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The paper presents an approach to hybrid load management in a web cluster that is capable of
providing adaptive request balancing based on load prediction and resilience to random web server failures.
The proposed architecture is built upon the Fat-Tree topology, which ensures high scalability, structural
redundancy, and efficient routing within the cluster network. The developed system performs load
forecasting using moving average methods and Erlang-based queueing models, enabling the estimation of
overload probabilities and proactive redistribution of computational resources. Four representative
simulation scenarios were analyzed: baseline load, peak load, dynamic traffic variations, and random server
failures. The obtained results demonstrate enhanced system reliability, reduced average response time, and
more balanced utilization of cluster resources. In the context of rapidly growing web services and user
traffic volumes, the issue of maintaining high reliability and efficiency of clustered infrastructures becomes
increasingly significant. Even with robust topologies such as Fat-Tree, irregular traffic patterns and sudden
surges in client requests can cause local overloads and performance degradation. Random node failures
further complicate cluster management, necessitating the use of adaptive and predictive control
mechanisms. The proposed model integrates Fat-Tree network simulation with statistical forecasting
algorithms, forming the basis for proactive load management. This integration allows for minimizing
service degradation risks, dynamically responding to workload changes, and maintaining stable operation
of web infrastructures under partial node failures. The architecture shows strong potential for real-time
implementation in large-scale distributed web systems. It can be further enhanced by incorporating
machine learning or wavelet-based forecasting methods to improve the accuracy of load estimation and
system adaptability.

Keywords: load forecasting, web cluster, Fat-Tree topology, fault tolerance, traffic balancing, stochastic
failures.

1. Introduction

The rapid expansion of online services and user-generated traffic has created significant challenges
for maintaining the stability, responsiveness, and reliability of web infrastructures. As digital
ecosystems become increasingly distributed, ensuring efficient load distribution and fault tolerance
across large-scale server clusters has become a key area of research in network systems engineering.

Modern web clusters rely on intelligent load balancing mechanisms and resilient topologies to
maintain service availability under dynamic and unpredictable workloads. The Fat-Tree topology has
emerged as one of the most efficient architectural solutions due to its hierarchical structure, high
throughput, and redundancy. However, even with such robust topology, the performance of cluster
systems can degrade under traffic bursts, uneven request distribution, or random node failures.

Traditional reactive balancing approaches respond to overloads only after they occur, which can lead
to latency spikes and temporary service degradation. This motivates the development of predictive
control mechanisms capable of anticipating load variations before they cause instability. Analytical
models based on Erlang queuing theory, combined with statistical and machine learning forecasting
techniques such as ARIMA (AutoRegressive Integrated Moving Average) or LSTM (Long Short-Term
Memory), offer new opportunities for intelligent traffic prediction and adaptive load management.
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Therefore, the relevance of this research lies in designing a hybrid predictive load balancing
architecture that integrates the Fat-Tree topology with proactive traffic forecasting and fault
tolerance. This approach ensures stable performance and optimal resource utilization under variable
load and failure conditions.

2. Literature review and problem statement

The efficiency of cluster systems largely depends on the chosen network topology, load management
strategy, and the ability to recover from failures.

In this context, a significant body of research has focused on the analysis of Fat-Tree topology,
server load forecasting, and the development of fault-tolerant computing infrastructures.

The Fat-Tree topology, first formalized in |1], has become widely adopted in the construction of
data centers and cluster systems. This is due to its property of providing equal bandwidth at all
levels and supporting multipath routing. Studies [2,3] demonstrate that Fat-Tree enables effective
infrastructure scaling without reducing overall bandwidth as the number of nodes increases. In [4],
the ability of this topology to reduce network traffic collisions through the use of ECMP (Equal-Cost
Multi-Path) routing is emphasized.

However, most of the mentioned studies consider static load scenarios without accounting for
dynamic changes or unpredictable failures.

Studies [5,|6] highlight that web application traffic is highly variable and unevenly distributed across
nodes. To ensure high-quality user service, load forecasting and adaptive balancing are required.
Algorithms for dynamic request distribution that consider response time, current load, and historical
data were proposed in [7]. However, most of them rely on the system’s instantaneous state and do
not provide proactive planning.

According to [8], modern distributed systems must be capable not only of automatically detecting
failures but also of adapting the topology or redirecting traffic without significant performance loss.
Stochastic modeling of failures, in particular using Poisson processes and the Erlang distribution,
allows for the realistic simulation of unpredictable server or network component failures [9], providing
more accurate testing and recovery planning. The use of the Erlang distribution is appropriate because
it effectively represents the time between events in queuing systems and enables probabilistic estimates
of load, response time, and failure probability [10].

The application of the Erlang distribution in modern cluster and cloud systems is becoming
increasingly relevant. Studies [11,/12] have shown that modeling inter-request times or failure
intervals using Erlang allows for predicting peak loads, assessing “flash crowd” probabilities, and
optimizing resource balancing. In particular, these approaches are applied to plan backup servers,
estimate recovery time, and forecast the likelihood of overload on individual nodes in real time. This
combination of stochastic modeling and predictive algorithms enhances the reliability of cluster
systems and provides more precise resource management.

The development of recovery systems, particularly through replication or backup communication
channels, is covered in [13], but such approaches are rarely integrated with predictive methods. Over
the past decade, considerable attention has been given to the use of machine learning methods for
load forecasting in IT systems. In [14}/15], the effectiveness of ARIMA, LSTM, and Facebook Prophet
models for predicting CPU load, RPS (Requests Per Second), and other parameters is demonstrated.
In particular, [16] shows that LSTM models exhibit higher accuracy over short time horizons, which
is especially important for real-time cluster resource management. Despite this, a limited number of
studies combine load forecasting with modeling of specific network topologies.

In [17] investigates the use of DWT (Discrete Wavelet Transformations) for forecasting web server
load in general-purpose computer networks. The study highlights the advantage of wavelet-based
decomposition in capturing both local and global patterns of traffic variation, which is critical for real-
time load balancing. The approach enables more accurate prediction by filtering noise and isolating
significant trends within web request time series.
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Building on this, [18] introduces a conceptual model aimed at improving the efficiency of web server
load forecasting. The paper emphasizes a layered structure that integrates data preprocessing, feature
extraction, and predictive analytics, offering a systematic framework for implementing intelligent
decision-making in distributed environments. Furthermore, [19] explores the peculiarities of web traffic
forecasting, noting the irregular and bursty nature of web loads. This research reinforces the need
for hybrid approaches that can adapt to the stochastic and non-stationary characteristics of traffic,
particularly in clustered infrastructures. Collectively, these studies contribute to the foundation for
developing resilient and adaptive web cluster systems with embedded load prediction mechanisms.

The analysis of previous works indicates significant scientific interest in scalable and reliable
network architectures. However, there remains insufficient integration of realistic infrastructure
modeling with Fat-Tree topology, consideration of dynamic load variations, stochastic failure
modeling, and predictive algorithms for resource management within web clusters.

Most existing studies focus either on improving routing efficiency or on reactive load balancing
mechanisms, neglecting the predictive aspect of control. Moreover, classical statistical models often
fail to capture the nonlinear and non-stationary behavior of web traffic, which is characterized by
abrupt fluctuations and short-term periodicity. The lack of models capable of multiscale traffic analysis
and proactive load control leads to suboptimal use of computational resources and reduced system
reliability.

Therefore, the unresolved scientific problem lies in the absence of an integrated approach that
combines scalable cluster topology, stochastic fault modeling, and hybrid predictive load control.
Such an approach is needed to ensure reliable and adaptive operation of web clusters under dynamic
traffic conditions.

3. The aim and objectives of the study

The purpose of this study is to develop and investigate a hybrid fault-tolerant web cluster model
with predictive load balancing, based on Fat-Tree topology, analytical traffic models, and statistical
forecasting methods.

To achieve the goal, the following tasks were set:

— to develop a Fat-Tree topology model for web cluster deployment, assessing its scalability,
redundancy, and fault-tolerance capabilities;

— to design and implement a hybrid predictive load balancing mechanism that combines
analytical (Erlang-based) traffic modeling and statistical forecasting (neural-based prediction) for
adaptive request distribution;

— to perform simulation experiments based on the proposed cluster model with the implemented
predictive load balancing mechanism to evaluate the impact on response time, load variance, and
request distribution.;

— to simulate random node failures within the proposed cluster model to evaluate its reliability,
fault-tolerance, and self-recovery capabilities under partial degradation.

4. The study materials and methods of load forecasting
4.1. The object, subject and hypothesis of the study

The object of this research is the operation of web server clusters organized according to the Fat-
Tree topology under conditions of dynamically varying load and partial failures of individual nodes.
The subject of the study includes the processes of intelligent load management and fault tolerance
in distributed computing systems, based on predictive modeling and analytical methods for system
performance evaluation.

The hypothesis of this research assumes that the integration of Fat-Tree network modeling with
analytical and statistical load forecasting techniques can significantly improve the reliability,
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adaptability, and performance of large-scale web clusters. This integration enables proactive load
balancing and self-recovery under fault conditions.

Such integration provides:

— enhanced efficiency of request distribution within the cluster;

— mitigation of the negative effects caused by node failures;

— implementation of proactive load management mechanisms in scalable web services.

This research focuses on the structural characteristics of the Fat-Tree topology, mathematical
formalization of load in web clusters, probabilistic modeling of individual node failures, and
theoretical approaches to server load forecasting.

4.2. The Fat-Tree topology model for web cluster deployment

The Fat-Tree architecture represents a modified form of the classical tree-based network topology,
designed to provide uniform bandwidth distribution across all hierarchical levels. Its fundamental
principle is the gradual increase in the number of connections toward the root layer, which ensures
effective load balancing and scalability. Due to these properties, the Fat-Tree topology has found
widespread application in modern data centers and high-performance computing systems. It serves
as a robust foundation for research on predictive load management and fault-tolerant operation.

Formally, for a Fat-Tree with parameter k, where k is an even number, the total number of servers is
k3 /4, and each of the k subnets (pods) contains k/2 edge and aggregation switches. The core switches
provide interconnections between all subnets, forming a complete hierarchical structure with multiple
alternative routes.

The characteristic properties of this topology include scalability, support for multipath routing,
physical symmetry of the network, and high resilience to individual node or link failures. This makes
Fat-Tree suitable for environments with intensive and variable network load.

Load in web clusters is typically described using metrics such as RPS, CPU utilization, system
response time, and the number of concurrently active connections. The formalization of load allows
for a quantitative assessment of each node’s state at any given moment.

The mathematical model of load on the i-th node at time ¢ can be represented as a function of
several variables:

Li(t) = f(Ri (1),C; (1), M; (1)), (1)

where R; () is the request intensity, C; (¢) is CPU usage, and M; (¢) is memory usage. The variability
of these indicators over time exhibits stochastic and seasonal characteristics, necessitating the use of
time series analysis and forecasting methods.

From a reliability standpoint, each node or processor in a cluster system has a non-zero probability of
failure. To model such events, both binomial and exponential distributions can be used. In particular,
the exponential distribution of time to failure is described by the function

P(T>1)=e", (2)

where A is the failure rate.

For the purposes of system resilience analysis, a binary model can be applied, where the state of
a node is described by the variable S; (r) € {0, 1}. If S; (r) = 1, the node is functioning properly and
processing load; otherwise, it is considered failed, and its load L’; () is assigned a value of zero. This
approach allows effective modeling of scenarios involving partial or prolonged component failures in
the network.

One of the key directions for optimizing the operation of web clusters is forecasting node load to
enable preventive load balancing. This task is formalized as a time series problem, where the predicted
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load value L; (f + 7) is determined based on the values at previous time points. The general model
can be expressed as:

Zli(t-l_T):jﬂ:(Li(t)’Li(t_]-)""’Li(t_n))’ (3)

where F is the forecasting model (which may be regression-based, statistical, or neural).

Among modern approaches, RNN (Recurrent Neural Networks), particularly the LSTM
architecture, occupy a special place. Thanks to its memory blocks, LSTM can retain dependencies
over long time intervals. This is especially important when the load exhibits complex dynamics,
fluctuations, or depends on cyclical events.

To comprehensively evaluate the effectiveness of the proposed model, both precise forecasting
metrics and system-level performance indicators will be used. These include Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), Mean Squared Error (MSE) violation rate, overall
throughput, and the load balancing index. Fault tolerance indicators, such as the number of critical
failures over a given period, are also considered.

For the study, a virtualized network with a Fat-Tree topology was implemented. All nodes were
conditionally divided into servers (computing nodes) and routers. Each server in the model processes
incoming requests, with the workload simulated according to selected profiles. The state of each server
changes depending on the modeled load and the probability of failure.

4.3. Design and implementation of a hybrid predictive load balancing mechanism

The proposed approach integrates analytical Erlang-based traffic modeling with neural-based
statistical forecasting, forming a dual-layer predictive control loop capable of proactively
redistributing client requests within the Fat-Tree cluster architecture.

Traditional load balancing methods, such as Round Robin or Least Connections, rely solely on
instantaneous system states and are unable to anticipate future load surges or node degradation. To
address these limitations, the hybrid mechanism developed in this study employs a two-tier predictive
framework:

— analytical layer — models the current traffic intensity and service capacity using Erlang queuing
theory;

— forecasting layer — predicts short-term load variations using a neural network trained on historical
web traffic metrics.

The integration of these two models provides both stability (from the analytical baseline) and
adaptivity (from the neural forecasting module), which together form a self-adjusting decision engine
for proactive load management.

The analytical layer estimates the expected utilization and blocking probability for each node in
the cluster.

Using an M /M /c queueing model, where A denotes the average request arrival rate and u the
service rate per server, the offered load A is defined as:

A=1,. (4)

The probability of overload (blocking) for a node with ¢ service channels is computed via the Erlang
B formula:

Ac/ c!
Zizo Ak/ k!
This expression allows the system to evaluate real-time saturation levels and to estimate the

probability that a new request will be queued or rejected. These analytical parameters form the
baseline input for the higher-level forecasting layer.

B(c,A) = (5)
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The forecasting layer employs a feed-forward neural network designed to predict the short-term
workload on each node. The input variables include recent request arrival rates A (¢t —n...t), service
response times, queue lengths and prior forecast errors. The network output L; ( + 1) represents the
predicted load for the next time interval. The model is trained using the MSE criterion.

To simulate realistic load conditions, synthetic request generation was applied, incorporating
fluctuations within daily and weekly cycles. The incoming traffic was formed based on a
combination of harmonic functions and stochastic oscillations using the formula:

L; (1) = Asin 2r ft + ¢) + 1 (1), (6)

where A is the load amplitude, f is the frequency, ¢ is the phase, and n (¢) represents the random
noise component (white noise or a Gaussian noise function).

The neural component captures nonlinear temporal dependencies and stochastic fluctuations that
the Erlang model cannot represent. At each scheduling interval, the hybrid controller computes a
weighted decision metric for each node:

Wi=a- B;(c,A)+B-L;(t+1), (7)

where a and B are adaptive coefficients balancing the analytical and predictive contributions.
The load balancer then selects the server Sy with the minimum W; value:

Sk = argmin W;. (8)
J

This mechanism enables predictive request routing, ensuring that servers likely to become
overloaded are pre-emptively relieved before congestion occurs.

Additionally, during the simulation, periods of peak load with high request density were introduced
to emulate critical situations such as “flash crowd” events or DoS (Denial of Service) attacks.

As shown in Fig. [I| the models also incorporated random changes in server states, reflecting real
hardware failures or overloads. For this, pseudo-random modeling was applied according to the
exponential distribution of time between failures. At the moments of failure, the load on the
corresponding server was reset, and routing was redistributed through neighboring nodes according
to the minimum depth algorithm or ECMP.

For forecasting the load on individual nodes, three fundamentally different approaches were
employed. These include the classical autoregressive model ARIMA, a deep learning model based on
LSTM networks, and a stochastic approach grounded in queuing theory using the FErlang
distribution. The models were trained on time series of past load values within a 60-minute window,
and the forecasts were generated for the next 15, 30, and 60 minutes.

The LSTM model was implemented using the Keras library with the TensorFlow backend. For
training, the MSE loss function, the Adam optimizer, and early stopping (in case of no improvement
in metrics) were employed. In parallel, an ARIMA model was built with optimal parameters (p, d, q),
selected using the Bayesian Information Criterion.

Due to its flexibility, the Erlang distribution enables probabilistic estimates of system load levels,
the likelihood of queue blocking, and the prediction of peak loads. In the context of web servers, this
approach allows for the assessment of QoS (Quality of Service) metrics. These metrics include average
response time, probability of access denial, and the distribution of waiting times in the queue. The
Erlang distribution is characterized by two key parameters. The first is the number of stages k, which
determines the shape of the distribution and the degree of variability of intervals between events, and
the second is the rate parameter A, which defines the average arrival rate of requests. Additionally,
modeling with the Erlang distribution provides a basis for planning system scaling and optimizing
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Fig. 1. Web server load model forecasting flowchart

resource allocation. This is critical for maintaining high availability and reliability of computing
clusters under variable request intensity.

Graphical representation of the Erlang distribution for different k& values at a fixed A shows that
increasing k reduces the probability of extremely short or long intervals between requests. This
property is useful for predicting peak loads and managing queues. Similarly, varying A allows
modeling different levels of average request intensity, providing the ability to assess system resource
margins and QoS metrics such as average response time and probability of failure. The dependence
of the distribution on parameters k is illustrated in Fig.

1.0 A

0.8 1

0.2

0.0

0 2 4 6 8 10
Time Between Requests

Fig. 2. Erlang distribution for different values of k (1 =1)

The forecasting results were applied for predictive load balancing, which reduced the likelihood of
overloading critical nodes.
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The effectiveness was evaluated according to the following key indicators:

— forecasting accuracy. The predictive performance of the models was measured using the MAE,
the RMSE, and the R? (coefficient of determination);

— gystem performance. Operational efficiency was evaluated by monitoring the average request
processing latency, the throughput (requests per second), and the number of successfully processed
requests;

— load balancing. The uniformity of workload distribution across nodes was quantified using the
LIF (Load Imbalance Factor);

— fault tolerance. System robustness was analyzed in terms of the share of unserved requests, the
average server downtime, and the response speed of the system under failure conditions.

All indicators were analyzed under conditions of normal operation, peak loads, and large-scale
failure scenarios. Early detection of peak loads enables proactive request balancing, prevents overload
of individual nodes, and reduces the number of lost requests.

5. Results of hybrid predictive load balancing experiments
5.1. Simulation experiments for evaluating predictive load balancing efficiency

To validate the effectiveness of the proposed hybrid predictive load balancing mechanism, a series of
simulation experiments were conducted. These experiments used a synthetic Fat-Tree network model
representing a scalable web server cluster.

The Fat-Tree topology was implemented, configured within a Python-based simulation environment
using the NetworkX library. The chosen topology configuration was a Fat-Tree with parameter k = 4,
which makes it possible to model a cluster consisting of 16 servers, 20 switches, and a fully functional
three-tier network.

The input data for the forecasting models consisted of time series describing the number of requests
processed per unit of time (e.g., requests per second) for each server. The data were first normalized
to the [0, 1] range for the LSTM model, and stationarity checks (Dickey-Fuller test) were performed
to properly configure the ARIMA models.

For training, 80% of the simulation data were used, while the remaining 20% were reserved for
testing. The sliding window length for the LSTM model was 60 minutes (720 records with a 5-second
simulation interval), and forecasts were built for horizons of 15, 30, and 60 minutes ahead.

ARIMA was modeled separately for each server with individual parameter selection (p,d,q)
through a grid search minimizing. The most frequently optimal combinations were
p=3d=1,¢qg=2.

The LSTM model was implemented using the Keras deep learning framework. Its architecture
consisted of a single LSTM layer with 128 hidden units, followed by a Dropout layer with a rate of
0.2 to mitigate overfitting. The output was produced by a Dense layer with a single neuron. The
model was trained using the Adam optimizer and the MSE as the loss function. Training was carried
out for 50 epochs, with an early stopping mechanism employed to prevent overfitting and improve
generalization.

Erlang-based model was applied as a stochastic alternative to estimate the probability of incoming
requests. For each server, the inter-arrival times were modeled as Erlang(k, 1), where the parameters k
(shape) and A (rate) were determined based on historical data. This approach allowed: estimating the
probabilistic intensity of requests at any given time; forecasting peak and low load periods; accounting
for the natural variability of request streams in the system.

The model performance was evaluated using three metrics: MAE, RMSE, and R?. The comparative
results for different forecasting horizons are summarized in Table [1]

As shown in Table [T, the LSTM model consistently demonstrates superior accuracy compared to
ARIMA, particularly over longer forecasting horizons. This advantage is attributed to its ability to
capture complex nonlinear dependencies and variations in load behavior. The Erlang-based model,
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Table 1. Forecasting accuracy of ARIMA, LSTM, and Erlang-based models

Forecast Horizon | Model | MAE | RMSE | R?

15 min ARIMA | 0.048 0.066 | 0.91
LSTM | 0.031 0.045 | 0.95
Erlang | 0.036 0.050 | 0.93
30 min ARIMA | 0.074 0.092 | 0.85
LSTM | 0.055 0.068 | 0.90
Erlang | 0.060 0.075 | 0.88
60 min ARIMA | 0.120 0.152 | 0.71
LSTM | 0.087 0.110 | 0.82
Erlang | 0.095 0.120 | 0.80

in turn, proves effective for short-term load forecasting under high variability and complements both
ARIMA and LSTM, especially in assessing the probabilistic characteristics of the system.

Around each server, a load generator with random fluctuations was modeled according to the
previously described scenarios. In addition, a mechanism for random server failures was introduced,
with parameters defined by an exponential distribution of time between failures, with a mean time of
4 hours.

The following main scenarios were designed and implemented:

— scenario 1: baseline load. Uniformly distributed load with moderate intensity and no failures;

— scenario 2: peak load. Simulation of flash crowd periods with increased request volume;

— scenario 3: predictive load balancing. Utilization of an Erlang-based model for load forecasting
with automatic traffic redirection.

Each scenario was tested over 24 hours of simulated time, while statistics on key metrics were
collected.

In the experimental Scenario 1, a stable baseline load on the web cluster was simulated,
corresponding to the normal operating mode without sudden fluctuations in the number of requests.
The purpose of this scenario was to determine the baseline performance indicators of the system
under the condition of uniform load distribution across all servers. A synthetic request generator
with constant intensity was used to produce the load, corresponding to the average traffic level of a
typical web service. The inter-arrival times of requests were modeled using an exponential
distribution with parameters tuned to reflect realistic user behavioral patterns.

The network structure is illustrated in Fig.

The main metrics recorded during the simulation were:

— average system response time (latency);

— cluster throughput (number of processed requests per unit time);

— resource utilization of each server;

— number of rejected or lost requests.

The results of this scenario served as the baseline reference point for further comparison with other,
more demanding or failure-prone scenarios. It was recorded that under baseline load, the average
system response time was about 120 milliseconds, and the cluster throughput was 980 requests per
second. No failures or rejected requests were observed, indicating stable system operation under
normal conditions.

In the Scenario 2, peak load typical for periods of increased user activity — such as during advertising
campaigns or large online events — was simulated.

For modeling peak load, a synthetic generator was used that increased the request intensity by
2-3 times compared to the stable baseline level during specific time intervals. Peak periods lasted for
10-15% of the total simulation time and were distributed unevenly to imitate random flash crowd
effects.
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Fig. 3. Fat-Tree topology (k = 4) with uniform server load

The key metrics measured in this scenario included:

— maximum system response time;

— average throughput during peak and non-peak periods;
— number of rejected or delayed requests;

— load level of individual servers in the cluster.

As shown in Fig. 4] the goal of this experiment was to assess the system’s ability to cope with sudden

increases in request volume. It also aimed to determine the impact of peak load on the performance
and stability of the web cluster.

25 4
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T T T
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Fig. 4. Time series of web server requests demonstrating a flash crowd event
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The results showed that during peak periods, the average latency increased by a factor of 2.2
compared to the baseline scenario, reaching 270 ms, while throughput decreased by 22% compared
to normal operation. The increased response delays and reduced throughput indicate the presence of
bottlenecks in network or server resources under peak loads.

The main goal of next Scenario 3 was to evaluate the benefits of predictive load balancing in a Fat-
Tree web cluster. Instead of simply distributing requests evenly, the system used forecasted values
of server load to optimize request allocation. This approach was intended to prevent overloads on
individual servers and to maximize the overall efficiency of the cluster.

The predictive load of the Erlang-based model is shown with a discretization interval of five minutes,
demonstrating expected server demand over time in Fig. [5

= Actual Load
=+ Erlang Forecast
10 4

Load
o

T T T T T T T
0 50 100 150 200 250 300
Time (5-min steps)

Fig. 5. Predictive load of Erlang-based model with 5-min discretization

Here, the system leveraged historical data to predict the upcoming load for each server, employing
models such as moving averages or machine learning approaches. Based on these predictions, new
incoming requests were dynamically routed to servers with lower expected utilization. This scenario
setup assumed no server failures, allowing the focus to remain entirely on improving load distribution
and system responsiveness.

The anticipated results included a more even utilization of cluster resources and a noticeable
reduction of peak loads on individual servers. Additionally, an overall improvement in system
response time was expected compared to a baseline with uniform request distribution.

In this scenario, an approach was implemented that combines time series—based load forecasting
with dynamic request distribution among servers. The use of models makes it possible to detect
increasing traffic trends in advance and proactively redirect requests. As shown in Fig. [6] the
comparative chart illustrates latency changes in two cases: without forecasting (red curve) and with
predictive load balancing enabled (green curve).

In the first case, a gradual increase in latency with sharp peaks can be observed, indicating server
overload. In contrast, when applying the predictive model, latency remains relatively stable even
during peak load periods. This confirms the effectiveness of the approach in reducing the risk of
performance degradation and improving the overall reliability of the system.

5.2. Fault-tolerance analysis through random node failure simulation

Ensuring fault tolerance is a critical aspect of distributed web server infrastructures. This is
especially important in large-scale systems employing the Fat-Tree topology, where component
failures can lead to service degradation or partial system outages. To evaluate the resilience of the
proposed hybrid predictive load balancing mechanism, a set of simulation experiments was
conducted involving randomized node failure events under varying load conditions. The objective of
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Fig. 6. Predictive load balancing: latency comparison

this stage was to assess the system’s ability to maintain operational stability, minimize request loss,
and ensure service continuity during partial network degradation.

The fault-tolerance analysis was based on a stochastic failure model, where the probability of
node failure was defined as a time-dependent function p 4y () representing hardware or software
degradation in real-world clusters. Failures were simulated using a Poisson process with mean rate
Atqil, such that at each simulation interval At, the occurrence of a failure event followed:

P fail (At) =1- e_/lfailAl" (9)

Once a node failed, its processing capacity was instantly set to zero, and all ongoing and pending
requests were either rerouted to neighboring nodes or dropped if no available capacity remained.
Recovery events followed an exponential distribution with MTTR (Mean Time to Repair) defined by
system reliability parameters.

The following classes of failures were modeled:

— single-node failures — isolated faults occurring at random intervals;

— clustered failures — simultaneous faults within one switch domain (edge layer);

— transient failures — temporary outages with automatic recovery after a short interval.

The simulation involved randomly selecting 20% of the nodes for potential failure throughout the
observation period, thereby ensuring realistic fault dynamics and varying recovery sequences.

A particular focus was placed on assessing the efficiency of traffic redirection and load balancing
mechanisms when forecasted server utilization is taken into account.

In this setup, server failures were modeled with a predefined probability. Once a server failed,
it temporarily stopped handling requests until it recovered after a fixed recovery time. During this
downtime, all traffic originally directed to the failed server was automatically redistributed among the
remaining active servers. The redistribution strategy relied on short-term load forecasting in order to
avoid overloading the remaining nodes.

The simulation procedure included several key steps. First, a forecasting model such as an Erlang-
based model was applied to estimate near-future server load. At each time step, the operational state
of every server was determined randomly as either active or failed, based on the scenario parameters
for failure probability and recovery duration. Incoming requests were evenly generated, but only
distributed among the servers that remained active, with adjustments guided by the load forecasts.
All data on server utilization, failures, and recovery cycles was collected for further analysis.
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A heat map visualizes the server load under a random failure scenario, showing how different nodes
are affected and indicating areas of potential congestion in Fig.

The expected outcome of this scenario was to quantify how the frequency and duration of failures
affect the cluster’s overall performance. It also aimed to measure the effectiveness of predictive
balancing strategies under failure conditions and to highlight potential bottlenecks and overload
zones caused by hardware degradation.
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Fig. 7. Heat map of server load in a random failure scenario

The evaluation relied on metrics such as average and peak load of active servers, downtime and
recovery time per server, the number of redirected requests, overall throughput, and system response
time.

6. Discussion of the experimental results

The simulation experiments demonstrated the practical effectiveness of the proposed hybrid
predictive load balancing mechanism within a web cluster environment based on the Fat-Tree
topology. The evaluation involved three main experimental scenarios designed to test system
performance under varying traffic conditions, fault events, and forecasting models.

In the baseline scenario, which represented a uniform distribution of requests without prediction,
the system achieved an average response delay of 120 ms. The throughput in this scenario was
approximately 980 requests per second. Under peak load conditions, the average delay increased to
270 ms, while throughput decreased by nearly 22%, indicating congestion in certain nodes due to
unbalanced traffic.

To address this issue, the predictive control mechanism was activated, integrating Erlang-based
analytical modeling for estimating service intensity and neural network forecasting (LSTM) for
predicting short-term load variations. The hybridization of these methods allowed the system to
adaptively redistribute traffic in near real-time. As a result, the average processing delay was
reduced by 12% and the proportion of failed requests decreased by 18% compared to the
non-predictive scenario.

When the predicted node load exceeded 80% of the allowable threshold, the system preemptively
redirected new requests to less loaded servers. This proactive behavior significantly mitigated overload
formation and reduced the variance of load distribution across the cluster by 18-25%. In comparison, a
purely statistical forecasting method such as ARIMA showed lower adaptability under highly dynamic
load conditions, confirming the advantage of deep learning-based predictors for volatile web traffic.
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The fault-tolerance simulations introduced random node failures to evaluate cluster stability. The
system maintained operational functionality even with up to 20% of nodes disconnected, primarily
due to the redundant structure of the Fat-Tree topology. Through rapid rerouting and predictive
redistribution, throughput decreased by only 15%, and the percentage of unserved requests remained
below 5%. However, when failures exceeded this threshold, localized “hot spots” began to appear,
suggesting the need for further optimization of load balancing in extreme fault conditions.

Overall, the discussion of experimental results confirms that the integration of hybrid forecasting
methods (Erlang + LSTM) with adaptive load control enhances the robustness, responsiveness, and
scalability of web cluster systems. This hybrid mechanism demonstrates the potential for practical
deployment in intelligent cloud environments that require both real-time adaptability and predictive
decision-making capabilities.

Future research could explore scaling up simulations to include a larger number of servers to evaluate
system performance in extensive data centers. It could also involve applying deep learning techniques
for load forecasting under complex scenarios such as seasonal or anomalous traffic. Additionally,
analyzing the effects of real user traffic based on web server logs and developing adaptive routing
protocols within the Fat-Tree topology could enhance network latency optimization.

Conclusions

1. The Fat-Tree-based web cluster model exhibited high scalability and resilience under varying
load and failure conditions. Thanks to its multi-tiered structure and redundant interconnections, the
topology ensured efficient traffic rerouting and sustained system functionality even during partial
network degradation.

2. The proposed hybrid predictive load balancing mechanism combines analytical and intelligent
forecasting methods — specifically, the Erlang model for service demand estimation and the LSTM
neural network for short-term load prediction. This integration enables proactive control and reduces
the dependency on reactive balancing strategies.

3. Quantitative evaluation showed that the hybrid approach reduced the average response delay by
up to 12%. It also improved throughput stability by 18-25% and decreased the number of overload-
related service failures by 30-40% compared to a baseline non-predictive balancing scheme. These
metrics confirm a measurable gain in efficiency and system responsiveness.

4. Fault-tolerance analysis demonstrated that the cluster maintained stable operation with up to
20% node loss, while total unserved requests remained under 5% due to rapid rerouting mechanisms.
This validates the reliability of the proposed architecture for critical and large-scale web systems.

5. The scientific novelty of this work lies in the development of a hybrid predictive control
framework. This framework combines analytical modeling of request flows (Erlang-based traffic
analysis), neural-based forecasting of web server load, and adaptive redistribution within a Fat-Tree
cluster.
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Hamionanpuuit Texuivuauiit yaiBepcuter YKpainu
«KuiBebkuii mosmirexuigamii iHcruTyT iMeni Iropst Cikopebkoros, Kuie, Ykpaina

Y crarri upeicraBieHmit MiAXix 0 TIOPUIHOIO KEpyBaHHS HaBaHTAaXKEHHSIM Yy BeOKjacTepi, M0 31aTeH
3abe3medyBaTn aJAlNTUBHE OaJlAHCYBaHHS 3allMTiB HA OCHOBI IIPDOTHO3YBAHHS HABAHTAXKEHHH Ta BpPaXyBaHHS
BUIIQIKOBUX BiZIMOB BeOcepBepiB. 4K Tomosoriumy ocHoBy obpamo apxitektypy Fat-Tree, mo xapaxrepusyeTbcs
BHCOKOIO MAacIITaDOBaHICTIO, CTPYKTYPHOI HAJIMIPHICTIO Ta e(EeKTHUBHICTIO MapIIpyTH3allil. 3allpOIIOHOBAHA CHCTEMa
3/IIiCHIOE TTPOIHO3yBaHHSI HaBAHTA’KEHHsI 3a JOIIOMOI'OI0O KOB3HOI'O CEPEJHBOrO Ta Mojesieil yepr tumny Epsanra, 1o
JIO3BOJISIE OIIHIOBATH HMOBIPHICTH INEepEeBAHTAXKEHHS OKPEMUX BY3JIB 1 3/IIMCHIOBATH MPOAKTUBHE IE€PEPO3IOJILICHHS
pecypciB. Y mporieci MOIE/TIOBAHHS PO3IVISHYTO YOTHUPHU THUIOBI crieHapil yHKIIOHYyBaHHS KJacrepa: 0a30Be, IIKOBe
Ta JUHAMIYHE HABAHTAXKEHHs, & TaKOXK BUIAJKOBI BijMoBH cepBepiB. Orpumani pe3yibTaTé CBi9aTh PO
M IBUAIIEHHS BiJIMOBOCTIKOCTI CHCTEMMU, 3MEHINIEHHsI CEPEIHhOr0 Yacy BiAryKy Ta OinbIn piBHOMIpHE BUKOPUCTAHHS
OOYHCTIOBAJILHUAX PECYypPCiB. ¥ CyYaCHUX YMOBAX IHTEHCHBHOTO 3POCTAHHS KiJBKOCTI BEOCEPBICIB i KOPHUCTYBAIILKOIO
TpadiKy aKTyaJbHUM € MATAHHS 3a0e3leYeHHs HaIITHOCTI Ta epeKTUBHOCTI KjacrepHux iHdpacTpykryp. Hapith 3a
BUKODHUCTAHHSI CTIAKHX TOIOJOTi#, Takmx K Fat-Tree, HepiBHOMIpHICTH 3amuTiB 1 MKOBI HaBaHTAyKEHHS 3JATHI
CIIPUYMHSATH JIOKAJbHI IepeBaHTaKeHHsI ab0 3HMXKEHHS HPOIyKTUBHOCTI. Bumamkosi BiamoBu By3IiB 101aTKOBO
YCKJIAJIHIOIOTh ~YIIPABJIHHS CHCTEMOIO, IO HOTPedy€e BIPOBA/KEHHS MEXaHi3MiB &JaUTUBHOIO IIPOTHO3HOI'O
KepyBaHHs. Po3pobiiena Mojiesns iHTErpye MeperkeBe MojienoBanHsa Fat-Tree 3 ajaropurMaMu CTaTUCTHYHOIO aHAJII3Y,
CTBOPIOIOYM OCHOBY JIJIsi TOOY/IOBA IIPOAKTUBHOI CHCTeMH OajlaHCYBaHHS HaBaHTaXKeHHsl. Takuil miaxin 1o3BoJisie
3MEHINUTHA PU3MK Jerpajalii cepBicy, CBOEIaCHO pearyBaTu Ha 3MiHu y Tpadiky Ta HiITPpUMyBaTH CTablIbHY pobOoTy
BeOIiH(PACTPYKTYPHU HABITH 33 YMOB YACTKOBUX BiIMOB. 3aIIpPOIIOHOBAHA apXiTEKTypa JAEMOHCTPYE 3HATHUNA MTOTEHITIAI
Ui mpakTHdHOI peasizamii y MacmraboBaHHX BebGcepBicax. Ii MOMKHA [OJATKOBO BIOCKOHAJIHTH 33 PAXyHOK
BIIPOBa/PKEHHsI METOJIIB MAIIMHHOIO HaBYaHHA a00 BeNBJIET-NPOIHO3YBAHHA JJIs IIIBUIIEHHS TOYHOCT] OIIHKH
HABAHTAYKEHHS Ta AJIAIITHBHOCTI CUCTEMU.

Kitro4oBi ciioBa: nporuo3yBaHHs HaBaHTaxkeHHsI, BeOKjacrep, Fat-Tree TomoJtorisi, BiZiMOBOCTIKiCTD, Oa/laHCyBaHHS
Tpadiky, CTOXaCTUIHI BiJIMOBH.
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