Information, Computing and Intelligent Systems, 2025, No. 6, 164 — 191

UDC 004.75 https://doi.org/10.20535/2786-8729.6.2025/334607

DECENTRALIZED TASK ALLOCATION METHOD IN
HIERARCHICAL loT SYSTEMS USING FUZZY LOGIC

Oleksandr Rolik*

National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
http://orcid.org/0000-0001-8829-4645

Dmytro Nahaiko

National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
https://orcid.org/0009-0003-3611-3605

*Corresponding author: o.rolik@kpi.ua

The use of fog and edge computing extends the computational capabilities of 10T systems to the
network edge, contributing to the minimization of delays during task execution. Osmotic computing
complements distributed computing by providing seamless integration between computational
environments through dynamic migration of micro-elements across different hierarchy tiers according
to current load conditions and resource availability. However, within the concept of osmotic computing,
a key challenge remains the effective management of task allocation under conditions of uncertainty,
dynamism, and heterogeneity of the loT environment. The aim of this study is to improve the efficiency
of resource utilization and task allocation in hierarchical 10T systems based on osmotic computing under
uncertain and dynamically changing environmental conditions. The object of the study is the process of
task allocation in multi-tier 10T systems that include cloud, fog, and edge computing. The subject of the
study is methods and models for task allocation and computing resource management in 10T systems
using the osmotic computing paradigm.

The paper presents a three-tier hierarchical management model built on cloud, fog, and edge
environments, which implements a centralized-decentralized management approach. Each tier is
represented by a set of computing nodes and a management system that performs local task allocation,
resource state monitoring, and micro-element management. The management system of the lower tier is
subordinate to the higher-tier management system in the hierarchy. A method for decentralized task
allocation in hierarchical 10T systems using fuzzy logic has been developed. The allocation method
includes two decision-making stages using a fuzzy inference system: determining the direction of task
allocation and selecting the optimal computing node for its execution. The determination of task
allocation direction is carried out based on task characteristics, and the suitability rating of computing
nodes is determined considering task execution latency, resource utilization efficiency, and load
balancing. The task is assigned to the node with the maximum rating. The use of fuzzy logic ensures
rational decision-making under conditions of uncertainty in real-time, which is characteristic of highly
heterogeneous and dynamic 10T environments.

Experimental modeling and investigation of the method were carried out using the iFogSim
simulation environment. The research results show that the percentage of locally executed tasks remains
virtually unchanged with different numbers of tasks, indicating stability in decision-making. Increasing
the intensity of task generation leads to an increase in task computation latency due to increased load on
computing nodes, while task assignment latency and response latency remain unchanged. The method
demonstrated adaptability in task allocation for different types of tasks.

Keywords: Internet of Things, 10T, Fog Computing, Edge Computing, Osmotic computing, Fuzzy
Logic

1. Introduction
The active development and implementation of 10T technologies have led to a rapid growth in the
number of devices connected to 10T. In 2024 alone, their number exceeded 18 billion, which is 13%

© The Author(s) 2025. Published by Igor Sikorsky Kyiv Polytechnic Institute.
This is an Open Access article distributed under the terms of the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/),
which permits re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Decentralized Task Allocation Method in Hierarchical IoT Systems Using Fuzzy Logic 165

more than in 2023, while corporate spending on loT infrastructure reached USD 298 billion [1]. This
trend is accompanied by an increase in data volumes generated by 10T devices and an increasing
computational load on IT infrastructure, which complicates maintaining a guaranteed level of Quality
of Service (QoS). Additionally, the high heterogeneity and dynamism that characterize loT
environments [2] require an appropriate level of adaptability in 10T systems to real-time changes.

The use of fog and edge computing partially addresses these problems by extending the system's
computational capabilities to the network edge, thereby bringing data collection, analysis, and
processing closer to the data source. This approach helps minimize data transmission delays, reduces
overall task execution time, and decreases load in the cloud environment [3].

However, the application of fog and edge technologies creates new challenges related to uneven
load distribution, limited resources at the periphery, and the need to respond to dynamic connections,
disconnections, and failures of computing nodes.

To address these challenges, [4] proposed the concept of osmotic computing, inspired by the
chemical process of osmosis, which involves the autonomous and dynamic management of
computational resources. Through continuous vertical load balancing between cloud, fog, and edge
environments, osmotic computing ensures system adaptation to real-time changes, maintaining
uniform load distribution among different computing environments [4, 5].

However, considering the concept of osmotic computing, a key challenge remains the effective
management of task allocation to improve the productivity and efficiency of distributed multi-tier lIoT
systems. It is important to ensure service delivery with an appropriate QoS level under conditions of
uncertainty, dynamism, and heterogeneity of the environment.

2. Literature review

Task allocation in distributed 10T systems is a well-researched problem. [6] conducted a
comprehensive analysis of various computing paradigms, including fog, edge, and osmotic
computing, which contribute to latency reduction and optimization of resource utilization.
Additionally, [6] examines the main groups of approaches and their applications for effective task
and resource management, including metaheuristic, machine learning, and hybrid approaches.
Among these, for example, [7] developed an approach for scheduling latency-sensitive tasks in a
heterogeneous Fog-Cloud environment using a Multi-Level Feedback Queue (MLFQ) to classify
tasks based on the priorities of each level. In [8], an improved fireworks algorithm is proposed to
optimize load distribution in a fog environment. For edge computing, [9] implemented deep
reinforcement learning for dynamic workload scheduling. In [10], a bio-inspired load balancing
algorithm was developed using osmotic pressure principles.

In [5], scientific approaches using osmotic computing are systematized, which implement the
dynamic distribution of tasks between the Edge, Fog, and Cloud environments. Particular attention is
paid to the problems of self-organization, load detection, and adaptive scaling. The methods used
include heuristic algorithms, graph theory models, fuzzy logic, and artificial neural networks. The
results show the advantages of the osmotic model in conditions of limited resources and unpredictable
network topology.

The use of fuzzy logic warrants special attention, as it allows consideration of input data
inaccuracy and system state uncertainty. Approaches using fuzzy inference systems [11-13] have
relatively low computational complexity and can respond quickly to changing conditions, making
them promising for distributed 10T systems that encounter unpredictable and dynamic environmental
changes.

In [14], a comprehensive approach is proposed for solving task scheduling and load balancing
problems in a heterogeneous Fog-Cloud environment. A Binary Linear-Weight JAYA (BLWJAYA)
algorithm was developed for optimal task mapping to computing nodes. Fuzzy logic is used to
determine target tiers for task allocation, considering resource heterogeneity and system requirements
(network bandwidth, task size, resource utilization, and latency sensitivity).

In [15], a task prioritization mechanism is presented, where tasks are classified according to the
level of sensitivity to delay and served at different tiers. Decisions are made using fuzzy logic and

166 Information, Computing and Intelligent Systems N2 6, 2025

heuristic utility functions, which allows for ensuring a balance between task priority and resource
availability.

In [16], a Dynamic Task Allocation using Fuzzy Logic Enhanced approach (DFA-FLE) is
proposed, which adapts to environmental changes, ensuring latency reduction and improved resource
utilization efficiency through a two-tier fuzzy inference system.

Researchers also actively study task scheduling approaches that combine fuzzy logic methods
and machine learning [17] or heuristic strategies [18]. In [19], the effectiveness of multi-criteria
decision-making is demonstrated when considering parameters such as bandwidth, latency, energy
consumption, and task execution cost. In [20], an approach for workflow scheduling and allocation
in hybrid Fog-Cloud computing environments using multi-agent systems and fuzzy logic is proposed.

To summarize, all these studies emphasize the importance of adaptive task allocation methods
in distributed multi-tier 10T systems for improving efficiency, reducing latency, and optimizing
resource utilization. However, existing solutions do not combine osmotic computing, which enables
adaptive inter-tier load balancing, with fuzzy logic apparatus to ensure effective system operation in
real-time considering environmental uncertainty. Additionally, the works consider only upward task
flow and do not account for the possibility of task generation at higher hierarchy tiers with subsequent
task allocation to the edge tier.

3. The aim and objectives of the study

The aim of the study is to improve the efficiency of resource utilization and task distribution in
hierarchical 10T systems based on osmotic computing using fuzzy logic. The research focuses on
ensuring the rational selection of a computing environment for performing tasks in conditions of
uncertainty and dynamic environmental changes.

The object of the study is the processes of task allocation in 10T systems with multi-tier
environments that include cloud, fog, and edge computing.

The subject of the study is the methods and models for task allocation and computing resource
management in 10T systems using the osmotic computing paradigm.

To achieve the goal, the following objectives were set:

—to develop a hierarchical model for task allocation and resource management in 0T systems
based on osmotic computing;

—to develop a task allocation method using a fuzzy inference system considering task
characteristics, computing resource constraints, and optimization criteria;

—to conduct an experimental investigation of the proposed method to evaluate its effectiveness
under various scenarios and load conditions.

4. The study materials and methods of decentralized task allocation in hierarchical loT
systems
4.1. Features of the general 10T system architecture

This work considers a three-tier architecture of distributed 10T systems with a division into
cloud, fog, and edge environments [4, 5].

The first tier, which is the lowest in the hierarchical structure, is the edge computing
environment. It is located closest to data sources, which are end IoT devices, enabling it to perform
preliminary processing of this data, thereby ensuring simple local computing with low latency. This
tier can accommodate both simple devices (sensors and actuators) with weak computational
capabilities and more complex devices (smart sensors, microservers, gateways) that can act as
computing nodes for task execution.

The second tier is the fog computing environment, which includes intermediate computing
resources at the level of micro- or regional data centers. Due to its extended computational
capabilities, it is capable of processing larger data volumes and performing more complex operations
than the edge tier, while providing lower latencies than the cloud environment. The Fog tier can
simultaneously serve several Edge tier domains.

The third, highest tier in the distributed 10T system structure is the cloud environment, which

Decentralized Task Allocation Method in Hierarchical IoT Systems Using Fuzzy Logic 167

is located farthest from end devices and is built on data centers with practically unlimited resources,
high computational power, and scalability. The Cloud tier allows analysis, processing, and storage of
large data arrays while ensuring a high level of fault tolerance. The Cloud tier can simultaneously
serve several Fog tier domains.

Interaction between computing environments is implemented as a hierarchically realized data
exchange between loT system tiers.

The use of the osmotic computing concept in the considered model is intended to provide
dynamic management of computing resources in the distributed 10T system environment, which
allows for achieving flexible load balancing between edge, fog, and cloud tiers, contributing to system
adaptation to real-time changes (a sharp increase or decrease in the number of tasks, connection or
disconnection of nodes, node failure, increased network latency, etc.). The idea of osmotic computing
is inspired by the chemical osmosis process, where a solvent moves from an area with lower solute
concentration to an area with higher solute concentration through a semi-permeable membrane,
thereby equalizing concentration on both sides of the membrane. In osmotic computing, micro-
elements (MELS) act as the solvent, which can migrate between different environments (Cloud, Fog,
Edge) through a Software-Defined Membrane (SDMem) [5, 21].

MEL is a particular abstraction that describes services and data of an 10T application, which in
the context of osmotic computing is considered as a graph of micro-elements (Fig. 1). There are two
types of MELs: microservices (MS), which provide specific functional capabilities and can be
deployed and migrated between different computing environments, and microdata (MD), which are
transmitted between 10T system components and can have different representation formats [5, 21].

__

"l FogMEL

) £dge MEL
]| Smart
|_o_| gateway

__

'FOG

__

Fig. 1. General structure of an 10T application based on osmotic computing

The membrane is a specific logical software-defined layer that regulates the movement of MELS
(microservices or microdata) between cloud, fog, and edge environments according to various MEL
management policies, which may include computing resource availability, quality of service (QoS)
requirements, current system state, security and privacy policies, etc. The membrane can be
implemented as a separate software module deployed on a gateway or be part of other services or
subsystems; for example, orchestration systems (such as Kubernetes) serve as tools for implementing
the membrane principle — they allow automatic distribution and transfer of containerized
microservices between nodes, responding to system changes [5, 21].

168 Information, Computing and Intelligent Systems N2 6, 2025

4.2. General model of task allocation and resource management in 10T systems

In the context of the considered 10T system architecture based on osmotic computing, two main
management objects are distinguished: tasks and computing resources.

A task is a request for execution of a particular process. Tasks can be of two types: internal and
external. Internal tasks are generated by 10T devices, microservices, or services within the system and
can be formed at any hierarchy tier. Internal tasks include data processing and transmission from
sensors, information aggregation, execution of business functions, and other in-system operations.
External tasks originate from users or external services to interact with the system via an API, which
is usually deployed in the cloud. Examples of external tasks include requests for analytical report
generation from users, control commands from operators, or data collection for statistics building
through integration with third-party systems.

Computing resources comprise infrastructure nodes of different tiers (edge, fog, cloud) that
provide an environment for deploying, executing, and scaling MELs. They are characterized by
limited computational power, energy capabilities, latency, bandwidth, and other parameters. Resource
management involves monitoring node availability, planning and balancing the load, and releasing
resources.

MELSs should be noted separately as an additional management object, which is a unit of task
execution deployed within available computing resources. MEL management includes deployment
in cloud, fog, or edge environments, migration between different environments or within the same
environment, as well as deletion or unloading when resources are released.

One or more MELSs can be deployed on a computing node depending on available capabilities.
Each MEL, in turn, can execute one or several tasks.

The considered architecture of the distributed 0T system implements a three-level hierarchical
model of task and computing resource management, which covers the edge, fog, and cloud
tiers (Fig. 2). Each tier contains computing nodes on which MELSs are deployed, and a management
system that, based on analysis of resource state monitoring data, makes decisions on the placement,
migration, and removal of MELSs and performs task distribution. The lower-tier management system
is subordinate to the higher-tier management system in the hierarchy.

CcLouD

h 4 'l

@ coud MEL
B rog MEL

@ cdgeveL

€@ Data/Control flow

Fig. 2. General model of task allocation and resource management in 10T systems

Decentralized Task Allocation Method in Hierarchical IoT Systems Using Fuzzy Logic 169

The Edge management system manages computing nodes that interact with end devices in 0T
systems and ensures task execution near data sources. The Fog management system coordinates one
or several edge domains — groups of computing nodes subordinate to a single management system —
and computing nodes within its domain, providing intermediate decision-making capabilities.
Horizontal interaction between Fog management systems of different domains is possible, allowing
task redistribution between these domains and ensuring the operation of the 10T system even when
communication with the central management tier is disrupted, thereby improving overall system
reliability and adaptability. The central management system, located at the cloud tier, has information
about the overall 10T system state, coordinates Fog domains, and ensures coordinated operation of all
tiers, making strategic decisions regarding task allocation and computing resource management.

The considered management model implements a combination of centralized and decentralized
approaches to management. The central management system performs global management and
decision-making. At the same time, decentralized management is carried out by management systems
of corresponding tiers, which make local decisions and manage within their domain. The combination
of these approaches allows to increase the fault tolerance, scalability, and adaptability of the system.

The current state of the 10T system is determined by a monitoring subsystem implemented
based on an agent-based approach (Fig. 3).

Cloud Management System ‘

Node

[Monitoring Agent‘ [Monitoring Agent‘

1
1
1
1
1
: Node
1
1
1
1
1
1

Fog Management System

(

Fog Management System

W

Node

Node
|Menitoring Agentj

Monitoring AgentJ

| — r \
|Monitoring Agent| Monitoring Agent|

1
1
1
[
Node Vo
— | |
1
1
1

1
[
1
[
l
. |Node
1
1
|
1
U
1
1

__

Edge Management System Edge Management System

[Monitoringngenq |,I‘\p|onitoringAgentW X [Monitoringngent\‘ :/MonitoringAgent] X

<0 Monitoring data
> Control flow i

1 i 1
I

1 I 1

1y I 1

1y | 1
0 I

Node Node . - \ |Node Node .
I

1 : I 1
1 I

I I 1

1 I 1

1 1 1
1 I

Fig. 3. General structure of the 10T system monitoring subsystem

A monitoring agent is deployed on each computing node, which collects necessary metrics
(CPU/GPU utilization, memory, energy consumption, network bandwidth, etc.). The local
management system receives information about the state of each computing node and sends it to the
higher-tier management system, performing preliminary processing and data aggregation. Monitoring
agents can send metrics directly to the management system, or the local management system can poll
agents at regular intervals. The central management system has complete information about the
current state of the entire 10T system, analyzes it, and, if necessary, regulates MEL management
policies.

170 Information, Computing and Intelligent Systems N2 6, 2025

4.3. Formalization of the task allocation problem in 10T systems
In the considered three-tier architecture of a distributed loT system based on osmotic

computing, the environment for executing tasks T, € T , i=1,1 is MELs, which are deployed on
computing node N; e N, jzl,TL, where N, — is the set of computing nodes at tier LelL,
L ={Edge, Fog,Cloud}, J, —is the number of available nodes at tier L .

Eachtask T, € T is described by a vector of parameters P ={p/ |k =1, K} where p —value

of the k-th parameter of the i-th task. Task parameters mclude priority, latency requirements,
computational complexity, etc. The number and types of parameters may vary depending on the
specific requirements and features of an 10T system.

Each computing node N; € N, has resources R; eR,, where R — total resources at tier
L eL . Within the same tier, computing node resources may be heterogeneous R; =R, R, eR,

R, R, for some j=m, where j=1J_ , m=1J_. The resources R, eR, of computing node

N; € N are characterized by a vector of parameters Q; ={q}" |m =1,M}, where qj — the value of

the m-th parameter of the j-th computing node. Computing node parameters include memory,

computational power, network bandwidth, energy consumption, etc.
The task allocation problem consists of determining the optimal placement of tasks T on

computing nodes N = JN
LeL

X ={x;.} %, {08, i=11, j=1J, (1)

where x ; =1, iftask T, € T is assigned to computing node N; e N attier LeL,and x; =0

otherwise, such that task execution delays are minimal while ensurlng ratlonal resource utilization.
The total latency of task T, e T can be defined as

F = FItJL+|:IejL I:l,rj,L' (2)

where F!;| —the transmission time of task T, € T from the initialization source to computing node

N; e N, F . —the execution time of T, €T onthenode N, e N, F' —the transmission time
of the result back to the initialization source. Since the task |n|t|aI|zat|on tier and its execution tier

may differ, we define F';| and F', as
F. =F" " +F0 (3)

'JL ij,L

F . =FY +F"}

L

t,L
where F

transmission time to/from computing node N; e N at tier L, respectively. F,rJLL, if the task is

F,rJLL the data transmission time to/from tier L, respectively, F, .,La FIJL — the data

assigned to a computing node at the same tier where it was initialized. Fif}fL if the task is assigned to

a computing node at the same tier where it was initialized, without being redirected to another tier.
The total latency for all tasks is defined as:

total ZZZXIJ i, jL ' (4)

i=1 LeL j=1

where F'; | —the total latency of task T, € T onnode N; € N, oftier L.

The rational use of computing resources is determined by the degree of efficiency of their use
and the balance of load distribution.
The resource utilization efficiency for node N; e N attier L is defined as

Decentralized Task Allocation Method in Hierarchical IoT Systems Using Fuzzy Logic 171

Sy — 5)

where R; —the total resources of node N, r; —the resource requirements of task T;.

The resource utilization efficiency at tier L is defined as the weighted average of node
utilization rates:

I

5
EZFﬂij EZEZKJME

ru j=1 j=1 i=1 ’
F© = ! T =J T , (6)
R; R
j=1 j=1
where J, —the number of available nodes at tier L.
Similarly to (6), we define resource utilization efficiency for the entire 10T system:
N
ZFLrU'RL ZZZXi,j,L'ri
Fru _ LeL — LeL j=1 i=1 (7)

[
—

total Z R] Rj

LeL

N

LeL j=

3
where R = z R; —the total resources ontier LeL .
=1
Since computing nodes N; € N within the same tier L may have different computing

capacities, normalized metrics that account for the relative load of each node should be used to assess
load balancing. The overall load balance evaluation at tier L among heterogeneous nodes is
determined using Jain fairness index [22]:

3 2
s
Fe =—G—— (8)
I Z(FJT)

=t

where F" e [Jil} J, —the number of available nodes at tier L. A value of F° close to 1 indicates
L

uniform load balancing at tier L, and vice versa, close to . indicates a strong imbalance.
L
Finally, task allocation in an IoT system can be formalized as a multi-criteria optimization
problem of finding task allocation X , that ensures:
F|

total

—max, FP — max (9)

total

— min, E"

total

subject to the following constraints:

‘]L
— each task can be assigned to only one node: > > %, =1, x,;, {01}, Viel, Vjel,

LeL j=1

Viel;

|
— the total load on a node must not exceed its computing resources: in’j,L ‘L <R;, Vjeld,
i=1

Viel.

172 Information, Computing and Intelligent Systems N2 6, 2025

4.4. Decentralized task allocation method using fuzzy logic
In the considered hierarchical management model in the loT system shown in Figure 2, a task
allocation method is proposed that considers both the characteristics and requirements of tasks and
the state of computing resources to determine the rational execution environment. In general, tasks
are allocated according to Algorithm 1.

Algorithm 1. Task allocation for hierarchical 10T systems
Input: Task T, with parameters P, set of nodes N :UNL with resources R =URL,

LeL LeL

L ={Edge, Fog,Cloud}.
Output: Assignment of task T, to a node or queue/reject the task.

L« tier where T, was initialized

2 I—available <L

3 while L=null do

4 D < selectSuitableDirection(P)
5 if D=current then

6 N qitape L < { NLLEIVL|RLLZ requiredResources (P)}
7 if N suitable, L # @

8 Nirger,. < selectsSuitableNode (B, N e)
9 assignTask(Ti,Nwm%L)

10 return

11 end if

12 end if

13 if D=current then

14 D<«up

15 I—available < I—available \{L}

16 end if

17 if D=current then

18 L < selectNextLevel (L, D)

19 if Lel,, .. then

20 L < null

21 end if

22 end if

23 end while
24 queueOrRejectTask(Tﬂ

The task T, € T is registered in the local management system at the tier LeL where it is
initiated. In the first step, the local management system determines the task allocation direction D, .
It evaluates the feasibility of executing the task at the current tier L or transferring it to another tier
based on task characteristics P ={p‘ |k :1,_K}. If the current tier L meets the requirements for
execution of the task T,, the allocation direction D, indicates the current tier L. Then, the
management system checks the availability of nodes N . < N atthetier L with the necessary

suitable,

resources R; eRfor task computation on node N; &N
L €N

In the next step, the local

suitable,L *

management system determines the optimal node N for placing the task T, among

target, suitable,L

Decentralized Task Allocation Method in Hierarchical IoT Systems Using Fuzzy Logic 173

the available computing nodes N

suitable, L *
If the current tier L meets the requirements of the task T,, but does not contain available nodes
N

allocation direction D, changes to upward, and the current tier L is excluded from the set of

= with the necessary computing resources for executing the task T, then the task

suitable,L

permissible tiers L, .0 < Laaiane ‘L) - The change of allocation direction D, to upward is justified

by the fact that at the upper hierarchy tier, the probability of having a node with the necessary
computing resources is higher than at the lower tier.

If the current tier L does not meet the requirements of the task T., i.e., the task allocation

direction D, indicates redirecting the task to a higher or lower tier. Then the management system
determines the next tier for task transfer based on the current tier L value and the allocation direction
D, . If the new tier belongs to the set of available tiers L, ;... then the task is redirected to the
determined tier, after which the analysis process is repeated. If the new tier does not belong to the set
of available tiers L, ;... , then the task T, is placed in a queue or rejected depending on the policies
implemented in the management system.

To determine the task allocation direction selectSuitableDirection (P) and select the

I
computing node for its execution selectsuitableNode (B, N ...) » Mamdani fuzzy inference

systems are used [11-13]. This approach allows for formalizing the decision-making process under
uncertain conditions, which are associated with dynamic changes in task characteristics, computing
resource availability, and load in the 10T system.

In general, a fuzzy logic inference system consists of the following stages (Fig. 4) [11-13]:

— Fuzzification — converting crisp input values into fuzzy sets by determining their degree of
membership to corresponding linguistic terms.

— Rule base application — applying a set of fuzzy “if-then” rules that describe dependencies
between input and output parameters.

— Fuzzy logical inference — determining the degree of truth of each rule using fuzzy operators.

— Defuzzification — converting the obtained fuzzy results into a crisp value using defuzzification
methods.

Knowledge Base
DataBase
Rule Base
2 v
Crisp Input o o Crisp Output
——» Fuzzification Defuzzification —»
A 4

A
Fuzzy Output

Fuzzy Input | £;77y Inference

Engine

Fig. 4. Fuzzy logic inference system

4.4.1. Fuzzy inference system for determining allocation direction
The rational allocation direction D, of the task T. € T is determined using a fuzzy logic

inference system based on task parameters P ={p* |k :1,_K} (Fig. 5).

174 Information, Computing and Intelligent Systems N2 6, 2025

Computational Rule 1: P1 = Low AND P2 = Low AND P3 = Low

Upward
Complexity (P1) THEN Local P
eee
L.at.e.ncy Rule n: P1 = Medium AND P2 = Medium AND P3 = Medium ‘?*’4'; \ Local
Sensitivity (P2) THEN Upward ’
LA
Netword Rule N: P1 = High AND P2 = High AND P3 = High Downward
Bandwidth (P3) THEN Downward

Fig. 5. Determining the direction of task allocation using fuzzy logic

According to the task allocation criteria, the following task parameters are considered as input
parameters of the fuzzy inference system: computational complexity, latency sensitivity, and network
bandwidth requirements.

The computational complexity P of a task determines the computing power requirements of

the node for its execution. Tasks with high computational complexity require more powerful
resources, available at higher hierarchy tiers (Fog, Cloud), while tasks with low complexity can be
effectively executed on lower-tier devices (Edge).

Latency sensitivity P* characterizes the degree to which a task is critical to its execution speed.

Tasks with high latency sensitivity need to be executed closer to the data source to minimize overall
latency. Conversely, tasks with low latency sensitivity can be executed on remote computing nodes
without a significant impact on quality of service.

Network bandwidth requirements P™ determine the minimum amount of data that needs to be

transmitted through the network per unit of time for effective task execution. Tasks with high
bandwidth requirements can create a significant network load when transmitted to a remote tier;
therefore, such tasks are more efficiently executed locally or at intermediate tiers to reduce network
traffic.

For the described task parameters P*, P*, and P™ triangular membership functions are used,

which determine the degree of parameter value membership to linguistic terms “low”, “medium”, and
“high”. Triangular membership functions are the most common, as they provide computational
simplicity and smooth transitions between terms.

The output parameter of the fuzzy inference system is the allocation direction D, of the task

T., the fuzzy value of which is described by one of three linguistic terms:

— “current” — the task remains at the current tier — accepted for tasks if the tier characteristics
meet task parameters and the tier load allows its execution;

— “upward” — the task is transferred to a higher hierarchy tier — accepted for tasks with high
computational complexity or when the current tier is overloaded,;

— “downward” — the task is transferred to a lower hierarchy tier — accepted for tasks with low
computational complexity and/or high latency sensitivity.

For Cloud and Edge tiers, the task allocation direction can have only two values: “current” and
“downward” for Cloud, or “current” and “upward” for Edge.

Based on input and output linguistic terms, a fuzzy rule base is formed, which contains a set of
“if-then” rules, each determining the correspondence between a combination of input linguistic terms
and a single output linguistic decision. Each tier contains its own fuzzy rule base, which differs from
rule bases of other tiers. Tables 1, 2, and 3 present part of the rules for Edge, Fog, and Cloud tiers,
respectively.

Decentralized Task Allocation Method in Hierarchical IoT Systems Using Fuzzy Logic

175

Table 1. Fuzzy rules for task allocation at the Edge tier

Input parameters

Output parameters

Computational

complexity P

Latency sensitivity F’iIS

Network bandwidth P™

Allocation direction D,

Low High Low Current
Low High Medium Current
Low Medium Low Current
Medium High Low Current
Medium Medium High Current
Medium Low Medium Upward
High High Low Upward
High Medium Medium Upward
High Low Low Upward
Table 2. Fuzzy rules for task allocation at the Fog tier
Input parameters Output parameters
Computational

complexity P

Latency sensitivity PiIS

Network bandwidth F’inb

Allocation direction D,

Low High Low Downward
Low High Medium Downward
Low Medium Low Current
Low Low Medium Current
Medium High Low Current
Medium Medium Medium Current
Medium Low Low Upward
High High High Current
High Medium Medium Current
High Low Low Upward
Table 3. Fuzzy rules for task allocation at the Cloud tier
Input parameters Output parameters
Computational

complexity P

Latency sensitivity PiIS

Network bandwidth Pinb

Allocation direction Di

Low High Low Downward
Low High Medium Downward
Low Medium Low Downward
Low Low Medium Downward
Medium High Low Downward
Medium Medium Medium Current
Medium Low Low Current
High High Low Current
High Medium Medium Current
High Low Medium Current

176 Information, Computing and Intelligent Systems N2 6, 2025

Using the rule base, the fuzzy inference engine determines the fuzzy value for the allocation
direction D, of the task T, based on fuzzy values of task parameters. The final step involves

defuzzification of the fuzzy value using the center of gravity method to obtain a crisp value for the
task allocation direction.

4.4.2. Fuzzy logic inference system for determining a computing node
After determining the rational allocation direction for task T, eT with its subsequent
placement at the corresponding tier L, the local management system of the tier selects the optimal
Node Nige € N girane,. fOr task execution. The determination of the target node N Is performed
using a fuzzy inference system (Fig. 6).
The input parameters of the fuzzy inference system are the formalized optimization criteria of

the allocation problem: task latency Qi'y ; » resource utilization efficiency Q;, and load balancing Qi'f’j

target,L

at the tier.
Rule 1: Q1 = Low AND Q2 = Low AND Q3 = Low
- Excellent
Latency (Q1) THEN Unsatisfactory xeellen
LR
Good
Resource Rule n: Q1 = Medium AND Q2 = Medium AND Q3 = Medium
Utilization (Q2) THEN Satisfactory
' Satisfactory
esee
Load Balance Rule N: Q1 = High AND Q2 = High AND Q3 = High .
- f
(Q3) THEN Satisfactory Unsatisfactory

Fig. 6. Determining a computing node for task execution using fuzzy logic

For each computing node N; €N the total latency of the task T, is calculated
according to (2).
The resource utilization efficiency for a node N, after assigning the task T; to it according to

(6) is calculated as

suitable,L !

Q= —— 3

where I, — resource requirements of the task T;, r, — resource requirements of task T, €T

k=LK, K<I, T
nodes at tier L.
The load balance at the tier L after assigning the task T; to the node N, is calculated using

Jain fairness index according to formula (8).
For each of the three input parameters Q| ;, Q"

used, which determine the degree of membership of normalized values to the linguistic terms “low”,
“medium”, and “high”.

existing !

—set of tasks already executing on the node N, , J, —number of available

existing

and Q" triangular membership functions are

Decentralized Task Allocation Method in Hierarchical IoT Systems Using Fuzzy Logic 177

The output parameter of the system is the node suitability score S, ., which characterizes the

ij?

degree of correspondence of node N; e N ;... forexecuting task T,. The fuzzy value of the score

is represented by one of four linguistic terms:
— “unsatisfactory” — the node is not suitable for task execution,
— “satisfactory” — the node can execute the task with minimal quality,
— “good” — the node can execute the task with good quality,
— “excellent” — the node is best suited for task execution.
Table 4 presents a set of fuzzy rules used by the fuzzy logic inference engine to determine the

fuzzy value of score S, ; for the correspondence of node N, for executing task T;. The final step is

defuzzification using the center of gravity method to obtain a crisp value.
After evaluating the suitability rating of nodes from the set N (..., , task T; is assigned to the

node N, With the maximum rating value. If several nodes have the same maximum rating value,
the node with the lower load value is selected to ensure a uniform load balance.

Table 4. Fuzzy rules for determining node suitability score for task execution

Input parameters Output parameters
Task latency Qil’ j Resource utilization erlj Load balance Qilz Node score S, ;

Low Low Low Unsatisfactory
Low Low Medium Satisfactory

Low Medium Medium Good

Medium Low Low Unsatisfactory
Medium Low High Satisfactory
Medium Medium High Good

High Low High Unsatisfactory
High Medium High Satisfactory

High High Low Unsatisfactory

The proposed fuzzy logic inference system allows for comprehensive consideration of
optimization criteria, ensuring decision-making in conditions of incomplete or inaccurate information
about the state of the level.

5. Results of the investigation of decentralized task allocation method in hierarchical 10T
systems
5.1 Experimental setup

For modeling and investigating the proposed decentralized task allocation method, we used the
iFogSim2 simulator [23-25], which is built on the CloudSim framework [26, 27]. iFogSim2 is an
open-source toolkit for modeling and simulating task allocation methods and resource management
in multi-tier 10T systems, supporting edge and fog environments [23-25]. The open-source Java
library jFuzzy was used to implement fuzzy inference systems and integrate them with iFogSim2.
The membership functions of input and output parameters of the fuzzy inference systems have a
triangular shape. The fuzzy inference system for determining task allocation direction has its rule
base with 27 rules at each hierarchy tier, while the fuzzy inference system for evaluating node
suitability rating uses a unified rule base that also contains 27 rules.

The characteristics of the computing resources, such as processor capacity, memory capacity,
and bandwidth, were selected based on real devices that can be deployed at corresponding tiers of the

178 Information, Computing and Intelligent Systems N2 6, 2025

loT system hierarchy. Table 5 presents examples of physical devices with corresponding
characteristics and their deployment tiers.

For conducting the simulation, the following configuration of computing nodes was selected: 6
nodes at the edge tier, 3 at the fog tier, and 2 at the cloud tier. The characteristics of computing nodes
at corresponding tiers are presented in Table 6.

Table 5. Example of general characteristics of computing nodes

. Processing .

Tier Type power, MIPS Memory Bandwidth Examples
Microcontrollers | 16—600 2-520 MB 10-50 Mbps Arduino Uno, ESP32
Single-board g _ . Raspberry Pi 4B,

Edge | computers 6000-25000 512-8192 MB | 100-1000 Mbps BeagleBone

Intel NUC, Advantech
Edge-gateways 8000-20000 4-8 GB 1000-2500 Mbps ARK, Moxa UC
Industrial PCs | 18000-30000 | 8-16 GB 1-5 Gbps Ii;emens SIMATIC, Cisco
Fog
Microservers 18000-35000 | 8-32 GB 1-10 Gbps Intel NUC Pro, HPE
MicroServer
AWS t3/m5, Azure
Small VM 15000-85000 1-16 GB 5-10 Gbps Standard
Cloud | Medium VM | 85000-150000 | 32-64GB | 10-15 Gbps (WS e3ms.xlarge, Azure
Large VM 150000-500000 | 64-128 GB | 10-25 Gbps S’;‘:ZS p3/p4, Azure NC-
Table 6. Characteristics of computing nodes in simulation
Tier Processing power, MIPS Bandwidth, Mbps Latency between node and local
management system, ms
300 20000 10
600 30000 10
12000 40000 10
Edge
15000 50000 10
18000 45000 10
14000 35000 10
24000 800000 50
Fog 26500 600000 50
50000 700000 50
120000 1800000 100
Cloud
325000 2000000 100

Data transmission latency between tiers is:

— Edge-Fog — 10 ms,

— Fog-Cloud — 50 ms.

To investigate the behavior of 10T systems under different conditions, 13 sets of scenarios were
modeled, including varying numbers of tasks, different task generation intervals, and diverse task
characteristics. Tasks are generated at each tier in equal numbers. The number and characteristics of
computing nodes remain unchanged for all scenarios. Table 7 presents the main parameters of all
scenarios.

Decentralized Task Allocation Method in Hierarchical IoT Systems Using Fuzzy Logic

179

Table 7. Simulation scenario parameters

Number Task characteristics
f tasks Total Tasks Computational Latenc
Scenario 0 number Tier interval, P Y
at each complexity, sensitivity, Size, b
] of tasks ms
tier MIPS p-u.
50/ 150/
Basic 250/ 750/ Edge 500 150-2000 0.7-1.0 500-8000
500 1500
50/ 150/ Fog 800 1000-8000 0.2-0.8 2000-25000
Basic 250/ B0 Coud 1000 | 15000-100000 | 0.1-0.6 10000100000
500 1500 ou e
50/ 150/ Edge 800 150-2000 0.7-1.0 500-8000
Low 250/ 750/ Fog 1200 1000-8000 0.2-0.8 2000-25000
500 1500 Cloud 1500 15000-100000 0.1-0.6 10000-100000
50/ 150/ Edge 100 150-2000 0.7-1.0 500-8000
High 250/ 750/ Fog 200 1000-8000 0.2-0.8 2000-25000
500 1500 Cloud 200 15000-100000 0.1-0.6 10000-100000
Edge 500 150-8000 0.1-0.6 500-600
Compute-
Intensi 100 300 Fog 800 1000-25000 0.1-0.5 1000-2000
ntensive
Cloud 1000 15000-150000 0.1-04 2000-5000
Edge 500 150-1000 0.6-1.0 500-600
Latency-
. 100 300 Fog 800 1000-2500 0.4-1.0 1000-2000
Intensive
Cloud 1000 1000-2500 0.5-1.0 2000-5000
) Edge 500 150-1000 0.2-0.5 5000-50000
Bandwidth
Intensi 100 300 Fog 800 1000-2500 0.1-04 15000-100000
-Intensive
Cloud 1000 1000-2500 0.1-04 50000-500000

To evaluate and compare the results of the task allocation method in each scenario, the
corresponding metrics of tasks and computing nodes were collected.
Task evaluation metrics:
— Task assignment latency — time from task initialization to task assignment to a computing
node. This metric accounts for all routing latency, including latency between computing nodes and
the local management system, as well as transmission latency between tiers;
— Task computation latency — time from task assignment to a computing node to task completion

on that node;

— Task response latency — time from task completion on a computing node to result return to

the task initiator node;

— Total task latency — includes assignment, computation, and response latencies;
— Task initialization tier and task assignment tier.
Computing node evaluation metrics:
— Node load at a specific time;
— Entire tier load at a specific time;

— Tier load balancing index at a specific time.

5.2 Basic scenario
In the basic scenario, 50 tasks were initiated at each tier with moderate values of computational
complexity, latency sensitivity, and data volume. Generation intervals were 500 ms, 800 ms, and
1000 ms for Edge, Fog, and Cloud tiers, respectively. The relationship between the number of tasks
initiated at a certain tier and the number of tasks assigned to that tier for execution is shown in Figure 7.

180 Information, Computing and Intelligent Systems N© 6, 2025

__100,00%

S 80,00%

3 60,00%

g 40,00% m CLOUD
£ 20,00% - . 2 FOG

'z 0.00% - = EDGE
< CLOUD FOG EDGE

Initialization Level

Fig. 7. Ratio of tasks initiated at tier to tasks executed at tier in Basic scenario for 50 tasks

As shown in Figure 7, all tasks initiated at the Edge tier were executed locally, while for the
Fog and Cloud tiers, the share of locally executed tasks is 66%. At the same time, 34% of Fog tasks
were executed on Edge, while 34% of Cloud tasks were distributed between Fog (32%) and Edge
(2%). Overall, only 23% of tasks were assigned to a tier different from the initialization tier, indicating
predominantly local decision-making.

The average values of assignment, computation, and response latencies for all tasks according
to their initialization and assignment tiers are presented in Figure 8.

2
[&]
$ 15
? 1 m Average of Assignment Latency
[5]
205 I I I m Average of Execution Latency
R l- n [- -_l Ba l u
A m Average of Response Latency
S CLOUD EDGE EDGE EDGE
g m Average of Total Latency
X CLOUD FOG EDGE

Initialization Level / Assigement Level

Fig. 8. Average task latency according to initialization and assignment tier in Basic scenario for 50
tasks

The lowest latency is observed with local task execution, with the lowest average task
assignment latency being 130 ms for the Fog tier, and the lowest average computation time of 80 ms
and response latency of 20 ms for the Edge tier. When transferring tasks from higher hierarchy tiers
to lower ones, an increase in all types of latency is observed, which is related to network task routing
costs, reduced computational capabilities, and device bandwidth. The total task execution latency
increases by an average of 400 ms when transferring tasks to lower tiers, which may indicate the need
for further research and optimization of inter-tier task routing.

The dynamics of computing node load and load balancing index for tiers and the 10T system
are shown in Figures 9 and 10.

_ 06
c
S 05
N 04 ——EDGE
= 503 ——FOG
8 02 ——CLOUD
>
g Ové — AL

Time

Fig. 9. Resource utilization at each tier and in the system overall in Basic scenario for 50 tasks

Decentralized Task Allocation Method in Hierarchical IoT Systems Using Fuzzy Logic 181

=

8

S 08

< ——EDGE
M 06

“é 04 ——FOG

;‘) ’ ——CLOUD
? 0’2 — AL

(5]

>

<

o

Time

Fig. 10. Average load balancing index for each tier and system overall in Basic scenario for 50 tasks

The highest load was observed at the Fog tier (peak value 49%). For Edge and Cloud tiers, the
load did not exceed 22% on average, except for a single spike to 40% for the Edge tier. The overall
system load fluctuated between 6% and 17%. These metrics indicate a low system load, with average
task characteristics and moderate task generation intervals. The load balancing index has the best
values for the Cloud tier (from 0.6 to 0.94) and the worst for the Edge tier (from 0.4 to 0.77 on average
without considering individual spikes). This is primarily related to the number of computing nodes at
the tier and their processor power. The Edge tier has 6 computing nodes and executes simple tasks,
so in this scenario, only part of the nodes is actually needed to process all such tasks, while other
nodes remained idle. Meanwhile, the Cloud tier has only two computing nodes that were constantly
loaded with tasks. It should be noted that the load balancing index has a value of 1 in the case of
perfect balance or when no load is present. This is confirmed by Figures 9 and 10, which show that
at the end of the simulation, the tier load decreased to 0, and at the same time, the tier load balancing
index acquired a value of 1.

5.3 Basic scenario with scaling

In this scenario, the impact of increasing the number of tasks on the efficiency of the allocation
method was investigated. Three simulation runs of the basic scenario were performed: 50, 250, and
500 tasks at each tier with unchanged generation intervals. The relationship between the number of
tasks initiated at a tier and the number of tasks executed at that tier for all simulation runs is presented
in Figure 11.

The proposed method demonstrates stable task allocation regardless of the number of tasks. For
the Cloud tier, the share of locally executed tasks is 66%, 65.6%, and 66.2% for scenarios with 50,
250, and 500 tasks, respectively. For the Fog tier, this share is 66% for 50 and 250 tasks, and 63.4%
for 500 tasks. For the Edge tier, 100% of tasks are executed locally regardless of quantity.

100%
80%

Shhh hi | ||

0 mCLOUD

O | . 1 i II roc
50 250 500 50 250 500 50 250 500

mEDGE

Assigment Level

CLOUD FOG EDGE
Initialization Level / Scenario

Fig. 11. Ratio of tasks initiated at tier to tasks executed at tier in Basic scenario for 50/250/500 tasks

Average latency values for different numbers of tasks are shown in Figure 12. Assignment
latency remains stable at 260 ms for all scenarios. Execution latency shows slight growth from 250
ms for 50 tasks to 270 ms for 500 tasks. Total latency increases from 650 ms to 670 ms, representing
a 3% increase with a 10-fold load increase.

182 Information, Computing and Intelligent Systems N© 6, 2025

0,8
3
s 06 m Average of Assignment Latency
S Q 04 m Average of Execution Latency
(5]
2 v 0.2 m Average of Response Latency
:% 0 I I [I I [I I [m Average of Total Latency

50 250 500

Fig. 12. Average task latency in Basic scenario for 50/250/500 tasks

The dynamics of computing node load and IoT system load balancing index for different
numbers of tasks are illustrated in Figures 13 and 14.

_ 08
[
2
< 06
N e 500
=2 504
3 g— — 250
o
5 0,2 — 5
o
& 0

Time

Fig. 13. Resource utilization in Basic scenario for 50/250/500 tasks

1
-CSG) O’8 W
2 So06 ——500
%‘_c: 250
E’ s 0,4
< 0,2 e— 5

0

Time

Fig. 14. Average load balancing index in Basic scenario for 50/250/500 tasks

With 50 tasks, peak load does not exceed 49%, with 250 tasks it reaches 62%, and with 500
tasks — 67%. The overall trend demonstrates proportional modest growth without sharp spikes or
system overloads. A similar dynamic is observed for the load balancing index, which increases with
the number of tasks, indicating better system balance due to greater resource utilization and less
computing node idle time.

5.4 High scenario with scaling

In the High scenario, task generation intervals were reduced to 100 ms, 200 ms, and 200 ms for
Edge, Fog, and Cloud tiers, respectively, resulting in a significantly higher task generation frequency.
Simulation was conducted for 50, 250, and 500 tasks at each tier.

The task allocation for this scenario is illustrated in Figure 15, showing that with high
generation intensity, task allocation remains similar to the basic scenario, with minor differences. The
share of locally executed tasks for the Cloud tier increased to 78%, 77.2%, and 76.4% for 50, 250,
and 500 tasks, respectively, while for Edge and Fog tiers, virtually no changes occurred.

Decentralized Task Allocation Method in Hierarchical IoT Systems Using Fuzzy Logic 183

100%
80%

60%

40% I m CLOUD

1 b

o | | | | =FOG
50 250 500 50 250 500 50 250 500

mEDGE

Assigment Level

CLOUD FOG EDGE
Initialization Level / Scenario

Fig. 15. Ratio of tasks initiated at tier to tasks executed at tier in High scenario for 50/250/500 tasks

The average latency values for different numbers of tasks for this scenario are presented in
Figure 16. Task assignment and response latencies remained at the same level as in the basic scenario
for 50, 250, and 500 tasks. Task computational latency increased by an average of 0.1s for all three
runs compared to the basic scenario. Total task latency increased by an average of 15%.

[EEN

08 m Average of Assignment Latency
) 0.6 m Average of Execution Latency
3 0,4

Average Latency,

02 m Average of Response Latency
’O . [| . I [. I [m Average of Total Latency
50 250 500

Fig. 16. Average task latency in High scenario for 50/250/500 tasks

The dynamics of computing node load and loT system load balancing index for different
numbers of tasks are shown in Figures 17 and 18.

12
c
S 1
g
= 08 — 500
5 =06
—) 5()
8 T 04
3 02 =50
g 0
e -
Time
Fig. 17. Resource utilization in High scenario for 50/250/500 tasks

: \
= 08
C o
2 206 —500
o> ©
ST 04 =250
g

0

Time

Fig. 18. Average load balancing index in High scenario for 50/250/500 tasks

184 Information, Computing and Intelligent Systems N© 6, 2025

As demonstrated in Figure 17, more intensive resource utilization in this scenario: peak load
with 50 tasks is 73%, with 250 tasks — 102%, and with 500 — 91%. Overall, load fluctuates between
40% and 95%, while the average load balancing index is between 0.4 and 0.6, which may indicate
overloading of individual nodes or tiers.

5.5 Low scenario with scaling

In the Low scenario, task generation intervals were increased to 800 ms, 1200 ms, and 1500 ms
for Edge, Fog, and Cloud tiers, respectively, creating a more sparse task flow. Simulation was
conducted for 50, 250, and 500 tasks at each tier.

The ratio between the number of tasks initiated at a tier and the number of tasks executed at
that tier for this scenario is presented in Figure 19. The overall trend remains similar to the basic
scenario with the only difference being that the share of locally executed tasks for the Cloud tier
decreased to 62%, 64.8%, and 65.4% for 50, 250, and 500 tasks, respectively, compared to the basic
scenario, indicating lower Fog tier load, allowing it to process part of the tasks. This is confirmed by
the percentage of Cloud tasks assigned to the Fog tier.

100%
80%

60%
40% = CLOUD
20% I I I I I I mFOG
0% - mEDGE
50 250 500 50 250 500 50 250 500

CLOUD FOG EDGE
Initialization Level / Scenario

Assigment Level

Fig. 19. Ratio of tasks initiated at tier to tasks executed at tier in Low scenario for 50/250/500 tasks

Average latency values for different numbers of tasks for this scenario are shown in Figure 20.
Latency values remain close to the basic scenario, with total execution latency for 250 and 500 tasks
decreased by 12 ms and 13 ms, respectively. This is related to fewer task routing since resource
availability at target task execution tiers increased.

0,7

[&]

% 06

LC>>‘ 05 m Average of Assignment Latency

[5)

E 04 m Average of Execution Latency
0

(5]

o

3
S0 I I I I m Average of Response Latency
< 0,
o} m Average of Total Latenc
2 [] L] []
50 250 500

Fig. 20. Average task latency in Low scenario for 50/250/500 tasks

The dynamics of computing node load and loT system load balancing index for different
numbers of tasks are illustrated in Figures 21 and 22.

Decentralized Task Allocation Method in Hierarchical IoT Systems Using Fuzzy Logic 185

06
3
S 05
S
= 0,4
N 500
=03
5 | c—)50
§ 0,2 50
301
[5)
X | :
Time
Fig. 21. Resource utilization in Low scenario for 50/250/500 tasks

1
8
§08
353
206 =500
[15
(5]
202 =50
S
g 0

Time

Fig. 22. Average load balancing index in Low scenario for 50/250/500 tasks

As demonstrated in Figure 21, the most uniform resource utilization without sharp peaks
compared to other scenarios. The maximum load does not exceed 50% even for 500 tasks, and overall
dynamics are characterized by smooth changes within a 20-40% system load range. Average load
balancing index values (Fig. 22) are predominantly in the 0.6-8.0 range, demonstrating the best
indicators among all scenarios.

5.6. Comparative analysis at different task generation intensities
For a detailed analysis of the impact of task generation intensity on system performance, a
comparison of three scenarios with the same number of tasks (50 at each tier) but different generation
intervals was conducted. Task allocation at different task generation intensities is shown in Figure
23, demonstrating an increase in the share of locally executed tasks for the Cloud tier with decreasing
task generation intervals: from 62% for the Low scenario to 78% for the High scenario.

100%

©
z 80%
- 0,
E 60%
g 40% mCLOUD
g 20% I I I I I " FOG
0% m EDGE
basic hlgh low basic high low basic high low
CLOUD FOG EDGE

Initialization Level / Scenario

Fig. 23. Ratio of tasks initiated at tier to tasks executed at tier in Basic/High/Low scenarios for 50
tasks

186 Information, Computing and Intelligent Systems N© 6, 2025

The latency comparison between scenarios is presented in Figure 24. Assignment latency is
within 272-279 ms for all scenarios. Response latency also has a virtually identical value for all
scenarios. The largest differences are observed in computation latency, which increases by
approximately 120 ms with increased task generation intensity due to increased load on computing
nodes.

[EE

[&]
[<5]
; 0,8
% 06 m Average of Assignment Latency
5 ' m Average of Execution Latency
% 04 m Average of Response Latency
T 02 I I I I I I m Average of Total Latency
<

0]]]

basic high low

Fig. 24. Average task latency in Basic/High/Low scenarios for 50 tasks

The dynamics of computing node load and 10T system load balancing index for different task
generation intensities are shown in Figures 25 and 26.

08
-
S
S 06
N
= = high
5 3 04 _
§ e NASIC
a3 02 = ow
3
e
0 -
Time
Fig. 25. Resource utilization in Basic/High/Low scenarios for 50 tasks
1 ’ -
g 08
- § 06 e high
S S .
© —
s g 04 basic
I 02 —low

Time

Fig. 26. Average load balancing index in Basic/High/Low scenarios for 50 tasks

The typical dynamics of resource usage for different scenarios are shown in Figure 25. The
High scenario is characterized by high short-term resource utilization with a peak value of 73%. Basic
and Low scenarios demonstrate moderate fluctuations, averaging between 20% and 40%. The
duration of active resource utilization periods also correlates with task generation intervals. The load
balancing index (Fig. 26) for the Low scenario shows the most stable and high values (0.6-0.85).

Decentralized Task Allocation Method in Hierarchical IoT Systems Using Fuzzy Logic 187

5.7 Comparative analysis with different task characteristics

To investigate the adaptability of the method to different task types, three specialized scenarios
were conducted with 100 tasks at each tier, but with different emphases on task characteristics. Task
allocation for these scenarios is presented in Figure 27, demonstrating expected changes in task
allocation when corresponding task parameters change. Thus, with increased computational
complexity of tasks, most tasks remain at Cloud and Fog tiers without being redirected to lower
hierarchy tiers. With increased latency sensitivity, the majority of tasks (94%) are redirected to the
Edge tier. And with high bandwidth requirements, characterized by task data size, tasks were
predominantly executed at Fog and Edge tiers.

100%

% 80%
- 60%
S 40%
g 20%
2 % B - | = CLOUD
< s T 2 £ s 2 £ s 2
S 5 2 5 5 2 5 5 2 mFOG
2 =] 2 =] 2 =]
S [< S [< S =] <
S g S £ g g mEDGE
8 =3 8 =3 8 =3
£ £ £
o o o
o o (&)
CLOUD EDGE FOG

Initialization Level / Scenario

Fig. 27. Ratio of tasks initiated at tier to tasks executed at tier in
Compute-Intensive/Latency-Intensive/Bandwidth-Intensive scenarios for 100 tasks

The dynamics of computing node load for different task characteristics are shown in Figure 28.

0,7
)

o 0,6
505
0,4
0,3 latency
02 = handwidth
0,1

0 M—W

Time

computational

Resource Utilizat

Fig. 28. Resource utilization in Compute-Intensive/Latency-Intensive/Bandwidth-Intensive
scenarios for 100 tasks

Tasks with higher computational complexity expectedly lead to increased system load, while
latency sensitivity and bandwidth requirements virtually do not affect system load.

6. Discussion of obtained results of proposed decentralized task allocation method

Experimental investigation of the developed method using the iFogSim2 simulator has been
demonstrated that with a load of 50 tasks per tier at moderate generation intervals, the method ensures
predominantly local task execution with low resource utilization up to 20%. When scaling the load
to 250 and 500 tasks, the proportion of locally executed tasks remains virtually unchanged, while
total task latency increases by 3%, which indicates the stability of the method regardless of the
number of tasks. Changes in task generation intensity have shown that at small intervals, the

188 Information, Computing and Intelligent Systems N2 6, 2025

proportion of local execution for the Cloud tier increases to 76-78%, while at low intensity, optimal
utilization of available resources is achieved with improved balance indicators of 0.6-0.8. Task
assignment latency and response latency remain virtually unchanged. Total task latency increases by
approximately 10-20% when task generation intensity increases due to increased system load. The
method demonstrates expected distribution adaptivity for different task types. Computationally
intensive tasks are mainly executed on more powerful Cloud and Fog tiers. Latency-sensitive tasks
are redirected to the Edge tier in 94% of cases to minimize latency. Tasks with high bandwidth
requirements are optimally distributed between Fog and Edge tiers. However, the total task execution
latency increases on average by 400 ms when transferring tasks to lower tiers. Additionally, there are
extra transport latencies when transferring tasks to another tier and subsequently returning, in cases
where the necessary computing power is insufficient. Therefore, further research will be directed
toward optimizing the developed task allocation method, specifically inter-tier task routing, to reduce
total task execution time by decreasing the number of task redirections between tiers. Additional
research is also needed to verify the feasibility of implementing resource release mechanisms during
task allocation. Furthermore, a future research direction is the development of MEL management
methods for efficient resource utilization, load balancing, and reducing task execution time.

Conclusions

In this paper, a general model for task allocation and resource management in 10T systems
based on osmotic computing has been developed. The considered hierarchical three-tier architecture
of distributed 10T systems has been designed to ensure the rational utilization of computing resources
at the edge, fog, and cloud tiers, regulate load distribution among them, and improve system
adaptivity to dynamic environmental changes.

A decentralized task allocation method using fuzzy logic apparatus has been proposed, which
considers both the characteristics and requirements of tasks and the state of computing resources to
determine the optimal execution environment. The allocation method includes two decision-making
stages using the Mamdani fuzzy inference system: determining the task allocation direction and
selecting the optimal computing node for its execution.

Experimental investigation of the developed method were conducted using the iFogSim2
simulator. The results of the investigation showed that the percentage of locally executed tasks
remains virtually unchanged with different numbers of tasks, indicating stability in decision-making.
An increase in the intensity of task generation leads to an increase in task execution latency due to an
increase in the load on the computing nodes, while task assignment latency and task response latency
remain unchanged. The method demonstrated the adaptability of distribution for different types of
tasks.

References

[1] C. Cole, “IoT 2024 in review: The 10 most relevant 10T developments of the year”, 10T Analytics,
Jan. 15, 2025. [Online]. Available: https://iot-analytics.com/iot-2024-review (Accessed: Apr. 27,
2025).

[2] I. Alfonso, M. Alférez, V. Amaral, and D. Diaz, “Self-adaptive architectures in 10T systems: a
systematic literature review”, Journal of Internet Services and Applications, vol. 12, 2021,
pp. 1-28, https://doi.org/10.1186/s13174-021-00145-8.

[3] O. Rolik, S. Telenyk, and E. Zharikov, “loT and Cloud Computing: The Architecture of
Microcloud-Based 10T Infrastructure Management System”, in Securing the Internet of Things:
Concepts, Methodologies, Tools, and Applications, Hershey, PA, USA: IGI Global, 2020,
pp. 1157-1185, https://doi.org/10.4018/978-1-5225-9866-4.ch052.

[4] R. Villari, A. Puliafito, M. Fazio, and M. Paone, “Osmotic Computing: A New Paradigm for
Edge/Cloud Integration”, IEEE Cloud Computing, vol. 3, no. 7, 2016, pp. 76-83,
https://doi.org/10.1109/MCC.2016.124.

[5] B. Neha, M. Shyamala, K. P. Rajan, M. Krishnaveni, and R. Gnanamurthy, “A Systematic Review

Decentralized Task Allocation Method in Hierarchical IoT Systems Using Fuzzy Logic 189

on Osmotic Computing”, ACM Transactions on Internet of Things, vol. 3, no. 2, 2022, pp. 1-30,
https://doi.org/10.1145/3488247.

[6] A. Mahapatra, K. Mishra, R. Pradhan, and S. Majhi, “Next Generation Task Offloading
Techniques in Evolving Computing Paradigms: Comparative Analysis, Current Challenges, and
Future Research Perspectives”, Archives of Computational Methods in Engineering, 2023,
https://doi.org/10.1007/s11831-023-10021-2.

[7] A. Mahapatra, K. Mishra, S. K. Majhi, and R. Pradhan, “Latency-aware Internet of Things
Scheduling in Heterogeneous Fog-Cloud Paradigm”, in Proceedings of the 3rd International
Conference on Emerging Technology (INCET), Belgaum, India, May 27-29, 2022, IEEE, pp. 1-
7, https://doi.org/10.1109/INCET54531.2022.9824613.

[8] S. Wang, T. Zhao, and S. Pang, “Task scheduling algorithm based on improved firework algorithm
in fog computing”, IEEE Access, wvol. 8 2020, pp. 32385-32394,
https://doi.org/10.1109/ACCESS.2020.2973758.

[9] T. Zheng, J. Wan, J. Zhang, and C. Jiang, “Deep Reinforcement Learning-Based Workload
Scheduling for Edge Computing”, Journal of Cloud Computing: Advances, Systems and
Applications, vol. 11, article 3, 2022, https://doi.org/10.1186/s13677-021-00276-0.

[10] M. Gamal, R. Rizk, H. Mahdi, and B. E. Elnaghi, “Osmotic bio-inspired load balancing algorithm
in cloud computing”, IEEE Access, wvol. 7, 2019, pp. 42735-42744,
https://doi.org/10.1109/ACCESS.2019.2907615.

[11] E. H. Mamdani and S. Assilian, “An Experiment in Linguistic Synthesis with a Fuzzy Logic
Controller”, International Journal of Man-Machine Studies, vol.7, no.1, 1975, pp.1-13,
https://doi.org/10.1016/S0020-7373(75)80002-2.

[12] G.J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications. Englewood Cliffs,
NJ, USA: Prentice Hall, 1995.

[13] H.J. Zimmermann, Fuzzy Set Theory — and Its Applications, 4th ed. Dordrecht, Netherlands:
Springer, 2001, https://doi.org/10.1007/978-94-010-0646-0.

[14] A.Mahapatra, S.K.Majhi, K.Mishra, R.Pradhan, D.C.Rao, and S.K.Panda, “An
Energy-Aware Task Offloading and Load Balancing for Latency-Sensitive IoT Applications in the
Fog-Cloud Continuum”, IEEE Access, vol. 12, 2024, pp. 14334-14349,
https://doi.org/10.1109/ACCESS.2024.3357122.

[15] C. Chakraborty, K. Mishra, S. K. Majhi, and H. K. Bhuyan, “Intelligent Latency-Aware Tasks
Prioritization and Offloading Strategy in Distributed Fog-Cloud of Things”, IEEE Transactions on
Industrial ~ Informatics, vol. 19, no. 2, pp. 2099-2106, Feb. 2023,
https://doi.org/10.1109/T11.2022.3173899.

[16] W.Jin and A. Rezaeipanah, “Dynamic Task Allocation in Fog Computing Using Enhanced
Fuzzy Logic Approaches”, Scientific Reports, vol.15, no.1, art.18513, 2025,
https://doi.org/10.1038/s41598-025-03621-4.

[17] D. H. Abdulazeez and S. K. Askar, “A Novel Offloading Mechanism Leveraging Fuzzy Logic
and Deep Reinforcement Learning to Improve IoT Application Performance in a Three-Layer
Architecture within the Fog-Cloud Environment”, IEEE Access, vol. 12, 2024,
https://doi.org/10.1109/ACCESS.2024.3376670.

[18] S. Javanmardi, G. Sakellari, M. Shojafar, and A.M. Caruso, “Why It Does Not Work?
Metaheuristic Task Allocation Approaches in Fog-Enabled Internet of Drones”, Simulation
Modelling Practice and Theory, vol. 133, 2024, art. 102913,
https://doi.org/10.1016/j.simpat.2024.102913.

[19] D. Alsadie, “Advancements in heuristic task scheduling for IoT applications in fog-cloud
computing: challenges and prospects,” Peer] Computer Science, vol. 10, art.e2128, 2024,
https://doi.org/10.7717/peerj-cs.2128.

[20] E. Hamza, M. Bakhouya, and A. Koubaa, “Multi-objective Fuzzy Approach to Scheduling and
Offloading Workflow Tasks in Fog-Cloud Computing”, Applied Sciences, vol. 13, no. 15,
art. 8785, 2023, http://dx.doi.org/10.1016/j.simpat.2022.102687.

[21] M. Villari, A. Puliafito, M. Fazio, S. Dustdar, R. Ranjan, and S. Bonomi, “Software Defined

190 Information, Computing and Intelligent Systems N2 6, 2025

Membrane: Policy-Driven Edge and Internet of Things Security”, IEEE Cloud Computing, vol. 4,
no. 4, 2017, pp. 92-99, https://doi.org/10.1109/MCC.2017.3791014.

[22] R. Jain, D. M. Chiu, and W. Hawe, “A Quantitative Measure of Fairness and Discrimination for
Resource Allocation in Shared Computer Systems”, arXiv preprint, arXiv:cs/9809099, 1998,
https://doi.org/10.48550/arXiv.cs/9809099.

[23] M. R. Mahmud, S. Pallewatta, M. Goudarzi, and R. Buyya, “iFogSim2: An Extended iFogSim
Simulator for Mobility, Clustering, and Microservice Management in Edge and Fog Computing
Environments”, arXiv preprint, arXiv:2109.05636, 2021,
https://doi.org/10.48550/arXiv.2109.05636.

[24] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A Toolkit for Modeling and
Simulation of Resource Management Techniques in Internet of Things, Edge and Fog Computing
Environments”, Software: Practice and Experience, vol. 47, no. 9, pp. 1275-1296, Jun. 2017,
https://doi.org/10.1002/spe.2509.

[25] R.Mahmud and R.Buyya, “Modelling and Simulation of Fog and Edge Computing
Environments Using iFogSim Toolkit”, arXiv preprint, arXiv:1812.00994, Dec. 2018,
https://doi.org/10.48550/arXiv.1812.00994.

[26] R. Andreoli, J. Zhao, T. Cucinotta, and R. Buyya, “CloudSim 7G: An Integrated Toolkit for
Modeling and Simulation of Future Generation Cloud Computing Environments”, Software:
Practice and Experience, vol. 53, no. 6, pp. 1041-1058, 2025, https://doi.org/10.1002/spe.3413.

[27] M. A. Shahid, M. M. Alam, M. M. Su’ud, and K. Pratap, “A Systematic Parameter Analysis of
Cloud Simulation Tools in Cloud Computing Environments”, Applied Sciences, vol. 13, no. 15,
art. 8785, 2023, https://doi.org/10.3390/app13158785.

Decentralized Task Allocation Method in Hierarchical IoT Systems Using Fuzzy Logic 191
YJIK 004.75

METOJ JEHEHTPAJI30BAHOI'O PO3MOJILTY 3AJIAY B
IEPAPXIYHUX CUCTEMAX loT 3 BAKOPUCTAHHSM HEYITKOI
JOTIKHU

Oleksandr Rolik

National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
http://orcid.org/0000-0001-8829-4645

Dmytro Nahaiko

National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
https://orcid.org/0009-0003-3611-3605

BuxopucranHs TyMaHHHMX Ta KpallOBUX 0OUHCIIEHb PO3IMIUPSAIOTH 0OUNCIIOBAIbHI TOTYKHOCTI
cuctemu Iutepuer peueit (IoT) mo kparo Mepexi, cHpusioud MiHIMI3alli 3aTPUMOK MiJ Yac
BUKOHAHHS 3a7a4. OCMOTHYHI OOYHCIICHHS JJOTIOBHIOIOTH PO3TOIUICHI 00UMCIEHHS, 3a0€e3MMeYyIUH
0€31110BHY IHTETpalilo M 00YNCITIOBATBHUMHU CEPe0BUIIIAMH 3aBASKH AMHAMIYHIM MIirparii Mikpo-
€JIIEMEHTIB MDK DPI3HUMHU pIBHSAMHU i€papxii BIANOBIZHO A0 MOTOYHUX YMOB HAaBaHTAXKEHHS Ta
JOCTYIHOCTI pecypciB. OnHak, 3 ypaxyBaHHSIM KOHIIEMIII OCMOTUYHUX OOYHMCIICHb, aKTyaJbHUM
3aBIaHHSIM 3QJMIIAETHCS YIPABIIHHS PO3MOALUIOM 33/1ad B YMOBaX HEBU3HAYEHOCTI, JUHAMIYHOCTI
Ta TeTeporeHHOCTI cepemoBuma [oT. Meroto MOCHIKEHHS € TMiABUIIEHHS e()EeKTHBHOCTI
BUKOPHUCTAHHS PECYpPCIB Ta PO3MOJLTY 3a/1a4 B iepapxiyHux cucremax [oT Ha OCHOBI OCMOTHYHHX
00urCcIeHb B YMOBAaX HEBH3HAYEHOCT] HA TMHAMIYHUX 3MIH cepefoBuina. O0’€KTOM JOCITIKEHHS €
MPOIIECH PO3MOALTY 3aj1ad y OararopiBHeBuX cuctemax [oT, mo BkItOUaloTh XMapHi, TyMaHHI Ta
KpaiioBi o6unciieHHs. [IpeqmeTom AOCTIKEHHS € METOIU Ta MOJIEN1 PO3TOIUTY 3a/1a4 1 YIIpaBIIiHHS
oOuMCIIOBAIbBHUMU pecypcamMu B cucteMax [oT 3 BHUKOpUCTaHHSIM MapajurMud OCMOTHUYHHUX
00YHCIIEHb.

B craTTi peacTaBieHO TPUPIBHEBY l€papXidyHy MOJENb KEPYBaHHS, MOOYJOBaHY Ha OCHOBI
XMapHOTO, TYMaHHOTO Ta KpaloBOTO CEPENIOBUIL, sIKa peali3ye EeHTPali30BaHO-CIICHTPaII30BaHe
ynpaBiiaHsa. KoxkeH piBeHb NpeAcTaBiIeHUH HAOOPOM OOYMCIIOBAIBHUX BY3JIIB Ta CHCTEMOIO
YOpaBIiHHSA, KA 3IHCHIOE JIOKAIBHUI PO3IOJILT 3a/1a4, MOHITOPUHT CTaHy PECYpCiB Ta yIPaBIIiHHSI
Mikpo-enemMeHTamu. CrcTeMa yrpaBJliHHS HIUKYE pPO3TAIIOBAHOTO PIBHS MiMOPAIKOBYETHCS BHUILIIN
3a lepapxi€r0 cucTeMi ymnpaBiiHHA. Po3po0iieHO MeToJ JCIeHTPai30BAaHOTO PO3MOJALTY 3a1ad B
iepapxiuyHux cuctemax [oT 3 BUKOpHCTaHHAM amapary HEYiTKO1 JIOTiKU. MeTo] po3MoALTy BKIIIOUaE
JIBA €Talu MPUUAHATTS pIlIeHb 3 BUKOPUCTAHHSM CHCTEMH HEYITKOTO JIOTTYHOTO BHCHOBKY:
BU3HAUEHHS HANPSIMKY PO3MOJIUTY 3a7adyi Ta BUOIp ONTUMAIbHOTO OOYUCIIOBAHOTO BY3JNa AJs ii
BUKOHAHHA. BU3Ha4yeHHs HampsIMKy PO3MOJUTY 3ajadi 3JIHCHIOETHCS HAa OCHOBI XapaKTEPUCTHK
3a/a4i, a peUTUHT TPUJATHOCTI OOUYHMCIIOBAILHUX BY3J1iB BU3HAUAETHCS 3 ypaxyBaHHSIM 3aTPUMKHU
BHUKOHAHHS 3aJ1a4i, €EeKTUBHOCTI BUKOPUCTAHHS peCypcCiB Ta OalaHCyBaHHs HaBaHTaKEHHS. 3agada
MPU3HAYAETHCS BY3IY 3 MaKCHMaJbHUM peHTHHroM. BUKOpUCTaHHS HEYITKOI JOTIKM 3a0e3rmedye
MPUIHATTS palliOHaTbHUX PillleHb B YMOBaX HEBU3HAYEHOCTI B peaTlbHOMY 4acl, 1110 € XapaKTepHUM
JUIS BUCOKO-T€TEPOTeHHUX Ta JuHaMiuHuX cepeaoBuil [oT.

ExcniepuMeHTansHe MOICTIOBaHHS Ta JIOCHIHKEHHS METO/1y OYII0 371l ICHEHO 3 BUKOPUCTAHHAM
cepenopuia cumymsnii iFogSim. Pe3synbraTté gochmipkKeHHS TMOKa3ajiH, MO0 BIICOTOK JIOKAIbHO
BUKOHAHUX 3a]1a4 3aJIUIIAETHCS (PaKTUIHO HE3MIHHUM IIPH Pi3Hil KUTBKOCTI 33124, 0 CBITYUTH PO
CTaOUIBbHICTh MPUUHATTA pilleHb. 30UIbIIEHHS IHTEHCUBHOCTI T€Hepalii 3aad MpU3BOJUTH 10
3pOCTaHHS 3aTPUMKH OOYHUCIICHHS 3afadi yepe3 30UIbIICHHS HABAHTAKEHHS Ha OOYHMCIIOBANBHI
BY3JIH, IPU IIbOMY 3aTpUMKa MPU3HAUEHHS 3a/1a41 Ta 3aTPUMKa BIAMOBI/II 3aTUIIAIOTHCSI HE3MIHHUMU.
MeTto1 TpoAEMOHCTPYBaB aIalITUBHICTh PO3MOILTY MPU PI3HUX TUIAX 3a]1a4.

Knrouosi cnoBa: Indopmariiini cucremu, [Hrepuer peueit, loT, xmapHi oOuuCIeHHs, TyMaHH1
oOUMCIIeHHs, KpailoBi 0OYMCIIEHHS, OCMOTHYHI OOYHMCIIEHHS, PO3IOLT 3aa4, HEUiTKa JIOTIKa.

