The graph shows results for different matrix
dimensions and operand bit sizes. The blue diagonal-striped bars represent execution time in clock
cycles for the offline approach, while the orange zigzag-patterned bars show the lower execution
times for the on-line method. The gray dot-dashed line shows pin count requirements for the offline
approach, which varies with operand counts, while the yellow dashed line demonstrates constant pin
count requirements for the on-line method across all configurations.

As can be seen from the results, the use of on-line mode allows acceleration more than three
times compared to the classical sequential approach [1, 9]. Moreover, this advantage is maintained
with an increase in both the dimensionality of the system and the bit depth of the operands,
demonstrating the scalability of the proposed method.

Method for On-line Acceleration of Dependent Operation Chains Using Redundant Code on FPGA ... 21

5.2.2. Hardware resource optimization
Hardware cost estimation was carried out by synthesizing the developed modules for the target
FPGA and comparing with conventional implementations using standard arithmetic units as reported
in [8, 10, 15]. The traditional approach employs parallel arithmetic units with full-width operand
processing, requiring extensive interconnection networks and large register files [16]. The results of
the comparison are presented in Fig. 3, which shows the relative number of resources used for
different implementations.

- 6000
160 - 5000 @
140 8
£ 120 4000
3 +
g 100 3000 & 5
0 T O
E 3 o
& o
€
[}
v

| | | Nl I 2000

=
SN

4 8 16 32
Bit size of operands

1000

1 Pins Wy Logic Elements L1 Registers

------ Max Pins = oMax Logic Elements == == |Max Registers

Fig. 3. Comparison of the element base for the implementation of the proposed approach

Figure 3 presents hardware resource utilization across different operand bit sizes (4, 8, 16, and
32 bits). The graph shows three types of resources: brown solid with dots bars represent pin count
requirements, green diagonal-striped bars show logic elements usage, and blue bricked bars indicate
register count. The horizontal lines represent maximum available resources: dotted yellow line for
maximum pins (180), dot-dashed green line for maximum logic elements (5136), and dashed blue
line for maximum registers (5136). The results demonstrate that pin count requirements remain
relatively constant across different bit sizes for the proposed approach, while logic elements and
registers scale moderately with operand width.

An important advantage of the proposed approach is the significant reduction and stabilization
in the number of 1/0O pins required compared to traditional parallel implementations [15, 16]. As
shown in Fig. 3, the pin count remains approximately constant at around 87 pins regardless of operand
bit size, whereas classical approaches following conventional FPGA design practices [8, 17] would
require linearly increasing pin counts. The logic elements usage grows moderately from 983 elements
for 4-bit operands to 2914 elements for 32-bit operands, remaining well below the available resources
limit.

5.2.3. Latency analysis and timing characteristics

Analysis of time characteristics showed that for operands with n digits and delay parameter p,
the total number of cycles required to calculate the result by the Thomas algorithm is: for the classical
approach 28(3n + p) + 25; for the on-line mode: 23n + 12p + 6.

A time diagram illustrating the distribution of operations in time for the two approaches is
presented in Fig. 4. The diagram shows operations measured in clock cycles, with timing
dependencies based on the bit width of values obtained after computations, demonstrating how the
proposed on-line method enables partial overlapping of dependent operations compared to the
sequential execution pattern of the conventional approach.

22 Information, Computing and Intelligent Systems N2 6, 2025

DIV | MUL, | 2SUB | 2DIV | 2MUL | 4SUB | 4DIV | 4MUL | 8SUB | 8DIV | 6MUL | 12SUB | TMUL | 14SUB | 7_SMUL | 15SUB

' + » . v ¢

—_ S
—_l A
Pt ¢ ’)/ . ’
e I . K ,
—_— ,
— ! ; P . - - - e s
e B N] L L L o . .- .
ONLINE e Lt > MUL: 2n+p
DIV: n+p
ADD/SUB: n+1
CONVENTIONAL res
DIV MUL 2SUB 2DIV 2MUL 4SUB 4DIV 4MUL 155UB

Fig. 4. Time diagram of operations for conventional and on-line approaches to solving a problem.

6. Discussion of results of the dependent operation chain acceleration investigation
6.1. Interpretation of performance improvement results

The obtained results demonstrate significant performance improvements that the fundamental
characteristics of the proposed approach can explain. The more than threefold acceleration achieved
through on-line mode implementation is attributed to the elimination of sequential dependencies
between operations. In conventional implementations, each operation in the Thomas algorithm must
wait for the complete calculation of its predecessor, creating computational bottlenecks. The proposed
method overcomes this limitation by enabling partial overlapping of dependent operations through
bit-level parallel processing in redundant code.

The consistency of performance gains across different system dimensions and operand bit
depths indicates that the approach scales effectively. This scalability stems from the inherent
properties of redundant number systems, where carry propagation is eliminated, allowing each digit
position to be processed independently. The on-line computation mode further enhances this by
enabling operations to commence as soon as the most significant digits become available.

6.2. Analysis of hardware resource optimization

The constant pin count requirement regardless of operand bit depth offers a notable architectural
benefit. This is due to the sequential nature of digit transmission in online mode, where operands are
sent bit-by-bit instead of in parallel. Traditional designs need separate pins for each bit of all operands,
causing a linear increase in pin count. The proposed method fundamentally alters this approach by
reusing the same communication channels for each digit transmission.

The hardware resource utilization results indicate efficient use of FPGA logic elements. The
elimination of complex carry-propagation circuits typical in conventional arithmetic units offsets the
slight increase in logic complexity. This trade-off proves advantageous for the target application
domain.

6.3. Limitations and constraints analysis

Despite the significant advantages, the proposed method has certain limitations that must be
acknowledged. The approach requires a delay parameter p for proper operation, which introduces
initial latency. However, this delay becomes negligible for larger problem sizes where n >> p.
Additionally, the method is optimized explicitly for data-dependent operation chains and may not
provide similar benefits for fully parallelizable algorithms.

The implementation complexity increases due to the need for specialized arithmetic units
capable of redundant number system operations. This may require additional design effort and
verification compared to standard arithmetic implementations.

6.4. Comparison with existing approaches
The results demonstrate clear advantages over conventional FPGA implementations of the
Thomas algorithm. The achieved performance improvements surpass those reported in recent

Method for On-line Acceleration of Dependent Operation Chains Using Redundant Code on FPGA ... 23

literature for similar tridiagonal system solvers [8, 15, 16]. The unique combination of on-line
arithmetic with redundant number systems addresses gaps identified in the literature review, where
previous work focused on either hardware optimization or arithmetic system improvements
separately. A detailed quantitative comparison is presented in Table 1, where speed-up times are
calculated relative to the traditional offline method to provide consistent baseline for performance
evaluation across different approaches.

Table 1. Comparison of the proposed method with conventional approaches reported in recent
literature (for 128*128 size matrix with 16-bit operands).

Speed-up Pin FPGA
Method Clock Cycles Times Count Platform
High-level synthesis approach [8] ~8400 1.269 ~400 Xilinx Zynq
High throughput solver [15] - -~ Xilinx
~5310 2.007 ~350 Ultrascale
Heterogeneous scalable solver [16] ~7600 1.402 ~380 Intel Arria 10
Proposed on-line method Altera
3456 3.083 87 Cyclone 11
Traditional off-line method 10656 baseline 287 Alteralcltlyclone

6.5. Prospects for further research

The successful application of the proposed method to the Thomas algorithm opens several
promising research directions:

— Extension to other numerical algorithms: The approach could be adapted for other data-
dependent computational sequences, such as iterative solvers and recursive algorithms.

— Advanced redundant number systems: Investigation of higher-radix redundant systems could
potentially further improve performance and reduce hardware complexity.

—Hybrid architectures: Combining the proposed method with emerging FPGA architectures
featuring dedicated DSP blocks and embedded processors could yield additional performance
benefits.

— Scalability studies: Research into implementing the approach on larger FPGA families and
multi-FPGA systems could address more complex computational problems.

— Real-time applications: The predictable timing characteristics make the method suitable for
real-time computational applications, warranting further investigation in this domain.

The demonstrated effectiveness of integrating on-line computation with redundant arithmetic
suggests potential for broader impact across scientific computing applications requiring acceleration
of sequential computational processes.

Conclusions

Based on the conducted research, the following conclusions can be drawn corresponding to the
stated objectives:

1. Analysis of computational structure and bottleneck identification: The computational
characteristics of dependent operation chains in the Thomas algorithm have been systematically
analyzed, revealing that sequential dependencies between coefficient calculations represent the
primary bottleneck limiting parallelization efficiency on FPGA platforms. The analysis showed that
conventional implementations exhibit linear growth in pin count requirements with operand bit depth,
and sequential execution constraints hinder the effective acceleration of data-dependent operations.

2. Development of optimized implementation method: An optimized method integrating on-
line arithmetic techniques with redundant number systems has been successfully developed and
validated. The method enables parallel processing of operands at the bit level while maintaining
constant pin count requirements regardless of operand bit depth. Experimental validation

24 Information, Computing and Intelligent Systems N2 6, 2025

demonstrates over threefold performance improvement compared to conventional sequential
implementations, confirming the effectiveness of combining on-line computation mode with
redundant code representation for accelerating dependent operation chains on FPGA platforms.

Scientific novelty: The developed method combines bit-level parallel processing in redundant
code with on-line computation techniques to simultaneously achieve acceleration of data-dependent
operations and minimization of hardware pin requirements.

Practical value: The proposed approach provides a viable solution for implementing
computationally intensive algorithms with dependent operation chains on resource-constrained
FPGA platforms, offering significant performance improvements while reducing hardware
complexity and pin count requirements.

References
[1] V. S. Ryaben'kii and S. V. Tsynkov, "Introduction,” in A Theoretical Introduction to Numerical

Analysis, Chapman Hall/CRC, 2006, pp. 1-19. https://doi.org/10.1201/9781420011166-1.

[2] J. Pifeiro, M. D. Ercegovac, and J. D. Bruguera, "Algorithm and architecture for logarithm,
exponential, and powering computation,” IEEE Trans. Comput., vol. 53, no. 9, pp. 1085-1096,
Sep. 2004. https://doi.org/10.1109/TC.2004.53.

[3] I. Dychka, V. Zhabin, and V. Zhabina, "Analysis of on-line computation effectiveness in
redundant number system,"” in Proc. IEEE First Int. Conf. System Anal. & Intell. Comput. (SAIC),
2018, pp. 1-6. https://doi.org/10.1109/SAIC.2018.8516877.

[4] J. Bajard, S. Kla, and J. Muller, "BKM: A new hardware algorithm for complex elementary
functions,” IEEE Trans. Comput.,, vol. 43, no. 8, pp. 955-963, Aug. 1994.
https://doi.org/10.1109/12.295857.

[5] S. Mousavi, D. Rahmati, S. Gorgin, and A. Lee, "Enhancing efficiency in computational intensive
domains via redundant residue number systems,” in Proc. 21st Int. SoC Des. Conf. (ISOCC),
Sapporo, Japan, Aug. 19-22, 2024, pp. 330-331.
https://doi.org/10.1109/isocc62682.2024.10762680.

[6] S. R. Sahu, B. K. Bhoi, and M. Pradhan, "Improved redundant binary adder realization in FPGA,"
J. Circuits Syst. Comput., vol. 30, no. 8, pp. 2150287-1-2150287-23, Jun. 2021.
https://doi.org/10.1142/5021812662150287x.

[7]1 Y. Zhang, "An FPGA implementation of redundant residue number system for low-cost fast speed
fault-tolerant computations,” M.Eng. thesis, Nanyang Technol. Univ., Singapore, 2018.
https://doi.org/10.32657/10220/47113.

[8] H. Meng, K. Wakabayashi, and T. Kuroda, "A scalable linear equation solver FPGA using high-
level synthesis,” in Proc. 24th Workshop Synthesis System Integration Mixed Inf. Technol.
(SASIMI), Taipei, Taiwan, 2022, pp. 145-150. [Online]. Available:
https://sasimi.jp/new/sasimi2022/files/archive/pdf/p145 B-7.pdf. Accessed: May 1, 2025.

[9] S. M. Perera and N. Bebiano, "A low-cost and numerically stable algorithm to solve tridiagonal
systems via quasiseparable matrices,” Research Square, pp. 1-22, Aug. 2023.
https://doi.org/10.21203/rs.3.rs-3200350/v1.

[10] M. D. Ercegovac and M. Muller, “Arithmetic processor for solving tridiagonal systems of linear
equations,” in Proc. 40th Asilomar Conf. Signals Syst. Comput., Pacific Grove, CA, USA, Oct.
29-Nov. 1, 2006, pp. 337-340. https://doi.org/10.1109/acssc.2006.354763.

[11] V. I. Zhabin, V. I. Korneichuk, and V. P. Tarasenko, “Computation of rational functions for
many arguments,” Autom. Remote Control, vol. 38, no. 12, pp. 1864-1871, 1978.

[12] J. T. Butler and T. Sasao, “Redundant multiple-valued number systems,” Naval Postgraduate
School, Monterey, CA, USA, Tech. Rep., 1997. [Online]. Auvailable:
http://pi.314159.ru/butlerl.pdf. Accessed: Aug. 1, 2025.

Method for On-line Acceleration of Dependent Operation Chains Using Redundant Code on FPGA ... 25

[13] V. I. Zhabin, I. A. Zhukov, I. A. Klymenko, and V. V. Tkachenko, Prykladna teoriia tsyfrovykh
avtomativ: Navchalnyi posibnyk, 2nd ed. Kyiv: NAU, 2009. [Online]. Available:
https://comsys.kpi.ua/wp-content/uploads/2025/02/prykladna-teoriya-tsyfrovykh-avtomativ.pdf.
Accessed: Aug. 1, 2025.

[14] V. Y. Zhabyn, V. Y. Korneichuk, and V. P. Tarasenko, “Some machine methods for computing
rational functions of many arguments,” Autom. Telemechanics, vol. 38, no. 12, pp. 145-154, 1977.

[15] K. Kamalakkannan, G. R. Mudalige, 1. Z. Reguly, and S. A. Fahmy, “High throughput
multidimensional tridiagonal system solvers on FPGAs,” in Proc. Int. Conf. Supercomput., Virtual
Event, 2022, pp. 1-13. https://doi.org/10.1145/3524059.3532371.

[16] H. J. Macintosh, J. E. Banks, and N. A. Kelson, “Implementing and evaluating an heterogeneous,
scalable, tridiagonal linear system solver with opencl to target fpgas, gpus, and cpus,” Int. J.
Reconfigurable Comput., vol. 2019, pp. 1-13, Oct. 2019. https://doi.org/10.1155/2019/3679839.

[17] T. Kuo and C. Wu, “FPGA implementation of a novel multifunction modulo (2n + 1) multiplier
using radix-4 booth encoding scheme,” Appl. Sci., vol. 13, no. 18, pp. 1-12, Sep. 2023, Art. no.
10407. Accessed: Aug. 16, 2025. [Online]. Available: https://doi.org/10.3390/app131810407.

[18] I. Verbovskyi and V. Zhabin, “Improving the efficiency of functions computation in on-line
mode on FPGA,” in Proc. Int. Conf. Secur. Fault Tolerance Intell., Kyiv, Ukraine, 2022, pp. 1-8.
Accessed: Aug. 1, 2025. [Online]. Available: https://icsfti-proc.kpi.ua/article/view/281001.

[19] V. Zhabin, V. Zhabina, and O. Verba, "Asynchronous on-line float-point computations in
systems with direct connections between computation units,” in Proc. IEEE 2nd Int. Conf. System
Anal. & Intell. Comput., 2019, pp. 1-5.

[20] V. I. Zhabin, V. I. Korneichuk, V. P. Tarasenko, and A. A. Shcherbyna, “Strukturnyi sposib
shvydkoho vyrishennia system rivnian alhebry z trydiahonalnoiu matrytseiu,” Tech. Rep., Feb.
1979.

26 Information, Computing and Intelligent Systems N2 6, 2025

VK 004.2:004.315

METO/J OHJIAWH-IPUCKOPEHHS 3AJIEXKHUX JAHIIOT'IB
OIIEPALINA I3 BUKOPUCTAHHAM HA/UVIMINKOBOI'O KOAY HA IIJIIC
HA IIPUKJIAJII CACTEMM JITHINHUX PIBHSIHb

Inns Bep6oBCcbkui
HamionanbHuii TeXHIYHUNA YHIBEpCUTET YKpaiHH
«KuiBcbkuii mosiTexHiuHui iHCTUTYT iMeHi Iropst Cikopeskoro», KuiB, Ykpaina

https://orcid.org/0009-0008-4782-4281

Banepin XabiH
HanionanbHuii TeXHIYHUN yHIBEpCUTET YKpaiHU
«KuiBcpkuii nmomirexHiyHui iHeTUTYT IMeH1 [rops Cikopebkoro», Kuis, Ykpaina

https://orcid.org/0000-0003-0377-3394

VY nocaimkeHH1 po3rIISIHYTO METO MPUCKOPEHHS BUKOHAHHS 3aJIe)KHUX JIAHLIIOTIB oneparii y
HEAaBTOHOMHOMY pE&XHM1 MUIIXOM MapajeibHOi 00poOKM omepaHIiB Ha OITOBOMY piBHI B
HAJITMIIKOBOMY KOJ1 Ha MpoTrpaMoBaHMX JIOTTYHUX iHTerpanbHux cxemax (FPGA). Oo6'extom
JOCITIJKEHHS € amapaTHa peajizailis anroputMmy Tomaca i po3B's3aHHS CUCTEM JIHINHUX PIBHIHB
3 TpHuaiaroHanpHOI0 Matpuiieto Ha matdopmax [TJIIC. Meta po6oTu nossirae y po3po0ieHHI METOTY
MPUCKOPEHHS 3aJIOKHUX JIAHIIOTIB OMEpalid y HEaBTOHOMHOMY pPEXKHMI 3 BHUKOPHCTAHHSIM
HaJUTHIIIKOBOTO KOJY Ta MIHIMI3AIlI€I0 KUThKOCTI €JIEMEHTIB BBOAY-BUBOIY. MeTOIO0JIOTIS BKITIOYAE
ANTOPUTMIYHMKM aHaji3, amapaTHe MOJICNIOBaHHS 3 BHKopucTaHHsIM Active HDL, oriaky
MIPOAYKTUBHOCTI HA OCHOB1 YaCOBUX XapaKTEPUCTUK Ta BUKOPUCTAHHSA pecypciB Ha matdopmi Altera
Cyclone 111 EP3C5E144 3 Bepudikariiero 3a ronomoroto Quartus.

Pe3ynbraTti moka3yroTh BY3bKi MICIIS TPAIUIIIMHUX peanizaliil anroputMmy Tomaca Ha [TJIIC Ta
JEMOHCTPYIOTh, IO 3alpONOHOBAaHWUN ONTHUMI3OBAaHWK MeTOJ 3abe3medye MiABUIICHHS
MPOJAYKTUBHOCTI BTpUUl TIPU 30€peKeHHI CTAJIO1 KUIBKOCTI BHMBOJIIB HE3AJIEKHO Bill PO3PSAHOCTI
onepanAiB. Po3poOiena apxiTekTypa 004nCIOBaIbHOTO MOIYIIS JO3BOJISE peai3yBaTu MapaieibHy
1mo6iToBY 00pOOKY JaHKX Ta MIATPUMYE MOAM(IKOBaHY BEPCito airopuTMy Tomaca, ananToBaHy Jjis
poOoTH B HEABTOHOMHOMY pekuMi. HaykoBa HOBU3HA MOJISTae B MOE€IHAHHI HAAIUIIKOBOTO KOIY 3
HEAaBTOHOMHUMU METOJaMH 0OUYHUCIIEHb, 110 J03BOJISE OJTHOYACHO JIOCITTH MPUCKOPEHHS 00YUCIICHb
1 crpomieHHs amapaTHoi peanizamii. [IpakThuHa IIHHICTP BH3HAYAETHCS 3aCTOCOBHICTIO
3anponoHoBaHoro migxony no FPGA 3 oOmexeHumu pecypcamu, mo 3a0esnedye e(eKTUBHY
peanizalliro 0OYMCITIOBAILHO CKIIAHUX aJITOPUTMIB 13 3aJIC)KHUMH JIAHIFOTaMH OTIepalliil.

KntouoBi cnosa: IIJIIC, HeaBTOHOMHI OOYHMCIEHHS, MOpPO3psiAHAa OOpoOKa, TpUIiaroHaNbHI
CUCTEMH, HAJIUIIIKOBI CHCTEMHU YHCIICHHSI.

