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The use of fog and edge computing extends the computational capabilities of IoT systems to the 

network edge, contributing to the minimization of delays during task execution. Osmotic computing 
complements distributed computing by providing seamless integration between computational 
environments through dynamic migration of micro-elements across different hierarchy tiers according 
to current load conditions and resource availability. However, within the concept of osmotic computing, 
a key challenge remains the effective management of task allocation under conditions of uncertainty, 
dynamism, and heterogeneity of the IoT environment. The aim of this study is to improve the efficiency 
of resource utilization and task allocation in hierarchical IoT systems based on osmotic computing under 
uncertain and dynamically changing environmental conditions. The object of the study is the process of 
task allocation in multi-tier IoT systems that include cloud, fog, and edge computing. The subject of the 
study is methods and models for task allocation and computing resource management in IoT systems 
using the osmotic computing paradigm. 

The paper presents a three-tier hierarchical management model built on cloud, fog, and edge 
environments, which implements a centralized-decentralized management approach. Each tier is 
represented by a set of computing nodes and a management system that performs local task allocation, 
resource state monitoring, and micro-element management. The management system of the lower tier is 
subordinate to the higher-tier management system in the hierarchy. A method for decentralized task 
allocation in hierarchical IoT systems using fuzzy logic has been developed. The allocation method 
includes two decision-making stages using a fuzzy inference system: determining the direction of task 
allocation and selecting the optimal computing node for its execution. The determination of task 
allocation direction is carried out based on task characteristics, and the suitability rating of computing 
nodes is determined considering task execution latency, resource utilization efficiency, and load 
balancing. The task is assigned to the node with the maximum rating. The use of fuzzy logic ensures 
rational decision-making under conditions of uncertainty in real-time, which is characteristic of highly 
heterogeneous and dynamic IoT environments. 

Experimental modeling and investigation of the method were carried out using the iFogSim 
simulation environment. The research results show that the percentage of locally executed tasks remains 
virtually unchanged with different numbers of tasks, indicating stability in decision-making. Increasing 
the intensity of task generation leads to an increase in task computation latency due to increased load on 
computing nodes, while task assignment latency and response latency remain unchanged. The method 
demonstrated adaptability in task allocation for different types of tasks. 
Keywords: Internet of Things, IoT, Fog Computing, Edge Computing, Osmotic computing, Fuzzy 
Logic 

 

1. Introduction  

The active development and implementation of IoT technologies have led to a rapid growth in the 

number of devices connected to IoT. In 2024 alone, their number exceeded 18 billion, which is 13% 
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more than in 2023, while corporate spending on IoT infrastructure reached USD 298 billion [1]. This 

trend is accompanied by an increase in data volumes generated by IoT devices and an increasing 

computational load on IT infrastructure, which complicates maintaining a guaranteed level of Quality 

of Service (QoS). Additionally, the high heterogeneity and dynamism that characterize IoT 

environments [2] require an appropriate level of adaptability in IoT systems to real-time changes. 

The use of fog and edge computing partially addresses these problems by extending the system's 

computational capabilities to the network edge, thereby bringing data collection, analysis, and 

processing closer to the data source. This approach helps minimize data transmission delays, reduces 

overall task execution time, and decreases load in the cloud environment [3]. 

However, the application of fog and edge technologies creates new challenges related to uneven 

load distribution, limited resources at the periphery, and the need to respond to dynamic connections, 

disconnections, and failures of computing nodes. 

To address these challenges, [4] proposed the concept of osmotic computing, inspired by the 

chemical process of osmosis, which involves the autonomous and dynamic management of 

computational resources. Through continuous vertical load balancing between cloud, fog, and edge 

environments, osmotic computing ensures system adaptation to real-time changes, maintaining 

uniform load distribution among different computing environments [4, 5]. 

However, considering the concept of osmotic computing, a key challenge remains the effective 

management of task allocation to improve the productivity and efficiency of distributed multi-tier IoT 

systems. It is important to ensure service delivery with an appropriate QoS level under conditions of 

uncertainty, dynamism, and heterogeneity of the environment. 

 

2. Literature review 

Task allocation in distributed IoT systems is a well-researched problem. [6] conducted a 

comprehensive analysis of various computing paradigms, including fog, edge, and osmotic 

computing, which contribute to latency reduction and optimization of resource utilization. 

Additionally, [6] examines the main groups of approaches and their applications for effective task 

and resource management, including metaheuristic, machine learning, and hybrid approaches. 

Among these, for example, [7] developed an approach for scheduling latency-sensitive tasks in a 

heterogeneous Fog-Cloud environment using a Multi-Level Feedback Queue (MLFQ) to classify 

tasks based on the priorities of each level. In [8], an improved fireworks algorithm is proposed to 

optimize load distribution in a fog environment. For edge computing, [9] implemented deep 

reinforcement learning for dynamic workload scheduling. In [10], a bio-inspired load balancing 

algorithm was developed using osmotic pressure principles. 

In [5], scientific approaches using osmotic computing are systematized, which implement the 

dynamic distribution of tasks between the Edge, Fog, and Cloud environments. Particular attention is 

paid to the problems of self-organization, load detection, and adaptive scaling. The methods used 

include heuristic algorithms, graph theory models, fuzzy logic, and artificial neural networks. The 

results show the advantages of the osmotic model in conditions of limited resources and unpredictable 

network topology. 

The use of fuzzy logic warrants special attention, as it allows consideration of input data 

inaccuracy and system state uncertainty. Approaches using fuzzy inference systems [11–13] have 

relatively low computational complexity and can respond quickly to changing conditions, making 

them promising for distributed IoT systems that encounter unpredictable and dynamic environmental 

changes. 

In [14], a comprehensive approach is proposed for solving task scheduling and load balancing 

problems in a heterogeneous Fog-Cloud environment. A Binary Linear-Weight JAYA (BLWJAYA) 

algorithm was developed for optimal task mapping to computing nodes. Fuzzy logic is used to 

determine target tiers for task allocation, considering resource heterogeneity and system requirements 

(network bandwidth, task size, resource utilization, and latency sensitivity). 

In [15], a task prioritization mechanism is presented, where tasks are classified according to the 

level of sensitivity to delay and served at different tiers. Decisions are made using fuzzy logic and 
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heuristic utility functions, which allows for ensuring a balance between task priority and resource 

availability. 

In [16], a Dynamic Task Allocation using Fuzzy Logic Enhanced approach (DFA-FLE) is 

proposed, which adapts to environmental changes, ensuring latency reduction and improved resource 

utilization efficiency through a two-tier fuzzy inference system. 

Researchers also actively study task scheduling approaches that combine fuzzy logic methods 

and machine learning [17] or heuristic strategies [18]. In [19], the effectiveness of multi-criteria 

decision-making is demonstrated when considering parameters such as bandwidth, latency, energy 

consumption, and task execution cost. In [20], an approach for workflow scheduling and allocation 

in hybrid Fog-Cloud computing environments using multi-agent systems and fuzzy logic is proposed. 

To summarize, all these studies emphasize the importance of adaptive task allocation methods 

in distributed multi-tier IoT systems for improving efficiency, reducing latency, and optimizing 

resource utilization. However, existing solutions do not combine osmotic computing, which enables 

adaptive inter-tier load balancing, with fuzzy logic apparatus to ensure effective system operation in 

real-time considering environmental uncertainty. Additionally, the works consider only upward task 

flow and do not account for the possibility of task generation at higher hierarchy tiers with subsequent 

task allocation to the edge tier. 

 

3. The aim and objectives of the study 

The aim of the study is to improve the efficiency of resource utilization and task distribution in 

hierarchical IoT systems based on osmotic computing using fuzzy logic. The research focuses on 

ensuring the rational selection of a computing environment for performing tasks in conditions of 

uncertainty and dynamic environmental changes. 

The object of the study is the processes of task allocation in IoT systems with multi-tier 

environments that include cloud, fog, and edge computing. 

The subject of the study is the methods and models for task allocation and computing resource 

management in IoT systems using the osmotic computing paradigm. 

To achieve the goal, the following objectives were set: 

– to develop a hierarchical model for task allocation and resource management in IoT systems 

based on osmotic computing; 

– to develop a task allocation method using a fuzzy inference system considering task 

characteristics, computing resource constraints, and optimization criteria; 

– to conduct an experimental investigation of the proposed method to evaluate its effectiveness 

under various scenarios and load conditions. 

 

4. The study materials and methods of decentralized task allocation in hierarchical IoT 

systems 

4.1. Features of the general IoT system architecture 

This work considers a three-tier architecture of distributed IoT systems with a division into 

cloud, fog, and edge environments [4, 5]. 

The first tier, which is the lowest in the hierarchical structure, is the edge computing 

environment. It is located closest to data sources, which are end IoT devices, enabling it to perform 

preliminary processing of this data, thereby ensuring simple local computing with low latency. This 

tier can accommodate both simple devices (sensors and actuators) with weak computational 

capabilities and more complex devices (smart sensors, microservers, gateways) that can act as 

computing nodes for task execution. 

The second tier is the fog computing environment, which includes intermediate computing 

resources at the level of micro- or regional data centers. Due to its extended computational 

capabilities, it is capable of processing larger data volumes and performing more complex operations 

than the edge tier, while providing lower latencies than the cloud environment. The Fog tier can 

simultaneously serve several Edge tier domains. 

The third, highest tier in the distributed IoT system structure is the cloud environment, which 
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is located farthest from end devices and is built on data centers with practically unlimited resources, 

high computational power, and scalability. The Cloud tier allows analysis, processing, and storage of 

large data arrays while ensuring a high level of fault tolerance. The Cloud tier can simultaneously 

serve several Fog tier domains. 

Interaction between computing environments is implemented as a hierarchically realized data 

exchange between IoT system tiers. 

The use of the osmotic computing concept in the considered model is intended to provide 

dynamic management of computing resources in the distributed IoT system environment, which 

allows for achieving flexible load balancing between edge, fog, and cloud tiers, contributing to system 

adaptation to real-time changes (a sharp increase or decrease in the number of tasks, connection or 

disconnection of nodes, node failure, increased network latency, etc.). The idea of osmotic computing 

is inspired by the chemical osmosis process, where a solvent moves from an area with lower solute 

concentration to an area with higher solute concentration through a semi-permeable membrane, 

thereby equalizing concentration on both sides of the membrane. In osmotic computing, micro-

elements (MELs) act as the solvent, which can migrate between different environments (Cloud, Fog, 

Edge) through a Software-Defined Membrane (SDMem) [5, 21]. 

MEL is a particular abstraction that describes services and data of an IoT application, which in 

the context of osmotic computing is considered as a graph of micro-elements (Fig. 1). There are two 

types of MELs: microservices (MS), which provide specific functional capabilities and can be 

deployed and migrated between different computing environments, and microdata (MD), which are 

transmitted between IoT system components and can have different representation formats [5, 21]. 

 

 
 

Fig. 1. General structure of an IoT application based on osmotic computing 

 

The membrane is a specific logical software-defined layer that regulates the movement of MELs 

(microservices or microdata) between cloud, fog, and edge environments according to various MEL 

management policies, which may include computing resource availability, quality of service (QoS) 

requirements, current system state, security and privacy policies, etc. The membrane can be 

implemented as a separate software module deployed on a gateway or be part of other services or 

subsystems; for example, orchestration systems (such as Kubernetes) serve as tools for implementing 

the membrane principle – they allow automatic distribution and transfer of containerized 

microservices between nodes, responding to system changes [5, 21]. 
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4.2. General model of task allocation and resource management in IoT systems 

In the context of the considered IoT system architecture based on osmotic computing, two main 

management objects are distinguished: tasks and computing resources. 

A task is a request for execution of a particular process. Tasks can be of two types: internal and 

external. Internal tasks are generated by IoT devices, microservices, or services within the system and 

can be formed at any hierarchy tier. Internal tasks include data processing and transmission from 

sensors, information aggregation, execution of business functions, and other in-system operations. 

External tasks originate from users or external services to interact with the system via an API, which 

is usually deployed in the cloud. Examples of external tasks include requests for analytical report 

generation from users, control commands from operators, or data collection for statistics building 

through integration with third-party systems. 

Computing resources comprise infrastructure nodes of different tiers (edge, fog, cloud) that 

provide an environment for deploying, executing, and scaling MELs. They are characterized by 

limited computational power, energy capabilities, latency, bandwidth, and other parameters. Resource 

management involves monitoring node availability, planning and balancing the load, and releasing 

resources. 

MELs should be noted separately as an additional management object, which is a unit of task 

execution deployed within available computing resources. MEL management includes deployment 

in cloud, fog, or edge environments, migration between different environments or within the same 

environment, as well as deletion or unloading when resources are released. 

One or more MELs can be deployed on a computing node depending on available capabilities. 

Each MEL, in turn, can execute one or several tasks. 

The considered architecture of the distributed IoT system implements a three-level hierarchical 

model of task and computing resource management, which covers the edge, fog, and cloud 

tiers (Fig. 2). Each tier contains computing nodes on which MELs are deployed, and a management 

system that, based on analysis of resource state monitoring data, makes decisions on the placement, 

migration, and removal of MELs and performs task distribution. The lower-tier management system 

is subordinate to the higher-tier management system in the hierarchy. 

 

 
 

Fig. 2. General model of task allocation and resource management in IoT systems 



Decentralized Task Allocation Method іn Hierarchical IoT Systems Using Fuzzy Logic 169 

The Edge management system manages computing nodes that interact with end devices in IoT 

systems and ensures task execution near data sources. The Fog management system coordinates one 

or several edge domains – groups of computing nodes subordinate to a single management system – 

and computing nodes within its domain, providing intermediate decision-making capabilities. 

Horizontal interaction between Fog management systems of different domains is possible, allowing 

task redistribution between these domains and ensuring the operation of the IoT system even when 

communication with the central management tier is disrupted, thereby improving overall system 

reliability and adaptability. The central management system, located at the cloud tier, has information 

about the overall IoT system state, coordinates Fog domains, and ensures coordinated operation of all 

tiers, making strategic decisions regarding task allocation and computing resource management. 

The considered management model implements a combination of centralized and decentralized 

approaches to management. The central management system performs global management and 

decision-making. At the same time, decentralized management is carried out by management systems 

of corresponding tiers, which make local decisions and manage within their domain. The combination 

of these approaches allows to increase the fault tolerance, scalability, and adaptability of the system. 

The current state of the IoT system is determined by a monitoring subsystem implemented 

based on an agent-based approach (Fig. 3). 

 

 
 

Fig. 3. General structure of the IoT system monitoring subsystem 

 

A monitoring agent is deployed on each computing node, which collects necessary metrics 

(CPU/GPU utilization, memory, energy consumption, network bandwidth, etc.). The local 

management system receives information about the state of each computing node and sends it to the 

higher-tier management system, performing preliminary processing and data aggregation. Monitoring 

agents can send metrics directly to the management system, or the local management system can poll 

agents at regular intervals. The central management system has complete information about the 

current state of the entire IoT system, analyzes it, and, if necessary, regulates MEL management 

policies. 
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4.3. Formalization of the task allocation problem in IoT systems 

In the considered three-tier architecture of a distributed IoT system based on osmotic 

computing, the environment for executing tasks iT T , 1,i I  is MELs, which are deployed on 

computing node 
j LN N , 1, Lj J , where LN  – is the set of computing nodes at tier LL , 

{ , , }Edge Fog CloudL , LJ  – is the number of available nodes at tier L . 

Each task iT T  is described by a vector of parameters { | 1, }k

i iP p k K  , where k

ip  – value 

of the k -th parameter of the i -th task. Task parameters include priority, latency requirements, 

computational complexity, etc. The number and types of parameters may vary depending on the 
specific requirements and features of an IoT system. 

Each computing node j LN N  has resources j LR R , where LR  – total resources at tier 

LL . Within the same tier, computing node resources may be heterogeneous 
j mR R , 

j LR R , 

m LR R  for some j m , where 1, Lj J , 1, Lm J . The resources 
j LR R  of computing node 

j LN N  are characterized by a vector of parameters { | 1, }m

j jQ q m M  , where 
m

jq  – the value of 

the m -th parameter of the j -th computing node. Computing node parameters include memory, 

computational power, network bandwidth, energy consumption, etc. 

The task allocation problem consists of determining the optimal placement of tasks T  on 

computing nodes L

L


L

N N : 

 , ,{ }i j LX x , , , {0,1}i j Lx  , 1,i I , 1, Lj J , (1) 

where , , 1i j Lx  , if task iT T  is assigned to computing node j LN N  at tier LL , and , , 0i j Lx   

otherwise, such that task execution delays are minimal while ensuring rational resource utilization. 

The total latency of task iT T  can be defined as 

 , , , , , , , ,

l t e r

i j L i j L i j L i j LF F F F   , (2) 

where , ,

t

i j LF  – the transmission time of task iT T  from the initialization source to computing node 

j LN N , , ,

e

i j LF  – the execution time of iT T  on the node j LN N , , ,

r

i j LF  – the transmission time 

of the result back to the initialization source. Since the task initialization tier and its execution tier 

may differ, we define , ,

t

i j LF  and , ,

r

i j LF  as 

 
,,

, , , , , ,
jt Nt t L

i j L i j L i j LF F F  , 
,,

, , , , , ,
jr Nr r L

i j L i j L i j LF F F  , (3) 

where 
,

, ,

t L

i j LF , 
,

, ,

r L

i j LF  – the data transmission time to/from tier L , respectively, 
,

, ,
jt N

i j LF , 
,

, ,
jr N

i j LF  – the data 

transmission time to/from computing node j LN N  at tier L , respectively. 
,

, ,

r L

i j LF , if the task is 

assigned to a computing node at the same tier where it was initialized. 
,

, ,

t L

i j LF  if the task is assigned to 

a computing node at the same tier where it was initialized, without being redirected to another tier. 
The total latency for all tasks is defined as: 

 , , ,

1 1

LJI
l L l

total i j i j L

i L j

F x F
  

 
L

, (4) 

where , ,

l

i j LF  – the total latency of task iT T  on node j LN N  of tier L . 

The rational use of computing resources is determined by the degree of efficiency of their use 

and the balance of load distribution. 

The resource utilization efficiency for node j LN N  at tier L  is defined as 
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, ,

1
,

I

i j L i
ru i
j L

j

x r

F
R








, (5) 

where 
jR  – the total resources of node 

jN , ir  – the resource requirements of task iT . 

The resource utilization efficiency at tier L  is defined as the weighted average of node 

utilization rates: 

 

, , ,

1 1 1

1 1

L L

L L

J J I
ru

j L j i j L i

j j iru

L J J

j j

j j

F R x r

F

R R

  

 

 

 

 

 
, (6) 

where LJ  – the number of available nodes at tier L . 

Similarly to (6), we define resource utilization efficiency for the entire IoT system: 
 

 

, ,

1 1

1

L

L

J I

ru
i j L iL L

L j iru L
total J

L
jL

L j

x rF

F

R

  


 



 



 

LL

L
L

R

R
, (7) 

 

where 
1

LJ

L j

j

R


R  – the total resources on tier LL . 

Since computing nodes j LN N  within the same tier L  may have different computing 

capacities, normalized metrics that account for the relative load of each node should be used to assess 
load balancing. The overall load balance evaluation at tier L  among heterogeneous nodes is 

determined using Jain fairness index [22]: 

 

 

2

.

1

2

.

1

L

L

J
ru

j L

jlb

L J
ru

L j L

j

F

F

J F





 
 
 






, (8) 

where 
1

,1lb

L

L

F
J

 
  
 

, LJ  – the number of available nodes at tier L . A value of lb

LF  close to 1 indicates 

uniform load balancing at tier L , and vice versa, close to 
1

LJ
 indicates a strong imbalance. 

Finally, task allocation in an IoT system can be formalized as a multi-criteria optimization 
problem of finding task allocation X , that ensures: 

 

 minl

totalF  , maxru

totalF  , maxlb

totalF   (9) 
 

subject to the following constraints: 

– each task can be assigned to only one node: , ,

1

1
LJ

i j L

L j

x
 


L

, , , {0,1}i j Lx  , i I  , Lj J  , 

L L ; 

– the total load on a node must not exceed its computing resources: , ,

1

I

i j L i j

i

x r R


  , Lj J  , 

L L . 
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4.4. Decentralized task allocation method using fuzzy logic 

In the considered hierarchical management model in the IoT system shown in Figure 2, a task 

allocation method is proposed that considers both the characteristics and requirements of tasks and 

the state of computing resources to determine the rational execution environment. In general, tasks 

are allocated according to Algorithm 1. 

 

Algorithm 1. Task allocation for hierarchical IoT systems 

Input: Task iT  with parameters iP , set of nodes L

L


L

N N  with resources L

L


L

R R , 

{ , , }Edge Fog CloudL . 

Output: Assignment of task iT  to a node or queue/reject the task. 

1 L tier where iT  was initialized 

2 
available L L  

3 while L null  do 

4  D selectSuitableDirection( iP ) 

5  if D current  then 

6   
,suitable L N { , ,|j L L j LN R N  requiredResources( iP )} 

7   if ,suitable L N  

8    
,target LN selectSuitableNode( iP , ,suitable LN ) 

9    assignTask( iT , ,target LN ) 

10    return 

11   end if 

12  end if 

13  if D current  then 

14   D up  

15   \{ }available available LL L  

16  end if 

17  if D current  then 

18   L selectNextLevel( L ,D) 

19   if availableLL  then 

20    L null  

21   end if 

22  end if 

23 end while 

24 queueOrRejectTask( iT ) 

 

The task iT T  is registered in the local management system at the tier LL  where it is 

initiated. In the first step, the local management system determines the task allocation direction iD . 

It evaluates the feasibility of executing the task at the current tier L  or transferring it to another tier 

based on task characteristics { | 1, }k

i iP p k K  . If the current tier L  meets the requirements for 

execution of the task iT , the allocation direction iD  indicates the current tier L . Then, the 

management system checks the availability of nodes ,suitable L LN N  at the tier L  with the necessary 

resources j LR R  for task computation on node , ,j L suitable LN N . In the next step, the local 

management system determines the optimal node , ,target L suitable LN N  for placing the task iT  among 
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the available computing nodes 
,suitable LN . 

If the current tier L  meets the requirements of the task iT , but does not contain available nodes 

,suitable L N  with the necessary computing resources for executing the task iT , then the task 

allocation direction iD  changes to upward, and the current tier L  is excluded from the set of 

permissible tiers \{ }available available LL L . The change of allocation direction iD  to upward is justified 

by the fact that at the upper hierarchy tier, the probability of having a node with the necessary 

computing resources is higher than at the lower tier. 

If the current tier L  does not meet the requirements of the task iT , i.e., the task allocation 

direction iD  indicates redirecting the task to a higher or lower tier. Then the management system 

determines the next tier for task transfer based on the current tier L  value and the allocation direction 

iD . If the new tier belongs to the set of available tiers availableL , then the task is redirected to the 

determined tier, after which the analysis process is repeated. If the new tier does not belong to the set 

of available tiers availableL , then the task iT  is placed in a queue or rejected depending on the policies 

implemented in the management system. 

To determine the task allocation direction selectSuitableDirection( iP ) and select the 

computing node for its execution selectSuitableNode( iP , ,suitable LN ), Mamdani fuzzy inference 

systems are used [11–13]. This approach allows for formalizing the decision-making process under 

uncertain conditions, which are associated with dynamic changes in task characteristics, computing 

resource availability, and load in the IoT system. 

In general, a fuzzy logic inference system consists of the following stages (Fig. 4) [11–13]: 

– Fuzzification – converting crisp input values into fuzzy sets by determining their degree of 

membership to corresponding linguistic terms. 

– Rule base application – applying a set of fuzzy “if-then” rules that describe dependencies 

between input and output parameters. 

– Fuzzy logical inference – determining the degree of truth of each rule using fuzzy operators. 

– Defuzzification – converting the obtained fuzzy results into a crisp value using defuzzification 

methods. 

 

 
 

Fig. 4. Fuzzy logic inference system 

 

4.4.1. Fuzzy inference system for determining allocation direction 

The rational allocation direction iD  of the task iT T  is determined using a fuzzy logic 

inference system based on task parameters { | 1, }k

i iP p k K   (Fig. 5). 
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Fig. 5. Determining the direction of task allocation using fuzzy logic 

 

According to the task allocation criteria, the following task parameters are considered as input 
parameters of the fuzzy inference system: computational complexity, latency sensitivity, and network 

bandwidth requirements. 

The computational complexity cc

iP  of a task determines the computing power requirements of 

the node for its execution. Tasks with high computational complexity require more powerful 
resources, available at higher hierarchy tiers (Fog, Cloud), while tasks with low complexity can be 
effectively executed on lower-tier devices (Edge). 

Latency sensitivity ls

iP  characterizes the degree to which a task is critical to its execution speed. 

Tasks with high latency sensitivity need to be executed closer to the data source to minimize overall 
latency. Conversely, tasks with low latency sensitivity can be executed on remote computing nodes 
without a significant impact on quality of service. 

Network bandwidth requirements nb

iP  determine the minimum amount of data that needs to be 

transmitted through the network per unit of time for effective task execution. Tasks with high 
bandwidth requirements can create a significant network load when transmitted to a remote tier; 
therefore, such tasks are more efficiently executed locally or at intermediate tiers to reduce network 
traffic. 

For the described task parameters cc

iP , ls

iP , and nb

iP  triangular membership functions are used, 

which determine the degree of parameter value membership to linguistic terms “low”, “medium”, and 
“high”. Triangular membership functions are the most common, as they provide computational 
simplicity and smooth transitions between terms. 

The output parameter of the fuzzy inference system is the allocation direction iD  of the task 

,iT  the fuzzy value of which is described by one of three linguistic terms: 

– “current” – the task remains at the current tier – accepted for tasks if the tier characteristics 
meet task parameters and the tier load allows its execution; 

– “upward” – the task is transferred to a higher hierarchy tier – accepted for tasks with high 

computational complexity or when the current tier is overloaded; 
– “downward” – the task is transferred to a lower hierarchy tier – accepted for tasks with low 

computational complexity and/or high latency sensitivity. 
For Cloud and Edge tiers, the task allocation direction can have only two values: “current” and 

“downward” for Cloud, or “current” and “upward” for Edge. 
Based on input and output linguistic terms, a fuzzy rule base is formed, which contains a set of 

“if-then” rules, each determining the correspondence between a combination of input linguistic terms 

and a single output linguistic decision. Each tier contains its own fuzzy rule base, which differs from 
rule bases of other tiers. Tables 1, 2, and 3 present part of the rules for Edge, Fog, and Cloud tiers, 
respectively. 
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Table 1. Fuzzy rules for task allocation at the Edge tier 
 

Input parameters Output parameters 

Computational 

complexity 
cc

iP  
Latency sensitivity 

ls

iP  Network bandwidth 
nb

iP  Allocation direction iD  

Low High Low Current 

Low High Medium Current 

Low Medium Low Current 

Medium High Low Current 

Medium Medium High Current 

Medium Low Medium Upward 

High High Low Upward 

High Medium Medium Upward 

High Low Low Upward 

… … … … 

 

Table 2. Fuzzy rules for task allocation at the Fog tier 

 

Input parameters Output parameters 

Computational 

complexity 
cc

iP  
Latency sensitivity 

ls

iP  Network bandwidth 
nb

iP  Allocation direction iD  

Low High Low Downward 

Low High Medium Downward 

Low Medium Low Current 

Low Low Medium Current 

Medium High Low Current 

Medium Medium Medium Current 

Medium Low Low Upward 

High High High Current 

High Medium Medium Current 

High Low Low Upward 

… … … … 

 

Table 3. Fuzzy rules for task allocation at the Cloud tier 
 

Input parameters Output parameters 

Computational 

complexity 
cc

iP  
Latency sensitivity 

ls

iP  Network bandwidth 
nb

iP  Allocation direction iD  

Low High Low Downward 

Low High Medium Downward 

Low Medium Low Downward 

Low Low Medium Downward 

Medium High Low Downward 

Medium Medium Medium Current 

Medium Low Low Current 

High High Low Current 

High Medium Medium Current 

High Low Medium Current 

… … … … 
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Using the rule base, the fuzzy inference engine determines the fuzzy value for the allocation 

direction iD  of the task iT  based on fuzzy values of task parameters. The final step involves 

defuzzification of the fuzzy value using the center of gravity method to obtain a crisp value for the 

task allocation direction. 

 

4.4.2. Fuzzy logic inference system for determining a computing node 

After determining the rational allocation direction for task iT T  with its subsequent 

placement at the corresponding tier L , the local management system of the tier selects the optimal 

node 
, ,target L suitable LN N  for task execution. The determination of the target node 

,target LN  is performed 

using a fuzzy inference system (Fig. 6). 

The input parameters of the fuzzy inference system are the formalized optimization criteria of 

the allocation problem: task latency ,

l

i jQ , resource utilization efficiency ,

ru

i jQ , and load balancing ,

lb

i jQ  

at the tier. 

 

 
 

Fig. 6. Determining a computing node for task execution using fuzzy logic 

 

For each computing node , ,j L suitable LN N , the total latency of the task iT  is calculated 

according to (2). 

The resource utilization efficiency for a node ,j LN  after assigning the task iT  to it according to 

(6) is calculated as 

 
1 1

,

1

L

L

J K

i k

j kru

i j J

j

j

r r

Q

R

 










, (13) 

where ir  – resource requirements of the task iT , kr  – resource requirements of task k existingT T , 

1,k K , K I , existingT  – set of tasks already executing on the node ,j LN , LJ  – number of available 

nodes at tier L . 

The load balance at the tier L  after assigning the task iT  to the node ,j LN  is calculated using 

Jain fairness index according to formula (8). 

For each of the three input parameters ,

l

i jQ , ,

ru

i jQ , and ,

lb

i jQ  triangular membership functions are 

used, which determine the degree of membership of normalized values to the linguistic terms “low”, 

“medium”, and “high”. 
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The output parameter of the system is the node suitability score 
,i jS , which characterizes the 

degree of correspondence of node 
, ,j L suitable LN N  for executing task iT . The fuzzy value of the score 

is represented by one of four linguistic terms: 

– “unsatisfactory” – the node is not suitable for task execution, 

– “satisfactory” – the node can execute the task with minimal quality, 

– “good” – the node can execute the task with good quality, 

– “excellent” – the node is best suited for task execution. 

Table 4 presents a set of fuzzy rules used by the fuzzy logic inference engine to determine the 

fuzzy value of score 
,i jS  for the correspondence of node 

,j LN  for executing task iT . The final step is 

defuzzification using the center of gravity method to obtain a crisp value. 

After evaluating the suitability rating of nodes from the set 
,suitable LN , task iT  is assigned to the 

node ,target LN  with the maximum rating value. If several nodes have the same maximum rating value, 

the node with the lower load value is selected to ensure a uniform load balance. 

 

Table 4. Fuzzy rules for determining node suitability score for task execution 

 

Input parameters Output parameters 

Task latency ,

l

i jQ  Resource utilization ,

ru

i jQ  Load balance ,

lb

i jQ  Node score ,i jS  

Low Low Low Unsatisfactory 

Low Low Medium Satisfactory 

Low Medium Medium Good 

Medium Low Low Unsatisfactory 

Medium Low High Satisfactory 

Medium Medium High Good 

High Low High Unsatisfactory 

High Medium High Satisfactory 

High High Low Unsatisfactory 

… … … … 

 

The proposed fuzzy logic inference system allows for comprehensive consideration of 

optimization criteria, ensuring decision-making in conditions of incomplete or inaccurate information 

about the state of the level. 

 

5. Results of the investigation of decentralized task allocation method in hierarchical IoT 

systems 

5.1 Experimental setup 

For modeling and investigating the proposed decentralized task allocation method, we used the 

iFogSim2 simulator [23–25], which is built on the CloudSim framework [26, 27]. iFogSim2 is an 

open-source toolkit for modeling and simulating task allocation methods and resource management 

in multi-tier IoT systems, supporting edge and fog environments [23–25]. The open-source Java 

library jFuzzy was used to implement fuzzy inference systems and integrate them with iFogSim2. 

The membership functions of input and output parameters of the fuzzy inference systems have a 

triangular shape. The fuzzy inference system for determining task allocation direction has its rule 

base with 27 rules at each hierarchy tier, while the fuzzy inference system for evaluating node 

suitability rating uses a unified rule base that also contains 27 rules. 

The characteristics of the computing resources, such as processor capacity, memory capacity, 

and bandwidth, were selected based on real devices that can be deployed at corresponding tiers of the 
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IoT system hierarchy. Table 5 presents examples of physical devices with corresponding 

characteristics and their deployment tiers. 

For conducting the simulation, the following configuration of computing nodes was selected: 6 

nodes at the edge tier, 3 at the fog tier, and 2 at the cloud tier. The characteristics of computing nodes 

at corresponding tiers are presented in Table 6. 

 

Table 5. Example of general characteristics of computing nodes 

 

Tier Type 
Processing 

power, MIPS 
Memory Bandwidth Examples 

Edge 

Microcontrollers 16–600 2–520 MB 10–50 Mbps Arduino Uno, ESP32 

Single-board 

computers 
6000–25000 512–8192 MB 100–1000 Mbps 

Raspberry Pi 4B, 

BeagleBone 

Edge-gateways 8000–20000 4–8 GB 1000–2500 Mbps 
Intel NUC, Advantech 

ARK, Moxa UC 

Fog 

Industrial PCs 18000–30000 8–16 GB 1–5 Gbps 
Siemens SIMATIC, Cisco 

Iox 

Microservers 18000–35000 8–32 GB 1–10 Gbps 
Intel NUC Pro, HPE 

MicroServer 

Cloud 

Small VM 15000–85000 1–16 GB 5–10 Gbps 
AWS t3/m5, Azure 

Standard 

Medium VM 85000–150000 32–64 GB 10–15 Gbps 
AWS c5/m5.xlarge, Azure 

F-series 

Large VM 150000–500000 64–128 GB 10–25 Gbps 
AWS p3/p4, Azure NC-

series 

 

 

Table 6. Characteristics of computing nodes in simulation 

 

Tier Processing power, MIPS Bandwidth, Mbps 
Latency between node and local 

management system, ms 

Edge 

300 20000 10 

600 30000 10 

12000 40000 10 

15000 50000 10 

18000 45000 10 

14000 35000 10 

Fog 

24000 800000 50 

26500 600000 50 

50000 700000 50 

Cloud 
120000 1800000 100 

325000 2000000 100 

 

Data transmission latency between tiers is: 

– Edge-Fog – 10 ms, 

– Fog-Cloud – 50 ms. 

To investigate the behavior of IoT systems under different conditions, 13 sets of scenarios were 

modeled, including varying numbers of tasks, different task generation intervals, and diverse task 

characteristics. Tasks are generated at each tier in equal numbers. The number and characteristics of 

computing nodes remain unchanged for all scenarios. Table 7 presents the main parameters of all 

scenarios. 
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Table 7. Simulation scenario parameters 

 

Scenario 

Number 

of tasks 

at each 

tier 

Total 

number 

of tasks 

Tier 

Tasks 

interval, 

ms 

Task characteristics 

Computational 

complexity, 

MIPS 

Latency 

sensitivity, 

p.u. 

Size, b 

Basic 

50/ 

250/ 

500 

150/ 

750/ 

1500 

Edge 500 150–2000 0.7–1.0 500–8000 

Basic 

50/ 

250/ 

500 

150/ 

750/ 

1500 

Fog 800 1000–8000 0.2–0.8 2000–25000 

Cloud 1000 15000–100000 0.1–0.6 10000–100000 

Low 

50/ 

250/ 

500 

150/ 

750/ 

1500 

Edge 800 150–2000 0.7–1.0 500–8000 

Fog 1200 1000–8000 0.2–0.8 2000–25000 

Cloud 1500 15000–100000 0.1–0.6 10000–100000 

High 

50/ 

250/ 

500 

150/ 

750/ 

1500 

Edge 100 150–2000 0.7–1.0 500–8000 

Fog 200 1000–8000 0.2–0.8 2000–25000 

Cloud 200 15000–100000 0.1–0.6 10000-100000 

Compute‑ 

Intensive 
100 300 

Edge 500 150–8000 0.1–0.6 500–600 

Fog 800 1000–25000 0.1–0.5 1000–2000 

Cloud 1000 15000–150000 0.1–0.4 2000–5000 

Latency‑ 

Intensive 
100 300 

Edge 500 150–1000 0.6–1.0 500–600 

Fog 800 1000–2500 0.4–1.0 1000–2000 

Cloud 1000 1000–2500 0.5–1.0 2000–5000 

Bandwidth

‑Intensive 
100 300 

Edge 500 150–1000 0.2–0.5 5000–50000 

Fog 800 1000–2500 0.1–0.4 15000–100000 

Cloud 1000 1000–2500 0.1–0.4 50000–500000 

 

To evaluate and compare the results of the task allocation method in each scenario, the 

corresponding metrics of tasks and computing nodes were collected. 

Task evaluation metrics: 

– Task assignment latency – time from task initialization to task assignment to a computing 

node. This metric accounts for all routing latency, including latency between computing nodes and 

the local management system, as well as transmission latency between tiers; 

– Task computation latency – time from task assignment to a computing node to task completion 

on that node; 

– Task response latency – time from task completion on a computing node to result return to 

the task initiator node; 

– Total task latency – includes assignment, computation, and response latencies; 

– Task initialization tier and task assignment tier. 

Computing node evaluation metrics: 

– Node load at a specific time; 

– Entire tier load at a specific time; 

– Tier load balancing index at a specific time. 

 

5.2 Basic scenario 

In the basic scenario, 50 tasks were initiated at each tier with moderate values of computational 

complexity, latency sensitivity, and data volume. Generation intervals were 500 ms, 800 ms, and 

1000 ms for Edge, Fog, and Cloud tiers, respectively. The relationship between the number of tasks 

initiated at a certain tier and the number of tasks assigned to that tier for execution is shown in Figure 7. 
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Fig. 7. Ratio of tasks initiated at tier to tasks executed at tier in Basic scenario for 50 tasks 

 

As shown in Figure 7, all tasks initiated at the Edge tier were executed locally, while for the 
Fog and Cloud tiers, the share of locally executed tasks is 66%. At the same time, 34% of Fog tasks 
were executed on Edge, while 34% of Cloud tasks were distributed between Fog (32%) and Edge 

(2%). Overall, only 23% of tasks were assigned to a tier different from the initialization tier, indicating 
predominantly local decision-making. 

The average values of assignment, computation, and response latencies for all tasks according 
to their initialization and assignment tiers are presented in Figure 8. 

 

 
 

Fig. 8. Average task latency according to initialization and assignment tier in Basic scenario for 50 

tasks 

 

The lowest latency is observed with local task execution, with the lowest average task 
assignment latency being 130 ms for the Fog tier, and the lowest average computation time of 80 ms 

and response latency of 20 ms for the Edge tier. When transferring tasks from higher hierarchy tiers 
to lower ones, an increase in all types of latency is observed, which is related to network task routing 
costs, reduced computational capabilities, and device bandwidth. The total task execution latency 
increases by an average of 400 ms when transferring tasks to lower tiers, which may indicate the need 

for further research and optimization of inter-tier task routing. 
The dynamics of computing node load and load balancing index for tiers and the IoT system 

are shown in Figures 9 and 10. 

 

 
Fig. 9. Resource utilization at each tier and in the system overall in Basic scenario for 50 tasks 
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Fig. 10. Average load balancing index for each tier and system overall in Basic scenario for 50 tasks 

 

The highest load was observed at the Fog tier (peak value 49%). For Edge and Cloud tiers, the 
load did not exceed 22% on average, except for a single spike to 40% for the Edge tier. The overall 

system load fluctuated between 6% and 17%. These metrics indicate a low system load, with average 
task characteristics and moderate task generation intervals. The load balancing index has the best 
values for the Cloud tier (from 0.6 to 0.94) and the worst for the Edge tier (from 0.4 to 0.77 on average 
without considering individual spikes). This is primarily related to the number of computing nodes at 

the tier and their processor power. The Edge tier has 6 computing nodes and executes simple tasks, 
so in this scenario, only part of the nodes is actually needed to process all such tasks, while other 
nodes remained idle. Meanwhile, the Cloud tier has only two computing nodes that were constantly 

loaded with tasks. It should be noted that the load balancing index has a value of 1 in the case of 
perfect balance or when no load is present. This is confirmed by Figures 9 and 10, which show that 
at the end of the simulation, the tier load decreased to 0, and at the same time, the tier load balancing 

index acquired a value of 1. 
 

5.3 Basic scenario with scaling 
In this scenario, the impact of increasing the number of tasks on the efficiency of the allocation 

method was investigated. Three simulation runs of the basic scenario were performed: 50, 250, and 
500 tasks at each tier with unchanged generation intervals. The relationship between the number of 
tasks initiated at a tier and the number of tasks executed at that tier for all simulation runs is presented 

in Figure 11. 
The proposed method demonstrates stable task allocation regardless of the number of tasks. For 

the Cloud tier, the share of locally executed tasks is 66%, 65.6%, and 66.2% for scenarios with 50, 

250, and 500 tasks, respectively. For the Fog tier, this share is 66% for 50 and 250 tasks, and 63.4% 
for 500 tasks. For the Edge tier, 100% of tasks are executed locally regardless of quantity. 

 

 
 

Fig. 11. Ratio of tasks initiated at tier to tasks executed at tier in Basic scenario for 50/250/500 tasks 

 

Average latency values for different numbers of tasks are shown in Figure 12. Assignment 

latency remains stable at 260 ms for all scenarios. Execution latency shows slight growth from 250 

ms for 50 tasks to 270 ms for 500 tasks. Total latency increases from 650 ms to 670 ms, representing 

a 3% increase with a 10-fold load increase. 
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Fig. 12. Average task latency in Basic scenario for 50/250/500 tasks 

 

The dynamics of computing node load and IoT system load balancing index for different 

numbers of tasks are illustrated in Figures 13 and 14. 

 

 
 

Fig. 13. Resource utilization in Basic scenario for 50/250/500 tasks 

 

 
 

Fig. 14. Average load balancing index in Basic scenario for 50/250/500 tasks 

 

With 50 tasks, peak load does not exceed 49%, with 250 tasks it reaches 62%, and with 500 

tasks – 67%. The overall trend demonstrates proportional modest growth without sharp spikes or 

system overloads. A similar dynamic is observed for the load balancing index, which increases with 

the number of tasks, indicating better system balance due to greater resource utilization and less 

computing node idle time. 

 
5.4 High scenario with scaling 

In the High scenario, task generation intervals were reduced to 100 ms, 200 ms, and 200 ms for 

Edge, Fog, and Cloud tiers, respectively, resulting in a significantly higher task generation frequency. 

Simulation was conducted for 50, 250, and 500 tasks at each tier. 

The task allocation for this scenario is illustrated in Figure 15, showing that with high 

generation intensity, task allocation remains similar to the basic scenario, with minor differences. The 

share of locally executed tasks for the Cloud tier increased to 78%, 77.2%, and 76.4% for 50, 250, 

and 500 tasks, respectively, while for Edge and Fog tiers, virtually no changes occurred. 
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Fig. 15. Ratio of tasks initiated at tier to tasks executed at tier in High scenario for 50/250/500 tasks 

 

The average latency values for different numbers of tasks for this scenario are presented in 
Figure 16. Task assignment and response latencies remained at the same level as in the basic scenario 
for 50, 250, and 500 tasks. Task computational latency increased by an average of 0.1s for all three 

runs compared to the basic scenario. Total task latency increased by an average of 15%. 

 

 
 

Fig. 16. Average task latency in High scenario for 50/250/500 tasks 

 

The dynamics of computing node load and IoT system load balancing index for different 

numbers of tasks are shown in Figures 17 and 18. 

 

 
 

Fig. 17. Resource utilization in High scenario for 50/250/500 tasks 

 

 
 

Fig. 18. Average load balancing index in High scenario for 50/250/500 tasks 
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As demonstrated in Figure 17, more intensive resource utilization in this scenario: peak load 

with 50 tasks is 73%, with 250 tasks – 102%, and with 500 – 91%. Overall, load fluctuates between 

40% and 95%, while the average load balancing index is between 0.4 and 0.6, which may indicate 

overloading of individual nodes or tiers. 

 
5.5 Low scenario with scaling 

In the Low scenario, task generation intervals were increased to 800 ms, 1200 ms, and 1500 ms 

for Edge, Fog, and Cloud tiers, respectively, creating a more sparse task flow. Simulation was 

conducted for 50, 250, and 500 tasks at each tier. 

The ratio between the number of tasks initiated at a tier and the number of tasks executed at 

that tier for this scenario is presented in Figure 19. The overall trend remains similar to the basic 

scenario with the only difference being that the share of locally executed tasks for the Cloud tier 

decreased to 62%, 64.8%, and 65.4% for 50, 250, and 500 tasks, respectively, compared to the basic 

scenario, indicating lower Fog tier load, allowing it to process part of the tasks. This is confirmed by 

the percentage of Cloud tasks assigned to the Fog tier. 

 

 
 

Fig. 19. Ratio of tasks initiated at tier to tasks executed at tier in Low scenario for 50/250/500 tasks 

 
Average latency values for different numbers of tasks for this scenario are shown in Figure 20. 

Latency values remain close to the basic scenario, with total execution latency for 250 and 500 tasks 

decreased by 12 ms and 13 ms, respectively. This is related to fewer task routing since resource 

availability at target task execution tiers increased. 

 

 
 

Fig. 20. Average task latency in Low scenario for 50/250/500 tasks 

 
The dynamics of computing node load and IoT system load balancing index for different 

numbers of tasks are illustrated in Figures 21 and 22. 
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Fig. 21. Resource utilization in Low scenario for 50/250/500 tasks 

 

 
 

Fig. 22. Average load balancing index in Low scenario for 50/250/500 tasks 

 

As demonstrated in Figure 21, the most uniform resource utilization without sharp peaks 

compared to other scenarios. The maximum load does not exceed 50% even for 500 tasks, and overall 

dynamics are characterized by smooth changes within a 20–40% system load range. Average load 

balancing index values (Fig. 22) are predominantly in the 0.6–8.0 range, demonstrating the best 

indicators among all scenarios. 

 

5.6. Comparative analysis at different task generation intensities 

For a detailed analysis of the impact of task generation intensity on system performance, a 

comparison of three scenarios with the same number of tasks (50 at each tier) but different generation 

intervals was conducted. Task allocation at different task generation intensities is shown in Figure 

23, demonstrating an increase in the share of locally executed tasks for the Cloud tier with decreasing 

task generation intervals: from 62% for the Low scenario to 78% for the High scenario. 

 

 
 

Fig. 23. Ratio of tasks initiated at tier to tasks executed at tier in Basic/High/Low scenarios for 50 

tasks 
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The latency comparison between scenarios is presented in Figure 24. Assignment latency is 

within 272–279 ms for all scenarios. Response latency also has a virtually identical value for all 

scenarios. The largest differences are observed in computation latency, which increases by 

approximately 120 ms with increased task generation intensity due to increased load on computing 

nodes. 

 

 
 

Fig. 24. Average task latency in Basic/High/Low scenarios for 50 tasks 

 

The dynamics of computing node load and IoT system load balancing index for different task 

generation intensities are shown in Figures 25 and 26. 

 

 
 

Fig. 25. Resource utilization in Basic/High/Low scenarios for 50 tasks 

 

 
 

Fig. 26. Average load balancing index in Basic/High/Low scenarios for 50 tasks 

 

The typical dynamics of resource usage for different scenarios are shown in Figure 25. The 

High scenario is characterized by high short-term resource utilization with a peak value of 73%. Basic 

and Low scenarios demonstrate moderate fluctuations, averaging between 20% and 40%. The 

duration of active resource utilization periods also correlates with task generation intervals. The load 

balancing index (Fig. 26) for the Low scenario shows the most stable and high values (0.6–0.85). 
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5.7 Comparative analysis with different task characteristics 

To investigate the adaptability of the method to different task types, three specialized scenarios 

were conducted with 100 tasks at each tier, but with different emphases on task characteristics. Task 

allocation for these scenarios is presented in Figure 27, demonstrating expected changes in task 

allocation when corresponding task parameters change. Thus, with increased computational 

complexity of tasks, most tasks remain at Cloud and Fog tiers without being redirected to lower 

hierarchy tiers. With increased latency sensitivity, the majority of tasks (94%) are redirected to the 

Edge tier. And with high bandwidth requirements, characterized by task data size, tasks were 

predominantly executed at Fog and Edge tiers. 

 

 
 

Fig. 27. Ratio of tasks initiated at tier to tasks executed at tier in 

Compute‑Intensive/Latency‑Intensive/Bandwidth‑Intensive scenarios for 100 tasks 

 

The dynamics of computing node load for different task characteristics are shown in Figure 28. 

 

 
 

Fig. 28. Resource utilization in Compute‑Intensive/Latency‑Intensive/Bandwidth‑Intensive 

scenarios for 100 tasks 

 

Tasks with higher computational complexity expectedly lead to increased system load, while 

latency sensitivity and bandwidth requirements virtually do not affect system load. 

 

6. Discussion of obtained results of proposed decentralized task allocation method 

Experimental investigation of the developed method using the iFogSim2 simulator has been 

demonstrated that with a load of 50 tasks per tier at moderate generation intervals, the method ensures 

predominantly local task execution with low resource utilization up to 20%. When scaling the load 

to 250 and 500 tasks, the proportion of locally executed tasks remains virtually unchanged, while 

total task latency increases by 3%, which indicates the stability of the method regardless of the 

number of tasks. Changes in task generation intensity have shown that at small intervals, the 
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proportion of local execution for the Cloud tier increases to 76–78%, while at low intensity, optimal 

utilization of available resources is achieved with improved balance indicators of 0.6–0.8. Task 

assignment latency and response latency remain virtually unchanged. Total task latency increases by 

approximately 10–20% when task generation intensity increases due to increased system load. The 

method demonstrates expected distribution adaptivity for different task types. Computationally 

intensive tasks are mainly executed on more powerful Cloud and Fog tiers. Latency-sensitive tasks 

are redirected to the Edge tier in 94% of cases to minimize latency. Tasks with high bandwidth 

requirements are optimally distributed between Fog and Edge tiers. However, the total task execution 

latency increases on average by 400 ms when transferring tasks to lower tiers. Additionally, there are 

extra transport latencies when transferring tasks to another tier and subsequently returning, in cases 

where the necessary computing power is insufficient. Therefore, further research will be directed 

toward optimizing the developed task allocation method, specifically inter-tier task routing, to reduce 

total task execution time by decreasing the number of task redirections between tiers. Additional 

research is also needed to verify the feasibility of implementing resource release mechanisms during 

task allocation. Furthermore, a future research direction is the development of MEL management 

methods for efficient resource utilization, load balancing, and reducing task execution time. 

 

Conclusions 

In this paper, a general model for task allocation and resource management in IoT systems 

based on osmotic computing has been developed. The considered hierarchical three-tier architecture 

of distributed IoT systems has been designed to ensure the rational utilization of computing resources 

at the edge, fog, and cloud tiers, regulate load distribution among them, and improve system 

adaptivity to dynamic environmental changes. 

A decentralized task allocation method using fuzzy logic apparatus has been proposed, which 

considers both the characteristics and requirements of tasks and the state of computing resources to 

determine the optimal execution environment. The allocation method includes two decision-making 

stages using the Mamdani fuzzy inference system: determining the task allocation direction and 

selecting the optimal computing node for its execution. 

Experimental investigation of the developed method were conducted using the iFogSim2 

simulator. The results of the investigation showed that the percentage of locally executed tasks 

remains virtually unchanged with different numbers of tasks, indicating stability in decision-making. 

An increase in the intensity of task generation leads to an increase in task execution latency due to an 

increase in the load on the computing nodes, while task assignment latency and task response latency 

remain unchanged. The method demonstrated the adaptability of distribution for different types of 

tasks. 
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Використання туманних та крайових обчислень розширяють обчислювальні потужності 

системи Інтернет речей (IoT) до краю мережі, сприяючи мінімізації затримок під час 
виконання задач. Осмотичні обчислення доповнюють розподілені обчислення, забезпечуючи 
безшовну інтеграцію між обчислювальними середовищами завдяки динамічній міграції мікро-
елементів між різними рівнями ієрархії відповідно до поточних умов навантаження та 
доступності ресурсів. Однак, з урахуванням концепції осмотичних обчислень, актуальним 
завданням залишається управління розподілом задач в умовах невизначеності, динамічності 
та гетерогенності середовища ІоТ. Метою дослідження є підвищення ефективності 
використання ресурсів та розподілу задач в ієрархічних системах ІоТ на основі осмотичних 
обчислень в умовах невизначеності на динамічних змін середовища. Об’єктом дослідження є 
процеси розподілу задач у багаторівневих системах ІоТ, що включають хмарні, туманні та 
крайові обчислення. Предметом дослідження є методи та моделі розподілу задач і управління 
обчислювальними ресурсами в системах ІоТ з використанням парадигми осмотичних 
обчислень. 

В статті представлено трирівневу ієрархічну модель керування, побудовану на основі 
хмарного, туманного та крайового середовищ, яка реалізує централізовано-децентралізоване 
управління. Кожен рівень представлений набором обчислювальних вузлів та системою 
управління, яка здійснює локальний розподіл задач, моніторинг стану ресурсів та управління 
мікро-елементами. Система управління нижче розташованого рівня підпорядковується вищій 
за ієрархією системі управління. Розроблено метод децентралізованого розподілу задач в 
ієрархічних системах ІоТ з використанням апарату нечіткої логіки. Метод розподілу включає 
два етапи прийняття рішень з використанням системи нечіткого логічного висновку: 
визначення напрямку розподілу задачі та вибір оптимального обчислюваного вузла для її 
виконання. Визначення напрямку розподілу задачі здійснюється на основі характеристик 
задачі, а рейтинг придатності обчислювальних вузлів визначається з урахуванням затримки 
виконання задачі, ефективності використання ресурсів та балансування навантаження. Задача 
призначається вузлу з максимальним рейтингом. Використання нечіткої логіки забезпечує 
прийняття раціональних рішень в умовах невизначеності в реальному часі, що є характерним 
для високо-гетерогенних та динамічних середовищ ІоТ. 

Експериментальне моделювання та дослідження методу було здійснено з використанням 
середовища симуляції iFogSim. Результати дослідження показали, що відсоток локально 
виконаних задач залишається фактично незмінним при різній кількості задач, що свідчить про 
стабільність прийняття рішень. Збільшення інтенсивності генерації задач призводить до 
зростання затримки обчислення задачі через збільшення навантаження на обчислювальні 
вузли, при цьому затримка призначення задачі та затримка відповіді залишаються незмінними. 
Метод продемонстрував адаптивність розподілу при різних типах задач. 
Ключові слова: Інформаційні системи, Інтернет речей, ІоТ, хмарні обчислення, туманні 
обчислення, крайові обчислення, осмотичні обчислення, розподіл задач, нечітка логіка. 


