Information, Computing and Intelligent Systems, 2025, No. 7, 180 — (197
UDC: 004.4, 004.738.5 https://doi.org/10.20535/2786-8729.7.2025.341787

MULTI-STRATEGY AJAX AND
EVENT-DRIVEN STATE MANAGEMENT FOR
RESPONSIVE WEB APPLICATIONS

Nataliia Rudnikova*
http://orcid.org/0009-0008-7057-4241

Oleksiy Nedashkivskiy
http://orcid.org/0000-0002- 1788-4434

National Technical University of Ukraine
“Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

*Corresponding author: rudnikova.n.s.-tvz51f@edu.kpi.ua

Research addresses engineering high-performance, responsive web apps for complex data and real-time
user interaction. The study focuses on the client-server integration in a monolithic Django
pattern/architecture, specifically the orchestration of asynchronous client technologies, for instance, AJAX,
JavaScript, and server logic, for instance, Python/Django. The goal is to design, implement, and validate a
unified AJAX integration framework. This framework enables seamless real-time data exchange, dynamic
updates, and complex state management for diverse components: interactive tables, multi-dimensional
charts, multi-step forms, and the checkout session container. Django framework, jQuery for AJAX, and
JavaScript libraries (Chart.js, DataTables) are included as materials. Methods applied involve systematic
software architecture design, asynchronous programming analysis, RESTful API development, and
empirical performance benchmarking of data-loading and state management strategies. Scientific
contribution is twofold. Firstly, multi-strategy AJAX integration model is formalized as a decision
framework that dynamically selects between server-side rendering (django-tables2), client-side rendering
(vanilla jQuery/DataTables), and a hybrid AJAX-datatable approach based on data complexity, volume,
and interaction. Secondly, event-driven state management system as a robust design for distributed,
session-based Ul components using a centralized AJAX action dispatcher and a universal state
synchronization function. This ensures data consistency across independent page components and
eliminates race conditions in concurrent operations. As a result, the framework achieved a significant
reduction in server load and perceived latency. The benchmarked components consistently showed
sub-200ms response times for datasets over 10,000 records. The cart system handled over 1,000 consecutive
operations without any state desynchronization.

Keywords: Server-Side Processing, AJAX integration, Django framework, JavaScript, dynamic data
visualization, DataTables, single-page application, RESTful API, software architecture, performance
optimization.

1. Introduction

The evolution of the World Wide Web has been marked by a continuous pursuit of richer, more
responsive user experiences. The static, document-centric web of the past has given way to dynamic,
application-like platforms that rival native desktop software in their complexity and interactivity.
This paradigm shift has been largely driven by the maturation of core web technologies, particularly
JavaScript, and the widespread adoption of Asynchronous JavaScript and XML (AJAX). AJAX
liberated web applications from the ”click-and-wait” model of full-page reloads, enabling discrete
sections of a page to be updated independently based on user actions or real-time data streams. This
capability is fundamental to modern web applications, from interactive dashboards and data analytics
platforms to complex e-commerce systems and collaborative tools.

However, this increased interactivity introduces significant architectural complexity. The specific
scientific problem lies in the effective, efficient, and maintainable orchestration of client-side logic
with server-side business logic within a cohesive application structure. While numerous libraries and
frameworks exist to handle individual aspects of this integration such as rendering a table or drawing
a chart. However, a comprehensive, unified architectural approach that seamlessly combines diverse

© The Author(s) 2025. Published by Igor Sikorsky Kyiv Polytechnic Institute.
This is an Open Access article distributed under the terms of the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/),
which permits reuse, distribution, and reproduction in any medium, provided the original work 1s properly cited.

https://doi.org/10.20535/2786-8729.7.2025.341787
http://orcid.org/0009-0008-7057-4241
http://orcid.org/0000-0002-1788-4434
rudnikova.n.s.-tvz51f@edu.kpi.ua
https://creativecommons.org/licenses/by/4.0/

Multi-strategy AJAX and event-driven state management for responsive web applications 181

interaction patterns into a single, performant application remains an area requiring formalization and
research. Inefficient data fetching strategies can lead to excessive server load and high latency. Poorly
managed application state can result in inconsistent user interfaces, where different page components
display conflicting information. Furthermore, ad hoc implementations of AJAX features often lead to
code that is difficult to maintain, extend, and debug.

Consequently, this article presents a novel, holistic framework developed within the Django
ecosystem, demonstrating how a systematic and principled integration of AJAX, JavaScript, and a
Python backend can systematically address these challenges. The framework is not merely a
collection of techniques, but rather a structured methodology for enhancing a traditional
server-rendered Django application with high-interactivity features without requiring a complete,
and often costly, rewrite into a fully decoupled SPA architecture. The relevance of this research is
underscored by the persistent dominance of monolithic architectures in many business contexts due
to their simplicity, SEO-friendliness, and rapid development cycle. Providing a clear path to
incrementally add rich interactivity to these applications has substantial practical value. This study
moves beyond isolated code snippets to present a generalized model for AJAX integration, complete
with performance analysis and validation based on a fully functional implementation, as evidenced
by the provided codebase encompassing URLs, views, templates, and client-side scripts.

2. Literature review and problem statement

The integration of client and server-side technologies has been a central theme in web
development research from 2020 to 2025. While Garrett’s seminal work established the foundations
of AJAX, modern studies have expanded its application to complex industrial and scientific
contexts. For instance, the role of modern web technologies in constructing high-performance
scientific portals is emphasized in [1], while a comprehensive introduction to Python-based
frameworks like Django as the backbone for such systems is provided in [2].

Subsequent research has largely bifurcated into two dominant paradigms:

1. full decoupled architectures. In a comparative analysis of frontend frameworks (React, Angular,
Vue), the Django backend is utilized strictly as an API provider [3]. This model is further formalized as
”Decoupled Django,” with a focus placed on JavaScript-heavy frontends [4]. However, it is noted that
while full-stack capability is offered, technological surface area and cognitive overhead are increased
15l

2. monolithic augmentation. The efficiency of managing web development within the native Django
ecosystem is highlighted in [6]. However, the localization of interactivity is still considered a challenge.
It is demonstrated that server-side processing is essential for data presentation responsiveness [7], a
sentiment echoed in [§], where adaptive dictionary implementations were introduced specifically to
reduce payload sizes in DataTables communication.

Despite these advancements, more nuanced integration is required for specialized applications. The
necessity of dynamic dashboards for Industry 4.0 — requiring real-time updates difficult to achieve
with standard monolithic tools — is discussed in [9]. The complexity of modeling these dynamic web
applications is addressed in [10], while the integration of advanced features like Al voice bots into
web interfaces is showcased in [11], by which traditional state management is further strained.

The technical transition from synchronous to asynchronous models is formally addressed through
the development of methods for the automatic migration of JavaScript APIs [12]. Enabling
parallelism in these asynchronous environments to improve performance was further explored in
[13]. For message-driven architectures, model-driven development using AsyncAPI is proposed to
handle complex communication [14]. More recently, focus has been placed on user behavior and
payload optimization, marking the current frontier of responsive web engineering [8}/15].

Within the specific context of monolithic augmentation, solutions for the Django ecosystem have
evolved through specialized libraries such as django-tables2 for server-side rendering and

182 Information, Computing and Intelligent Systems Ne 7, 2025

django-ajax-datatable for hybrid processing. While these packages facilitate discrete interactive
features, they are primarily designed to function in isolation. Existing documentation and literature
fail to address the integration of these tools into a unified ecosystem of diverse components, such as
synchronized charts and stateful checkout containers. Furthermore, these tools lack the formalized
decision logic required for real-time updates in modern dashboard architectures, representing a
significant gap in current web engineering research.

It shall be notified that a critical analysis of this body of work reveals three unresolved gaps in the
context of monolithic Django applications:

— the state synchronization problem. While message-driven state is addressed in [|14], a robust
solution for managing session-based Ul components across independent AJAX requests without race
conditions is lacked in the literature;

— the multi-modal data rendering problem. Despite the optimizations suggested in [7] and [§], no
clear decision-making framework (heuristic) is provided to select between SSR, client-side, or hybrid
rendering based on data cardinality and complexity;

— the API proliferation and consistency problem. As interactive features grow, as seen in the
dashboards described in [9], API endpoints often become disorganized and inconsistent data formats
(HTML vs. JSON) are returned.

To summarize, these gaps form the precise problem statement: There is a need for a coherent
architectural framework and reusable design patterns that enable the efficient, maintainable, and
scalable integration of AJAX within a monolithic Django application.

3. The aim and objectives of the study

The overarching aim of this study is to design, implement, and empirically validate a novel
integration framework for AJAX, JavaScript, and Python (Django) that significantly enhances the
interactivity, responsiveness, and user experience of web applications, while preserving the
development simplicity, SEO advantages, and rapid prototyping capabilities of the monolithic
Django pattern. This framework specifically addresses the architectural challenges of state
synchronization, multi-modal data rendering, and API consistency in highly interactive applications.

To achieve this aim, the following specific and measurable research objectives were set:

1. to develop and formalize a multi-strategy data presentation model, providing an evidence-based
decision framework for selecting the optimal data rendering strategy (addressing the multi-modal
data rendering problem);

2. to design and implement a robust, event-driven state management system for distributed UI
components (checkout session container), ensuring data consistency and resilience under
high-concurrency operations (addressing the state synchronization problem);

3. to integrate and unify the component strategies into a cohesive AJAX integration framework,
establishing standardized API response formats and comprehensive parameter validation (addressing
the API proliferation and consistency problem);

4. to conduct an experimental validation and rigorous comparative performance benchmarking of
the developed framework and its component strategies under varying dataset sizes and concurrency
loads.

4. Study methodology: materials, architectural framework, and implementation
4.1. The object, subject, and hypothesis of the study

The object of the study is the data interaction and presentation layer of a contemporary web
application. The subject is the set of software components, architectural patterns, and communication
protocols responsible for handling AJAX requests, processing data on the server, managing application
state, and updating the client-side Document Object Model (DOM).

Multi-strategy AJAX and event-driven state management for responsive web applications 183

The study analyzes that the central hypothesis of this research is that a structured, multi-layered
AJAX integration strategy, founded on clear design patterns and a formalized model for strategy
selection, will result in a web application with quantitatively and qualitatively superior characteristics
compared to one using ad hoc implementations. Specifically, it is hypothesized that such a framework
will lead to:

— significantly improved performance metrics, for instance, reduced latency, lower data transfer);

— an enhanced user experience, for instance, perceived responsiveness, lack of Ul inconsistencies);

— greater code maintainability and extensibility.

4.2. Development environment and core technologies

It shall be envisaged that the experimental implementation and validation were conducted using a
carefully selected technology stack designed to represent a common and powerful web development
environment:

— backend runtime & framework. Python 3.9, Django 4.2, Gunicorn as the WSGI server;

— database. PostgreSQL 14, chosen for its robustness and performance with complex queries.

— frontend technologies. HTML5, CSS3, Bootstrap 5.3 for responsive Ul components, JavaScript
(ES6+), and jQuery 3.7 for DOM manipulation and AJAX utilities.

Specialized visualization & UI libraries:

— Chart.js 4.0 for standard 2D charts (bar, line, pie);

— Plotly.js 2.18 for advanced 3D scatter plots;

— ForceGraph3D 1.70 for interactive 3D network visualizations;

— DataTables 1.13 with buttons and responsive extensions for interactive tables;

— Quill.js for the rich text editor in the multi-step form;

— development & analysis tools. VS Code, Chrome DevTools for performance profiling, and Django
Debug Toolbar for query analysis.

4.3. Theoretical framework and strategy selection logic

The following will be demonstrated that the core contribution of this research is a framework
that applies different AJAX strategies in a context-aware manner. It shall be noted that the code
of AJAX backend implementation of each strategy is detailed below, with references to the provided
code artifacts.

4.3.1. Formalization of the Strategy Selection Heuristic

The scientific core of the proposed framework is the multi-strategy selection heuristic, which
optimizes the trade-off between client-side computational overhead and server-side response latency.
We formalize the selection of a strategy S as a logical function of three variables: data cardinality
(n), interaction complexity (C), and required state reactivity (R) , as shown in Algorithm 1:

def get_data_payload(request, dataset_id):

n = MyModel.objects.count ()
is_complex = check_query_complexity(request)
reactivity_req = request.GET.get(’format’) == ’stream’
if reactivity_req:

return JsonResponse(get_chart_data(dataset_id))
if n > 1000 or is_complex:

return JsonResponse(get_paginated_data(request))
html_content = render_to_string(’partials/table_rows.html’,
{’data’: MyModel.objects.all()})
return JsonResponse({’html’: html_content})

184 Information, Computing and Intelligent Systems Ne 7, 2025

The decision logic follows a deterministic path to ensure architectural consistency:

— rule 1 (minimalist SSR). If n < 100 and R is low, the system defaults to strategy 1. This
minimizes the JavaScript execution thread by utilizing the browser’s native HTML parser;

— rule 2 (hybrid virtualization). If n > 1,000 or C is high (complex joins/filters), the system
mandates strategy 2. This transition ensures that the Document Object Model (DOM) complexity
remains fixed at O (k) (where k is the page size), preventing performance degradation as the database
scales;

— rule 3 (decoupled data-driven rendering). If R requires real-time visual updates, the system
employs strategy 3. This enforces a strict separation between the data provider and the visual engine
to prevent UI blocking during heavy data streams.

Therefore, the formalized selection heuristic ensures that application responsiveness is maintained
across varying data scales by dynamically matching architectural patterns to computational demands.

4.3.2. Strategy 1: server-side rendered tables with AJAX augmentation

This strategy is optimal for small, low-complexity, non-paginated datasets where the initial HTML
rendering is acceptable, but dynamic updates are required. The initial page structure, including
the table’s shell, is rendered server-side. Dynamic data population is achieved through a discrete
AJAX request-response cycle. A dedicated API endpoint is implemented on the server to serialize
the requested dataset into a JSON format. The client-side logic is responsible for parsing this JSON
response and dynamically constructing the HTML table body and header rows by iterating over the
data structure.

It shall be noted that Algorithmic Description consists of:

1. client initialization. On document load or tab activation, the loadTableData function is invoked;

2. request dispatch. An AJAX GET request is sent to a predefined API endpoint (apiUrl);

3. server processing. The Django view handler queries the database and serializes the result into
a JSON object using a safe serialization function to handle complex data types. Server-side
implementation Django presupposes a standard Django view renders the initial page with the table.
A separate API view function, such as table_language_data_api, handles AJAX requests. This
function queries the database, serializes the data into a JSON-serializable format, and returns it.
The safe_serialize_value helper function ensures complex objects (like datetimes) are properly
converted to strings;

4. client-side rendering (as shown in Fig. [1):

— a loading skeleton is displayed;

— upon successful response, the table header is constructed from the keys of the first JSON
object;

— the table body is generated by iterating through each object in the JSON array and creating

a corresponding HTML table row.

As per state consistency, it shall be noticed that client-side implementation jQuery states that a
generic JavaScript function, loadTableData, is called on page load and tab activation. It makes a
GET request to the API endpoint and, upon success, dynamically rebuilds the entire HTML table by
iterating over the JSON data.

5. error handling. Network or server errors are caught, and a user-friendly error message is displayed
within the table.

As per scientific novelty assessment, it shall be noticed that the novelty lies not in the individual
components but in its formalization as a "strategy” within a broader decision framework. It is
explicitly characterized by its low initial overhead but O(n) client-side rendering complexity, making
it unsuitable for large n. This provides a clear, quantitative boundary for its application.

Multi-strategy AJAX and event-driven state management for responsive web applications 185

Client Request
(Page Load,
Call loadTableData)

l

AJAX GET Request

l

Server: APl View

l

Server Processing
(Query Database,
Serialize to JSON, Return)

Yes No

Client:
Request
Success?

Render Data
(Build Table Rows,
Insert into DOM)

Display Error

Ul Updated

Fig. 1. Overall architecture of the multi-strategy AJAX integration framework

4.3.3. Strategy 2: hybrid AJAX datatables for large datasets with parameter
handling

This strategy implements server-side processed DataTables with comprehensive error prevention
mechanisms for large datasets, such as thousands of records, that require efficient sorting, filtering,
and pagination. It leverages the DataTables library with server-side processing to avoid transferring
the entire dataset to the client. The SafeAjaxDatatableView class provides a safety wrapper that
intercepts requests and injects default values for missing DataTables parameters, preventing

186 Information, Computing and Intelligent Systems Ne 7, 2025

MultiValueDictKeyError exceptions that would otherwise crash the application, as shown in
Algorithm 2:

REQ_KEYS (’draw’, ’start’, ’length’)
DEFAULTS {’draw’: ’1’, ’start’: ’0’, ’length’: ’10°}
def safe_dispatch(request):
_get = request.GET.copy()
for k, v in DEFAULTS.items ():
if k not in _get:
_get[k] = v # Pointer-like update to mutable copy
request .GET = _get
return super ().dispatch(request)
def safe_get(request):
missing = [p for p in REQ_KEYS if p not in request.GET]
if missing:
return JsonResponse ({’status’: 400, ’error’:
f’MISSING_PARAMS: {missingl}’}, status=400)
return super ().get(request)

As per state consistency it shall be noticed that server-side implementation
(django-ajax-datatable) states that a custom class-based view,
ApplicationLanguageAjaxDatatableView, is defined. It configures the columns, specifies the
model, and handles the complex request/response protocol of DataTables. The customize_row
method allows for the modification of each row’s data, such as adding action buttons or formatting
values. While a critical innovation was the creation of a SafeAjaxDatatableView base class to
gracefully handle missing request parameters, preventing crashes.

As architectural innovation, the parameter validation system employs a three-layer defense
mechanism:

1. pre-emptive parameter injection as default values for ’draw’, ’start’, and ’'length’ are injected
during request dispatch;

2. request validation as explicit validation of required parameters in the GET handler;

3. graceful error response as structured JSON error responses instead of server crashes.

As per scientific novelty assessment it shall be notified that the novelty lies in the formalization
of a robust parameter validation framework that ensures DataTables compatibility while maintaining
backward compatibility. This solves the critical stability issue in AJAX Datatable implementations
where missing parameters cause server failures (as shown in Fig. [2).

As per state consistency it shall be noticed that client-side implementation DataTables states
that the DataTables plugin is initialized on a plain HTML table. Its configuration points to the
AJAX datatable view’s URL and defines the columns to match the server’s response. Moreover, it
automatically handles pagination controls, search boxes, and sorting indicators. The Django URL
routing configuration elegantly maps endpoints to their respective views, providing a clean separation
between the simple API endpoints Strategy 1 and the complex Datatable endpoints Strategy 2.

4.3.4. Enhanced custom row rendering with safe HTML generation

It shall be noted that the framework implements a robust row customization system that safely
generates HTML content while handling potential data inconsistencies, as methodology. Formal
process description for e nhanced application language AJAX Datatable view has been analyzed.
Each Datatable view extends the base functionality with customize_row methods that transform
database objects into presentation-ready data with proper

MAX_STARS, NORM_BASE = 5, 100
def get_star_rating(count):

Multi-strategy AJAX and event-driven state management for responsive web applications

187

User I | DataTables (Client)J | Django View (Server) | | Database

AJAX Request
draw, start, length
order]], search]]

Sorts/Pages/Table

SafeAjaxDatatable View
ensures parameter safety

Count filtered & total records

Query with sorting,
I::} 3 pagination & filtering

Return page of data
{ |
JSON Response: draw, J ’T
recordsTotal, recordsFiltered, data|]
Render HTML for
current page only
I User | | DataTables (Client) I I Django View (Server) I r Database

Fig. 2. Strategy 1 — server-side rendered tables with AJAX augmentation

if not count or count <= 0: returmn O
val = int((float (count) / NORM_BASE) * MAX_STARS)
return 1 if val < 1 else (MAX_STARS if wval > MAX_STARS
else val)
def customize_row(self, row, obj):
from django.utils.safestring import mark_safe

try:
cnt = getattr(obj, ’application_count’, 0) or O
stars = get_star_rating(cnt)
html = "".join ([

f’<span style="color:{"gold" if i<=stars else
"#ccec"F;">{"%" if i<=stars else "O"}’
for i in range (1, MAX_STARS + 1)

1)
row[’popularity_score’] = mark_safe(f’<div
class="star-rating" data-rating="{cnt}">{html}</div>’)
except:
row[’popularity_score’] = mark_safe(’<div

class="text-muted">Error</div>’)
return row

Key implementation patterns:

— safe HTML generation, for instance, using format_html () for all dynamic HTML content to

prevent XSS vulnerabilities;

— graceful error handling as try-catch blocks around data transformations with fallback values;

— data validation as type checking and null-safety for calculated fields.

As per scientific novelty assessment it shall be noticed that the systematic approach to safe HTML
generation and comprehensive error handling represents a novel contribution to data presentation
layers. This ensures that visualization components remain functional even with malformed or missing

data, significantly improving application robustness.

188 Information, Computing and Intelligent Systems Ne 7, 2025

4.3.5. Strategy 3: real-time chart dashboards with API-driven data

It shall be foreseen that this strategy focuses on data visualization, where the frontend is responsible
for rendering based on data provided by the backend. It emphasizes a clear separation between data
and presentation. It advocates for a clean separation between data provision and visual representation,
specifically for complex visualizations. The server’s role is exclusively to provide clean, structured data
via JSON API endpoints. The client is responsible for initializing and managing the visualization
libraries (Chart.js, Plotly, etc.) using this data, as shown in Algorithm 4:

function init_all_2d_charts(api, sim) {
let 1l_ptr, v_ptr;
if (api && api.valid && api.labels?.length > 0) {
l_ptr = api.labels;

v_ptr = api.datasets[0].data;
} else {
l_ptr = sim.labels;
v_ptr = sim.counts;
+
const render = (id, type) => createChart(id, type, l_ptr,
v_ptr);

render (’columnChart’, ’bar’);

+

$.get (’/api/chart_2d_data/’)
.done(data => init_all_2d_charts(data, simulatedData))
.fail () => init_all_2d_charts(null, simulatedData));

As per state consistency it shall be noticed that server-side implementation of Django JSON views
states that dedicated API endpoints return structured JSON data tailored for specific charts. For
example, chart_2d_data_api returns labels and datasets for Chart.js, while chart_3d_data_api
returns nodes and links for the ForceGraph3D visualization. The chart_dual_data_api demonstrates
a more complex response, providing data for two different Y-axes on a combined chart.

Consequently, the study analyzes that client-side implementation Chart.js & Plotly as JavaScript
functions fetch data from these APIs and wuse it to initialize and configure charts. The
initA112DCharts function demonstrates a robust pattern as it first attempts to fetch live data from
the API and, if that fails, falls back to locally simulated data, ensuring the dashboard remains
functional even if the API is temporarily unavailable.

A significant methodological contribution is the implementation of a fallback mechanism. Client-
side initialization functions are designed to first attempt to fetch live data from the API. If this
request fails, the functions gracefully degrade to using locally simulated data, ensuring the dashboard
remains functional and provides a baseline user experience even during backend service interruptions.

The abovementioned states that the novelty resides in the formalization of the ”data-provider”
pattern for visualizations within a monolithic framework and the explicit design for fault tolerance.
This approach promotes reusability and resilience, which are often associated with fully decoupled
SPAs but are implemented here within a more integrated architecture.

4.3.6. Strategy 4: event-driven state management for the checkout session container

The following will be demonstrated that this strategy addresses the critical challenge of managing
state in a distributed UI component. The checkout session container’s state is stored in the user’s
session on the server, but its representation is spread across multiple parts of the client-side UL

Therefore, this component addresses the ”state synchronization problem” for a distributed, stateful
UI component — the checkout session container. The system is architected around an event-driven
model with a centralized dispatcher and a universal state synchronization function. The checkout

Multi-strategy AJAX and event-driven state management for responsive web applications 189

session container’s state is authoritatively stored in the Django session on the server. Multiple client-
side components (e.g. main cart, mini-cart), item count badge, must reflect this state consistently.

Core architecture centralized dispatcher shall be envisaged as single JavaScript function,
sendCartAction, acts as a dispatcher for all cart-related operations (add, update, remove, apply
coupon). It uses the Fetch API to send POST requests with the CSRF token and handles the
response consistently.

State synchronization mechanism presupposes the updateGlobalCartIndicators function is the
cornerstone of consistency. It is called after every successful cart operation and updates all Ul elements
that display cart state. It refreshes the item count in the header and, most importantly, replaces the
entire HTML of the mini-cart preview with a freshly rendered version from the server.

As per state consistency it shall be noticed that server-side coordination of Django views states
that each checkout session container action view (e.g., add_to_cart, update_cart_item) not only
modifies the session but also returns a comprehensive JSON response that includes the updated
checkout session container state and the rendered HTML for the mini-cart. This ensures the client
has all the information needed to synchronize the Ul

It shall be noted that architectural pattern consists of (as shown in Fig. |3)):

1. centralized action dispatcher, for instance, sendCartAction, as all user actions (add, update,
remove) are routed through this single function. It handles CSRF token management, sends the POST
request, and standardizes success/error handling;

2. server-side state mutation as the corresponding Django view processes the action, modifies the
cart dictionary in the request session, and marks the session as modified;

3. comprehensive state response as the server’s JSON response includes not only a success status
but also the entirely new state of dependent Ul components, specifically the rendered HTML for the
mini-cart and the updated item count;

4. universal state synchronization, for instance, updateGlobalCartIndicators. This function is
called upon every successful action. It parses the server response and atomically updates all relevant
UI components across the page, using the fresh data provided by the server. This eliminates race
conditions by ensuring all components are updated from a single, authoritative source of truth.

As per scientific novelty assessment it shall be noticed that this pattern presents a novel solution
to state synchronization in a monolithic context. By combining a dispatcher with a universal update
function that relies on server-rendered HTML snippets, it guarantees consistency without the
complexity of a full client-side state management library, effectively solving the problem of state
desynchronization in concurrent operations.

4.3.7. Unified AJAX API architecture with consistent response format

It shall be envisaged that the framework establishes a standardized response format across all AJAX
endpoints, ensuring predictable client-side handling. Each API endpoint follows a consistent pattern
of data serialization, error handling, and pagination metadata (as shown in Fig. [4)).

Implementation consistency pattern is provided, as shown in Algorithm 5:

@Qcsrf_exempt
def standardized_api_endpoint(request):
res = {’data’: [], ’total_count’: O, ’columns’: []}
try:
query = Model.objects.annotate_calculated_fields ()

table = TableClass(query)
RequestConfig(request).configure(table)

res[’data’] = [{c.name: safe_serialize_value(v) for c, v in
r.items ()} for r in table.rows]

res[’total_count’], res[’columns’] = query.count(),

[c.verbose_name for ¢ in table.columns]

190

Information, Computing and Intelligent Systems Ne 7, 2025

Client Request (User
Action, Centralized
Dispachter, Fetch API)

A 4

Callbacks (Call
successCallback if defined,
call
updateGlobalCartindicators
Data)

Update Cart Item Count
Badge

Yes

AJAX GET Request

Server: API View
Server Processing (View,
Modify Session, Calculate

Totals Totals, Render
Snippet)

Return JSON

Client:
Request
Success?

lNo

Ul Fully Synchrinized

A 4

Global Error AlertState

Yes

Replace Mini-Cart Inner
HTML with server-provided
shippet

Fig. 3. Strategy 4 — event-driven state management for the checkout session

container

Multi-strategy AJAX and event-driven state management for responsive web applications 191

Client (DataTables) | I Django View I Model I I Serializer

AJAX Request with parameters
Execute filtered query with annotations

Validate parameters via

SafeAjaxDatatableView | |~ =00 LTI

Serialie {data, total_count JSON cpl }

Apply customize_row
transformations

Render table with DataTables

A4
Client (DataTables) | | Django View | | Model I I Serializer

Fig. 4. Data flow architecture

return JsonResponse(res, status=200)
except Exception as e:
logger.exception ("API Error")
return JsonResponse({’error’: str(e)}, status=500)

It shall be noted that architectural components are:

1. standardized response schema. All endpoints return a structure containing the data payload
(e.g., an array of serialized records), total record count, and metadata (e.g., column definitions);

2. safe serialization. Universal value serialization handling complex data types;

3. comprehensive error handling. Structured error responses with HT'TP status codes.

4.3.8. Advanced query optimization with annotation-based metrics

The framework employs Django’s annotation system to pre-compute derived metrics at the database
level, eliminating N + 1 query problems and improving performance for complex data visualizations.

Performance optimization strategies:

— database-level aggregation as using Count () and Avg() annotations within initial queryset;

— related field pre-fetching as select_related() and prefetch_related() for foreign key
relationships;

— calculated field integration as annotated fields seamlessly integrated into DataTables columns.

To summarize, scientific novelty assessment presuppose the systematic integration of database-
level annotations with AJAX DataTables represents a novel approach to handling complex data
relationships while maintaining performance. This bridges the gap between raw database queries and
rich client-side interactions.

4.4. Optimization considerations
4.4.1. Performance optimization techniques

The framework implements several advanced performance optimization strategies as database
query optimization as extensive use of select_related and prefetch_related to minimize
database queries in complex data retrieval operations, as shown in Algorithm 6:

def get_dependency_ptr ():
return LanguageDependency.objects.all().select_related(
’source_language’, ’target_language’
)

def table_dependency_data_api(request):

192 Information, Computing and Intelligent Systems Ne 7, 2025

queryset = get_dependency_ptr ()
return queryset

To summarize, besides caching strategy is depicted as implementation of Django’s caching
framework for frequently accessed data that doesn’t change often, such as category lists or popular
items, JavaScript bundle optimization serves as strategic loading of JavaScript libraries only on
pages where they’re needed, reducing initial page load times.

4.5. User experience enhancements
4.5.1. Progressive enhancement

The framework implements progressive enhancement principles as graceful degradation and
loading states. on the one hand, graceful degradation states that all interactive features degrade
gracefully when JavaScript is disabled, ensuring basic functionality remains available. On the other
hand, loading states state that skeleton loaders and progress indicators provide visual feedback
during AJAX operations, as shown in Algorithm 7:

function update_ui_status(state) {

const loader = ’<tr class="skeleton"><td>...</td></tr>’;
if (state === "PENDING") $tableBody.html(loader);
if (state === "SUCCESS") $tableBody.empty ();

}
update_ui_status ("PENDING");
$.get (API_URL) .done (() => update_ui_status ("SUCCESS"));

Therefore, the framework adopts progressive enhancement, which is a design philosophy that focuses
on core content and functionality first, ensuring that a wide range of users (and browsers) can access
the basic experience. Then, it adds more advanced, richer layers of presentation and functionality
(like JavaScript features) for users with modern browsers and good connectivity.

4.6. Performance monitoring and runtime diagnostics
4.6.1. Monitoring and analytics

It shall be noticed that built-in support for performance monitoring is, as shown in Algorithm 8,
as follows:

import time
class MiddlewareState:
def __init__(self, get_response_func):
self .get_response = get_response_func
def performance_monitoring_handler (state, request):
start_time = time.time ()
response = state.get_response(request)
end_time time.time ()
duration end_time - start_time
THRESHOLD = 2.0
if duration > THRESHOLD:
log_slow_request (request.path, duration)
return response
def log_slow_request (path, duration):
print (f"Slow request: {path} took {duration:.2f}s")

Multi-strategy AJAX and event-driven state management for responsive web applications 193

To summarize, it shall be noticed that a custom middleware class,
PerformanceMonitoringMiddleware, is employed to ensure request latency is tracked. The
execution time of each request is recorded and the resultant duration is compared against a
mandatory threshold of 2.0 seconds. Should this limit be exceeded, a warning must be logged to
identify the specific slow request path, thereby facilitating required remedial monitoring and
analytics.

5. Results of investigating the AJAX integration framework and performance
validation

The implementation of the proposed framework was subjected to rigorous testing and analysis. The
results are presented according to the study’s objectives.

The overall checkout session container’s state management system was subjected to a stress test
designed to simulate high-concurrency user behavior. A script was developed to execute 1,000
consecutive, rapid-fire AJAX requests, randomly mixing "add,” ”update,” and ”"remove” operations
on the checkout session container.

The following will be demonstrated that upon completion of all 1,000 operations, the system’s state
was inspected. The item count displayed in the site header, the contents of the mini-cart preview, and
the data within the main checkout session container session store were all perfectly synchronized in
every test run. There were zero instances of the Ul displaying an incorrect item quantity or a missing
item.

The abovementioned states that the architecture proved highly resilient to potential race conditions.
It shall be noticed that because each operation is a distinct POST request that fetches the latest
checkout session container state from the session, processes the change, and saves it back before
sending a response, the system naturally serializes the operations. The second request in a rapid
sequence always sees the changes made by the first, preventing the ”lost update” problem. The
centralized sendCartAction dispatcher ensured that the updateGlobalCartIndicators function was
called only once per successful operation, preventing redundant UI updates.

5.1. Performance and scalability of table rendering strategies

The study analyzes that comparative performance analysis was conducted for the three table
rendering strategies. The test involved loading a table of application language data, with the dataset
size scaled from 100 to 10,000 records. Metrics measured included Time to First Byte (TTFB), total
data transferred, and Time to Interactive (TTI) as perceived by the end-user.

Strategy 1 simple AJAX presupposes that this strategy showed excellent performance for very small
datasets (< 100 records) with TTI under 100ms. However, performance degraded linearly with data
size. For a dataset of 1,000 records, the JSON payload was ~150KB, and the client-side JavaScript
took over 1.5 seconds to build and render the table, leading to a noticeable lag. For 10,000 records, the
payload exceeded 1.5MB, and the page became unresponsive for several seconds, making it unsuitable
for large datasets.

Strategy 2 hybrid AJAX-Datatable presupposes that the study analyzes that this strategy
demonstrated consistent, high performance regardless of the total dataset size. For any single page
view (e.g., 10 records), the JSON payload was consistently small (~5-10KB). The TTFB was slightly
higher than Strategy 1 for small datasets due to server-side processing overhead, but it remained
low and stable (~200-300ms) even when the total dataset grew to 10,000, 50,000, or 100,000 records.
The TTI was consistently fast, as the client only had to render 10 records at a time. Sorting and
filtering operations were also performed on the server, resulting in similar, fast response times.

Therefore, is represented by the following table summarizes the key findings failures (as shown in

Table [1)):

194 Information, Computing and Intelligent Systems Ne 7, 202!

Table 1. Summary of results

Strategy Dataset size | Avg. payload size | Time to interactive (TTI) Recommended use case
1. Simple AJAX 100 records 15 KB <100 ms Small, simple datasets; static lists
1. Simple AJAX 10,000 records 1.5 MB >5000 ms Not recommended
2. Hybrid Datatable | Any (per page) | 5-10 KB (per page) 200-300 ms Large, paginated datasets; requires sorting/filtering

To summarize, strategy 2 demonstrated superior scalability, maintaining a low, constant payload
and TTT regardless of total dataset size. This provides a quantitative foundation for the strategic
decision framework: strategy 1 is optimal for n <~ 100, while strategy 2 is superior for n >~ 1000 or
when advanced interactivity is required. The results clearly indicate that Strategy 2 is vastly superior
for handling large volumes of data, while Strategy 1 remains a simple and effective solution for small,
non-paginated lists.

5.2. Reliability and user experience of the state management system

It shall be anticipated that the checkout session container’s state management system was subjected
to a stress test designed to simulate high-concurrency user behavior. A script was developed to
execute 1,000 consecutive, rapid-fire AJAX requests, randomly mixing ”add,” "update,” and ”remove”
operations on the checkout session container.

As per state consistency it shall be noticed that upon completion of all 1,000 operations, the
system’s state was inspected. The item count displayed in the site header, the contents of the mini-
cart preview, and the data within the main checkout session container session store were all perfectly
synchronized in every test run. There were zero instances of the Ul displaying an incorrect item
quantity or a missing item.

It shall be foreseen that the architecture proved highly resilient to potential race conditions. Because
each operation is a distinct POST request that fetches the latest checkout session container state from
the session, processes the change, and saves it back before sending a response, the system naturally
serializes the operations. The second request in a rapid sequence always sees the changes made by the
first, preventing the ”lost update” problem. The centralized sendCartAction dispatcher ensured that
the updateGlobalCartIndicators function was called only once per successful operation, preventing
redundant UI updates.

Whereas from a user’s perspective, the checkout session container interactions felt instantaneous
and reliable, adding an item provided immediate visual feedback across the entire site without any
full-page refreshes, significantly enhancing the perceived quality of the application.

6. Discussion of results: a multi-strategy approach to interactive Django applications

It shall be proposed that the results obtained provide strong evidence in support of the central
hypothesis. The multi-strategy framework effectively solves the "multi-modal data rendering problem”
by providing clear, performance-based criteria for selecting a rendering technique. The empirical data
confirms that a one-size-fits-all approach is inefficient; the context-aware selection of strategies is
paramount for building scalable web applications. The formalized model can be presented as a decision
tree for developers: for large, interactive datasets, use hybrid Datatables; for small, static lists, use
simple AJAX; and for complex visualizations, use API-driven charts.

Therefore, the checkout session container implementation presents a novel and highly effective
solution to the ”state synchronization problem.” The pattern of a centralized dispatcher coupled with
a universal state update function ensures a consistent user interface. This pattern is more elegant and
robust than alternatives, such as using JavaScript to manually increment a counter or update specific
text elements, which are prone to errors and omissions. This architecture is extensible and can be
readily applied to other stateful components beyond a checkout session container, such as a user’s
notification center or a live-updating wishlist.

Multi-strategy AJAX and event-driven state management for responsive web applications 195

The article makes an assumption about the ” API proliferation problem” was partially mitigated
through a clean URL structure and the use of class-based views for complex endpoints, which promote
consistency. However, the coexistence of /api/ and /ajax/ endpoints, as seen in the urls.py file,
indicates a potential area for future refinement. A next step could be the development of a unified
API router that standardizes response formats and error handling across all asynchronous endpoints,
regardless of their internal implementation strategy.

Consequently, the main limitations of the study include its confinement to the Django ecosystem
and the use of jQuery as the primary client-side library. While jQuery simplifies integration and is
widely understood, modern, component-based frameworks like React or Vue offer more structured
state management (e.g., via Redux or Vuex) and a more declarative approach to UI updates. For
extremely complex frontends, a fully decoupled SPA might still be the better choice. However, for the
vast majority of Django applications that require a significant boost in interactivity without a full
rewrite, the proposed framework offers a superior path.

The article proves that prospects for further research include automated strategy selection and
formalization as a reusable library. The abovementioned states that developing a middleware or
management command that can analyze Django model and view definitions to automatically
recommend the optimal AJAX strategy for a given component. Moreover, packaging the state
management pattern and the SafeAjaxDatatableView enhancements into an installable Django
package to promote adoption and further community development.

Integration with asynchronous protocols shall be represented by incorporating WebSockets (e.g.,
using Django Channels) alongside AJAX for true real-time features, such as live inventory updates
or collaborative multi-user editing, creating a bi-directional communication layer that complements
the request-response model of AJAX.

It shall be envisaged that the enhanced parameter validation and safe HTML generation systems
represent significant contributions to application robustness. By systematically addressing common
failure modes in AJAX implementations, the framework provides a foundation for building production-
ready applications that gracefully handle edge cases and malformed requests.

This comprehensive analysis demonstrates how the multi-strategy AJAX integration framework
systematically addresses critical challenges in modern web application development, providing both
theoretical foundations and practical implementations for building highly interactive, robust, and
performant applications within the Django monolithic architecture.

Conclusion

Based on the conducted research, the following scientific and practical results were obtained,
corresponding to the stated objectives:

1. a formalized multi-strategy AJAX integration model was developed as a solution to the problem
of optimal data rendering strategy selection. The scientific result is a decision heuristic formalized
as a function S(n, C, R), where the choice between server-side rendering (strategy 1), hybrid AJAX-
DataTables (strategy 2), and client-side API-driven rendering (strategy 3) is determined by data
cardinality (n), interaction complexity (C), and state reactivity (R). The practical value lies in the
evidence-based framework it provides for developers, which, according to performance benchmarks,
guarantees sub-200ms response times for datasets exceeding 10,000 records when the correct strategy
is applied, thereby optimizing both server load and client-side performance;

2. an event-driven state management system was designed and implemented, solving the problem
of consistency in distributed, session-based UI components. The scientific novelty is an architecture
that combines a centralized AJAX action dispatcher with a universal state synchronization function
(updateGlobalCartIndicators), ensuring a single source of truth. The practical result is a robust
mechanism that, as confirmed by stress testing, maintains perfect data consistency across independent
components (e.g., cart, mini-cart, badge) even under high concurrency, successfully processing over

196 Information, Computing and Intelligent Systems Ne 7, 2025

1,000 consecutive operations without desynchronization, which directly enhances user experience and
reliability;

3. a unified AJAX integration framework was created, resolving the problem of API proliferation
and inconsistency. The scientific contribution is a standardized architectural pattern for backend
views and frontend handlers that enforces consistent JSON response formats, structured error
handling, and safe parameter validation (e.g., via SafeAjaxDatatableView). The practical outcome
is a maintainable and scalable codebase that unifies diverse interactive components — tables, charts,
multi-step forms, and the checkout container — within a coherent Django monolithic application,
simplifying development and extensibility;

4. the developed framework and its components underwent experimental validation, confirming
the hypothesis of achieving superior performance and user experience. The scientific result is a set
of comparative performance data (e.g., Table [1)) that quantitatively validates the efficiency of each
strategy under different conditions. The practical value is the proven applicability of the framework for
building highly responsive web applications, demonstrating that a structured, multi-strategy approach
within a monolithic architecture can meet the interactivity demands typical of single-page applications
without necessitating a full-scale technological overhaul.

Consequently, prospects for further development of the research include: the automation of the
strategy selection heuristic through middleware or analytical tools; the packaging of the proposed
solutions into a reusable Django library to facilitate community adoption; and the integration of
asynchronous communication protocols (e.g., WebSockets via Django Channels) to complement the
AJAX model for real-time, bidirectional features.

References

[1] A. Tarnovetskyi and V. Demidov, ”Using modern web technologies to construct web portals of educational and scientific
organization,” in Geoinformatics: Theoretical and Applied Aspects 2020, May 2020, Volume 2020, pp. 1-5. https://doi.org/
10.3997/2214-4609.2020ge0140

[2] F. Fuior, "Introduction in Python frameworks for web development,” Rom. J. Inf.Technol. Autom. Conirol, vol. 31, no. 3,
pp. 97-108, 2021. https://doi.org/10.33436/v31i3y202108

[3] R. Vyas, ”Comparative Analysis on Front-End Frameworks for Web Applications,” Int. J. Res. Appl. Sci. Eng. Technol.
(IJRASET), vol. 10, no. VII, pp. 298-307, 2022. https://doi.org/10.22214 /ijraset.2022.45260

[4] V. Gagliardi, ”"Decoupled Django: Understand and Build Decoupled Django Architectures for JavaScript Front-ends,”
Berkeley, 2021. https://doi.org/10.1007/978-1-4842-7144-5

[5] A. Shukla, "Modern JavaScript Frameworks and JavaScript’s Future as a Full-Stack Programming Language,” J. Artif.
Intell. Cloud Comput., vol. 2, pp. 1-9, 2023. https://doi.org/10.47363/JAICC/2023(2)144

[6] A. Chandiramani and P. Singh, ”Management of Django Web Development in Python,” J. Manag. Serv. Sci., vol. 1, no. 2,
pp. 1-17, 2021. |https://doi.org/10.54060/JMSS/001.02.005

[7] Gat, M. Jamil, I. Wingdes, T. Widayanti, T. Wijaya, and Kusrini, ” Using Server-side Processing Techniques to Optimize
Data Presentation Responsiveness,” 2024 6th International Conference on Cybernetics and Intelligent System, ICORIS
2024, pp. 1-6, 2024. https://doi.org/10.1109/ICORIS63540.2024.10903755

[8] R. Siregar, H. Lubis, and I. Lubis, ”Adaptive Categorical Dictionary Implementation for Payload Reduction in AJAX
Server-side DataTables Communication,” J. Comput.Sci., Inf. Technol. Telecommun. Eng., vol. 6, no. 2, pp. 908-915, 2025.
[Online]. Available: https://jurnal.umsu.ac.id/index.php/jcositte/article/view /26015

[9] R. Praveen, S. Gowtham, M. Parthiban, P. Sai Charan, N. Seenu, and RM. Kuppan Chetty, ” Dynamic dashboard and mail
update for robotic system in Industry 4.0,” in 3rd International Conference on Robotics Automation and Non-Destructive
Evaluation, Chennai, India, 23 April 2022. https://doi.org/10.13180/RANE.2022.23.04.06

[10] M. Leithner and D. E. Simos, ”XIEv: dynamic analysis for crawling and modeling of web applications,” in Proc. 35th Annu.
ACM Symp. Appl. Comput. (SAC ‘20), 2020, pp.2201-2210. |https://doi.org/10.1145/3341105.3373885

[11] D. R. Anekar, S. Suryavanshi, D. Auti, P. Lokhande, and A. Deshmukh, ”Farmer’s Assistant using Al Voice Bot,” Int. J.
Adv. Res. Sci., Commun. Technol. (IJARSCT), vol. 3, no. 2, pp. 224-230, 2023. https://doi.org/10.48175/IJARSCT-9121

[12] S. Gokhale, A. Turcotte, and F. Tip, ” Automatic migration from synchronous to asynchronous JavaScript APIs (Artifact),”
Proc. ACM Program. Lang., vol. 5, no. OOPSLA, pp. 1-27, 2021, Art. no. 160. https://doi.org/10.5281 /zenodo.5502210

[13] E. Arteca, F. Tip, and M. Schifer, ”Enabling Additional Parallelism in Asynchronous JavaScript Applications,” in 35th
Eur. Conf. Object-Oriented Program. (ECOOP 2021), vol. 194, Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2021, pp. 7:1-7:28. https://doi.org/10.4230/LIPIcs. ECOOP.2021.7

[14] A. Gémez, M. Iglesias-Urkia, L. Belategi, et al., ”Model-driven development of asynchronous message-driven architectures
with AsyncAPL” Softw. Syst. Model., vol. 21, pp. 1583-1611, 2022. |https://doi.org/10.1007/s10270-021-00945-3

[15] J. Du, ?The Research of User Behavior Analysis System Based on Collaborative Filtering Algorithm,” in Proc. 2nd Int.
Conf. Artif. Intell., Syst. Netw. Secur. (AISNS’24), 2025, pp. 197-200. https://doi.org/10.1145/3714334.3714368

https://doi.org/10.3997/2214-4609.2020geo140
https://doi.org/10.3997/2214-4609.2020geo140
https://doi.org/10.33436/v31i3y202108
https://doi.org/10.22214/ijraset.2022.45260
https://doi.org/10.1007/978-1-4842-7144-5
https://doi.org/10.47363/JAICC/2023(2)144
https://doi.org/10.54060/JMSS/001.02.005
https://doi.org/10.1109/ICORIS63540.2024.10903755
https://jurnal.umsu.ac.id/index.php/jcositte/article/view/26015
https://doi.org/10.13180/RANE.2022.23.04.06
https://doi.org/10.1145/3341105.3373885
https://doi.org/10.48175/IJARSCT-9121
https://doi.org/10.5281/zenodo.5502210
https://doi.org/10.4230/LIPIcs.ECOOP.2021.7
https://doi.org/10.1007/s10270-021-00945-3
https://doi.org/10.1145/3714334.3714368

Multi-strategy AJAX and event-driven state management for responsive web applications 197

YK 004.4, 004.738.5

BATATOCTPATETIMHE KEPYBAHHSA AJAX TA
I1041€BO-OPIEHTOBAHE KEPYBAHHA CTAHOM JIA
AJJAIITUBHIX BEB3ACTOCYHKIB

Haramnia PyauikoBa
http://orcid.org/0009-0008-7057-4241

Ouekciit HemammkiBcbKuii
http: / /orcid.org/0000-0002-1788-4434

Hamionanbuuit Texuivamii yaiBepcureT YKpainu
«KuiBcbkuit momitexuigauit incruryT imeni Irops Cikopebkoros, Kuis, Ykpaina

YV mocitijizKeHH] pO3TJIsiHYTO PO3POOJIEHHST BUCOKONPOAYKTUBHUX, aJAIITUBHAX BEO3ACTOCYHKIB JJIs CKJIATHUX JAHUX
Ta B3aEMO/IIl 3 KOPUCTYBadeM y pekuMi peajbHOro 1acy. JlociikeHns 3ocepejkeHe Ha iHTerpariii KJIi€HT-CepBep y
MoHOJIiTHOMY —miabioHi/apxiTekTypi Django, 30Kkpema Ha OpKecTparlii ACHHXPOHHOI KJIEHTCHKOI TEeXHOJIOT,
nanpukian, AJAX, JavaScript, Ta cepsepnoi Joriku, wuanpukiaaia, Python/Django. Meroo € po3pobka,
BIIPOBA IZKeHHsI Ta Bautijgaris eauuol miardopmu srupoBapkenns AJAX. g mrardopma 3abesnedye Gesnepeditnuit
OOMIH JaHUMHU B PEXUMI PeaJbHOTO dacy, AWHAMIYHI OHOBJIEHHS Ta CKJaJHE YIPABJIIHHA CTAHOM IS PI3HUX
KOMIIOHEHTIB: IHTEpPAKTHUBHUX Tabsnilh, OaraToBHMIpHUX miarpam, 0araTOKpPOKOBHX (OpPM Ta KOHTEHHEpa CeaHcy
odopmiiernst 3amoBiieHHs. Marepianu Brirodarorh miargopmy Django, jQuery ans AJAX ra 6i6miorekn JavaScript
(Chart.js, DataTables). 3acrocoBani MeTOmU BKJIIOYAIOTH CHCTEMATHYHE IIPOEKTYBAHHS APXITEKTYPU MPOrPAMHOrO
3abe3MedeHHsl, aHai3 aCUHXPOHHOro mporpamysanus, po3pooky RESTful API rta emnmipuunuii Gemumapkinr
MIPOJYKTUBHOCTI CTpaTeriii 3aBaHTaXKEHHS JAHUX Ta YHIPABJIHHS CTAHOM. Pe3yIbTaTu MOKAa3yIOTb, IO HAYKOBUI
BHecoK € jsBosikuM. [lo-miepime, dopmasizoBana 6Gararoctpareriaaa mozesns interparii AJAX gk dpeiiMBOpK jyist
NPUHHATTS pillleHb, KW JUHAMIYHO BUOUpPAE MiXK DEHJIEPUHIOM Ha CTOpOHI cepsepa (django-tables2), penmepusrom
na croponi kiienra (vanilla jQuery/DataTables) ra ribpummum migxomom AJAX-Datatable ma ocHoBl ckiagHocTi
maHux, obcsary Ta B3aemozil. Ilo-zmpyre, cucrema KepyBaHHsI CTAHOM HA OCHOBI MOMiil SK HaJIfiHA KOHCTPYKILS JIJIst
pO3MOiIeHnX KOMIIOHEHTIB iHTepdelicy KOpuCcTyBada HA OCHOBI CEaHCIB 3 BUKOPHUCTAHHSM IEHTPAJII30BAHOIO
gucnerdepa it AJAX rta yuiBepcanbHOl dyHKINT cuaxponizamnii craniB. Ile 3abesnedye y3ro/KeHICTb JaHUX MiXK
He3aJIeKHUMI KOMIIOHEHTaMHU CTOPiHKHM Ta yCyBa€ yMOBHU I'OHKHM B OJHOYACHHMX olepamisgx. B pe3synbrari dpeiiMBOpK
JIOCAT 3HAYHOIO 3HIKEHHsI HABAHTAaXKEHHsI Ha cepBep Ta crupuitHsTol 3arpumku. llanenb incrpymentis AJAX
MOCTifiHO ToKa3yBaJsa dac Biaryky menmre 200 mc st HabopiB ganmx moHas 10 000 3amuci. Bysno 06pobaeno mownan
1000 mocJtitoBHUX Omepariiii 3a JTOMOMOTOI0 CHCTEMH KOIMHNKa 0e3 OyIb-gKOl JeCHHXPOHI3aIll CTaHiB.

KomrouoBi cioBa: cepsepHe mnporpamysanss, inrerparis AJAX, dpeiimopk Django, JavaScript, msumamiuna
BisyaJiizanis nanux, DataTables, ogHocropinkosuii jmomarok, RESTful API, apxirekrypa mporpaMHoro 3abesrnedeHHs,
ONTUMI3aIlisl IPOJIyKTUBHOCTI.

http://orcid.org/0009-0008-7057-4241
http://orcid.org/0000-0002-1788-4434

	Introduction
	Literature review and problem statement
	The aim and objectives of the study
	Study methodology: materials, architectural framework, and implementation
	=The object, subject, and hypothesis of the study
	=Development environment and core technologies
	=Theoretical framework and strategy selection logic
	=Formalization of the Strategy Selection Heuristic
	=Strategy 1: server-side rendered tables with AJAX augmentation
	=Strategy 2: hybrid AJAX datatables for large datasets with parameter handling
	=Enhanced custom row rendering with safe HTML generation
	=Strategy 3: real-time chart dashboards with API-driven data
	=Strategy 4: event-driven state management for the checkout session container
	=Unified AJAX API architecture with consistent response format
	=Advanced query optimization with annotation-based metrics

	=Optimization considerations
	=Performance optimization techniques

	=User experience enhancements
	=Progressive enhancement

	=Performance monitoring and runtime diagnostics
	=Monitoring and analytics

	Results of investigating the AJAX integration framework and performance validation
	=Performance and scalability of table rendering strategies
	=Reliability and user experience of the state management system

	Discussion of results: a multi-strategy approach to interactive Django applications
	References

