

UDC 004.383

DESIGN OF DATA BUFFERS IN FIELD PROGRAMMABLR GATE

ARRAYS

A. M. Sergiyenko, P. A. Serhiienko, I. V. Mozghovyi,
A. A. Molchanova

Annotation: The design of the data buffers for the field programable gate array (FPGA) projects

is considered. A new method of buffer design is proposed, which is based on the representation of the
synchronous dataflow graph in the three-dimensional space, optimization of them, and description in
VHDL. The method gives the optimized buffers which are based either on RAM or on the register
pipeline. The derived pipeline buffer can be mapped into the shift register primitive of FPGA. The
method is built in the experimental SDFCAD framework intended for the pipelined datapath
synthesis.

Keywords: FPGA, VHDL, synchronous dataflow, datapath synthesis.

Introduction
Field programmable gate arrays (FPGAs) are popular devices that provide both high-speed

computations for any complex task and availability for many designers of application-specific
computers. The FPGA design technology was expanded over the last decades, which is based on the
register transfer level (RTL) description of the computational datapath using the hardware description
language like Verilog or VHDL. In recent years, high-level synthesis tools become popular because
they provide a compilation of the C programs into the hardware descriptions, inviting the firmware
programmers for designing the FPGA applications [1].

In many cases, the FPGA project consists of a set of ready blocks and intellectual property cores
(IP cores) that communicate with each other through the proper interfaces and data buffers. But the
selection of these interfaces and designing these buffers are still uncertain. In most cases, the usual
methods of the RTL design are used or the ready IP cores are selected to build the data buffers, which
gives the increased hardware volume, insufficient throughput, or both.

Most FPGA projects are pipelined, application-specific processors. The FPGA architecture
contains a lot of hardware resources like registers, FIFOs, pipelined DSP blocks, two-port blocked
RAMs (BRAM), and pipelined input-output pads, which support the pipelined computations. But
they are utilized in the data buffers using the old synthesis methods which don`t provide good results.
In particular, the buffers are usually designed separately from the pipelined datapath to which they
are connected [2].

In the article, a new method of data buffer design is proposed which provides effective FPGA
resource utilization. The derived buffer solution is described by the VHDL language and can be used
effectively in any hardware project.

Methods for the buffer design
The methods of the data buffer design evolved for decades. The memory bandwidth increase is

the usual goal of the buffer design. The easiest way to increase the memory bandwidth is to have
multiple memory blocks in parallel. Similarly, it is possible to implement a memory with an extra-
large data word length that stores several adjacent data. But in these cases, when the memory is out
of FPGA, in addition to several memory chips, it is necessary to have many separate outputs from
FPGA for addresses and data, which is often unacceptable. The impact of this problem is somewhat
reduced by organizing several blocks of cache memory in FPGA. By dividing the address space into
multiple banks, using one memory bank for odd addresses and another one for even addresses, the
adjacent addresses can be accessed simultaneously. For example, four banks can be used to access
four pixels in a 2×2 block. In addition, for efficient access to the pixels in the aperture, the address
can be coded as proposed in [3].

In the pipelined random access to RAM, one process can write results to one memory bank, and
another can read data from the second bank. When the processing of the next data array is completed,

5 Information, Computing and Intelligent systems № 3
the banks switch their roles. At the same time, a third memory bank is used for better synchronization
[4]. But such switching of banks adds a long period of time to the latency of the algorithm and has
the consequence of increasing the hardware costs of the system, and the use of more FPGA pads.

A more practical approach is to run the memory at a higher clock frequency than the rest of the
system. Double data rate (DDR) memory is one example of memory that allows data to be transferred
twice per clock. As a rule, modern high-capacity FPGAs have dedicated outputs and a built-in access
controller for external dynamic DDR memory of recent generations [5]. At the same time, the project
simulates multiport memory due to access time slots. In addition, blocks of the buffer memory are
required for writing and reading, since dynamic memory has high throughput only when transferring
rows of data from neighboring cells. Unfortunately, in many projects, DDR memory is also required
to support the operating system of the processor embedded in the FPGA, and therefore the bandwidth
of this memory drops when processing large data arrays.

Pipeline and FIFO first-in-first-out (FIFO) type buffers are two popular types of memory
organization methods utilized in FPGA. They are distinguished in the following. The data stored in
and retrieved out of a pipeline is also in the first-in-first-out category. But the steps of storage and
retrieval are constant as in the serial-in-serial-out shift register. A FIFO buffer is a storage where the
data can be pushed into and popped out with the same data order, but these operations can be
uncorrelated. However, the implementation of both long pipeline buffer and FIFO is based on RAM
which is operating as the circular buffer. The method of such buffers design is explained in [6]. But
the designer must organize the proper order of data pushing and popping separately.

If the data are executed sequentially, then it is worth using the buffers of the FIFO type, which
cell groups store blocks of data, and the output data are selected by the local addresses [7].

When the algorithm can be represented by some Petri net, then the stream processing
computational model can be used. In this model, the computational node or processing kernel consists
of the stencil buffer and computing module connected to the buffer inputs. During the computational
process, the input data are loaded into the buffer asynchronously and just when they form the proper
stencil the computations start [8]. So, the buffer is really the register pipeline with a large set of
outputs, which is often the inefficient solution.

When the usual serial program is mapped in the hardware, then the data buffer with the last-in-
first-out discipline is needed. The method of such stack buffer design as well as the respective finite
state machine development named Hierarchical Finite State Machines (HFSM) method is described
in [9].

The von Neumann architecture paradigm is widely used in which each datum has its own robust
address in the common address space. The data buffers are implemented as the cache memory blocks
in this paradigm. Note, that in particular, when the data lose their addresses in the moment before
their execution, then this cache memory can be represented as a usual FIFO buffer. Therefore, the
usual data buffer is often called the cache [10]. The method of the cache buffer design for FPGA
based on the optimized data throughput is described in [11]. When the FPGA application deals with
dynamic memory allocation, then the cache buffers can be designed using the method of algorithm
analysis which selects the independent and shared memory fields [12].

The dataflow processing is the kind of algorithm that is usually implemented in FPGA because
the FPGA architecture provides the effective implementation of such algorithms. The most common
model for the dataflow algorithm representation is the Kahn processing network (KPN). The nodes
of this network represent the operations or actors, and the edges represent the dataflows. The edges
contain the FIFO buffers of the proper length. Usually, KPN is mapped into FPGA by one-to-one
mapping. So, the FIFO buffers serve as the proper data buffers [13]. Note, that this model considers
that the data are retrieved from FIFO in arbitrary order, i. e., the buffer can contain several outputs
from its head registers.

The unified modeling language or UML provides an effective KPN representation. Many tools
like IBM Rational Rhapsody provide translation of the UML description into hardware [14]. The
Matlab Real-Time Workshop (RTW) tool offers code generation capabilities directly from Simulink
graphical system descriptions which is a kind of KPN [15]. These tools implement the FIFO buffers

Design of data buffers in field programmable gate arrays 6
as they are foreseen in the given KPN. But these buffers must obey the rules of the asynchronous
reading and writing data in them in the respective order.

The synchronous dataflow (SDF) graph is the abridged KPN model, in which all dataflows are
synchronous. Note, that two dataflows are synchronous if the data in one flow are correlated with the
data in the other one, for example, both data samples have the same index sets. The FIFO buffers in
the SDF model are always synchronous ones, and this model is usually free of deadlocks. This model
gives simple mapping to hardware, providing effective methods of structure optimization like
pipelining, retiming, folding, and resource sharing [16]. This idea is expanded and fulfilled in the
SDF modeling framework Ptolemy [17]. By this method, the optimized data buffers are synthesized
as well. But the synthesis results can be far from excellent because the optimization is performed by
hand or automatically. Through this process, the effective schedule is searched which disagrees with
the hardware minimization.

When the algorithm given by SDF has no loops and feedback then it is usually represented by
the dataflow graph (DFG). Then, the data buffers with the minimum volume can be synthesized using
the method proposed in [18]. This method combines the register allocation by the left-edge scheduling
and the SDF folding.

When the 2D signals or images are processed, then the problem of the buffer design becomes
more complex. In this situation, the multidimensional SDF can be used, in which the data have the
vectors of indexes which can be considered as the pixel coordinates in the image frame [19]. But the
buffer design remains a complex task.

Many algorithms including ones of image processing are represented by the loop nest. The index
vectors of the loop nest iterations and the data themselves form the multidimensional grid, and the
algorithm does the respective lattice-like DFG. The method of the systolic processor design is widely
used for mapping these algorithms both into the processor structure and into the timetable of the
operator execution [16]. The pipelined data buffers are the obligatory result of such mapping.
Therefore, this method is widely used now to design data buffers in many synthesis methods and
automatic design frameworks.

Placing the operators in the iteration space and mapping them in the structure and timetable is
used in [20] as well. To optimize the data buffers, the system of linear inequalities which takes into
account the operator data dependencies, data moving delays, and time limitations. This system is
solved using the usual integer linear problem solver. As a result, the throughput is optimized and the
pipelined data buffers are synthesized. But the synthesis process becomes very complex when the
problem dimensions increase.

This method is expanded using the polyhedral model of the parallel algorithm DFG
representation and its mapping [21]. Due to this method, the executed iterations of the algorithm and
their data form the polyhedron in the multidimensional iteration space which limits the volume of the
lattice-like DFG. Each iteration in it occupies a particular integer vector in the space. This polyhedron
is mapped into the systolic structure of the computer and the timetable using the optimized affine
transformations of this space. When the loop nest describes the data array behavior then the result of
the mapping is a set of pipelined data buffers. A similar method is proposed in [22]. The method
named lattice-based partitioning is based on the same principle and performs the selection of a set of
distributed buffers [23].

FPGA hardware is utilized very well providing high throughput when the data are reused
frequently. The method of the buffer design described in [24] provides the data reusing when the
algorithm performs the sequential array processing using the modulo addressing. A more
sophisticated method utilizing data reuse is proposed in [25]. The approach of the systolic processor
design is implemented in it and the data which are fetched from the one- or two-dimensional array
are reused in the algorithm.

The buffers of different lengths should be designed for different data array sizes. It is proposed
to use a universal buffer, which is adjusted to the array size and the computed frame in it with the
possibility of dynamic reconfiguration [26]. A similar method for image processing is described in
[27], which is capable of transposing the position of pixels in the frame, as well as performing image
correction at the frame edges.

7 Information, Computing and Intelligent systems № 3
The works [28, 29] present general methods of designing a pipelined structure for image

processing with a sliding aperture selected for processing. At the same time, the functions that are
sequentially performed in the algorithm are mapped in the corresponding processing blocks, which
are separated from each other by buffer blocks that store several adjacent lines. The interconnections
between processing blocks and buffer blocks are buses that correspond to the edges of DFG.

The smart buffer is a compiler-generated data buffer that provides re-using the fetched data in
the sliding aperture. The structure of the buffer is determined by the window size, array size, and the
stride of the reuse in each dimension [30]. This method is effectively utilized in the Riverside
optimizing compiler for configurable computing (ROCCC) approach and compiler [31].

Goals of the investigation
The analysis of different methods of the data buffer design makes it possible to conclude the

following.
KPN mapping gives a set of pipelined data buffers in a natural manner. However, the resulting

buffers have several output ports in many cases and the deadlock problem is solved hard.
SDF is the abridged model of KPN, but it is a rather impressive one and it is free of deadlocks.

Many dataflow algorithms like digital signal processing are represented as SDF and are effectively
mapped into hardware structures including pipelines and FIFOs.

The most sophisticated and formalized methods are ones that are based on the representation of
the algorithm as DFG in the multidimensional grid and mapping it into the systolic-like processor
structures. Many of them are implemented in high-level synthesis frameworks. But these methods are
limited by the algorithms which are represented by the loop nests and do not take into account the
features of the hardware technology.

The goal of the investigation is to develop a new method of data buffer design that is more
sophisticated and is able to take into account the features of the FPGA architecture. The method is
intended for the pipeline buffer design however it is fitted for the buffers based on RAM. These
buffers are designed in general for the streaming algorithms like DSP, image processing, or others
that can be represented by SDF.

The derived buffers must be optimized both in the clock frequency and in hardware. Therefore,
first of all, the FPGA features are considered. Then, the method of the pipelined datapath design is
selected which involves the better features of the methods considered above. And next this method is
adapted to the data buffer design.

FPGA resources for the buffer design
The FPGA chip usually contains sufficient volume of different memory resources. Usually, the

basic building block is the Look-Up Table (LUT) in Xilinx FPGAs or Adaptive Logic Module (ALM)
in Intel FPGAs. Each of them is accompanied by one or two 1-bit registers. These registers usually
form the storage elements of the pipeline stages including the pipeline buffers. LUT by itself is
configured as the buffer RAM with a volume of up to 64 bits, and with several possible reading ports.
Moreover, it can be configured as the pipeline buffer of the variable length. Fig. 1 illustrates the
structure of such an SRL16 primitive which contains the 16-bit shift register, and each of its taps is
selected statically or dynamically by the output multiplexor.

Fig. 1. Pipeline buffer SRL16 structure

Design of data buffers in field programmable gate arrays 8
FPGA contains from tenths to thousands of two-port blocked RAMs (BRAMs). Each of them

contains kilobytes of memory of programable bit width. The ratio of BRAM number to LUT number
in FPGA is equal from 60 to 200. Usually, they can be configured as FIFO buffers [32, 33].

The Intel Hyperflex FPGA architecture provides the pipeline buffers of the arbitrary length in
the routing segments in the inter ALM communications. These buffers enable the highest clock
frequencies in Intel Stratix® 10 and Intel Agilex™ devices [34].

Usually, the most effective structure solutions are derived from the register transfer level (RTL)
design. But in such a design, the buffer selection, and its dynamic control, which depends on the
modules attached to it, is a hard design task. Therefore, the usual solution is selection the FIFO buffer
based on BRAM, which takes increased hardware volume. The SRL16 buffers are utilized rarely in
some specific finite state machines (FSMs), filters, or encryptors [35]. The Hyperflex register
utilization in the projects takes specific knowledge about the SDF optimization and is not fulfilled in
most cases when SDF contains the loops [34].

Spatial SDF method

A method of designing the pipelined datapaths by mapping SDF is proposed in [36, 37]. The
feature of the method is that SDF is represented in the resource-time space in the form of an algorithm
configuration (AC). The method makes it possible to search for a schedule, minimize the number of
processor units (PUs), and search for effective interprocessor connections simultaneously. Here, PU
means an elementary computing element with or without result registers, for example, an adder, a
multiplier with a register, a pipeline buffer, etc. Therefore, it makes sense to create a method for the
data buffers development based on this method. It is described below in short.

At the first stage of the synthesis, according to the specified method, operators-nodes of a
homogeneous SDF together with the data dependency edges are located in three-dimensional space
ℤ3 as sets of vectors Ki and Dj, respectively, taking into account the conditions, given in [36]. The
coordinates of the vector Ki = (s,q,t)T mean the number s of the PU, where the operator is executed,
the type q of this PU, and the time component t, which is equal to the clock number during the
execution of the algorithm. Vectors Ki with equal time components form one row and are executed
simultaneously. The time component R(Dj) of the vector Dj = Ki − Kl is equal to the delay between
the executions of operators whose nodes Ki, Kl are adjacent. The number of PUs is minimized by
fulfilling the requirements |Ks,q|→L, i.e. the number of nodes mapped in the s-th PU approaches to L,
where L is the algorithm execution period in clock cycles. In addition, when forming the effective
algorithm configuration, it is desirable to build a perfect spanning tree of SDF, as suggested in [38].

In the second step, AC is balanced, which consists in adding delay nodes to the edges of SDF
until the time components of all vectors Dj are equal to 0 or 1. After that, AC is optimized by
permuting the node vectors from the same column in order to minimize the number of registers and
the number of multiplexer inputs in the resulting structure and/or using other strategies, for example,
retiming. Also, the number of registers is minimized by gluing delay nodes from the same column
that store the same operand.

In the third step, the obtained optimized AC is mapped in the graph of the computer structure
in the subspace ℤ2 named as the structure configuration. This is done by gluing the node vectors with
the same coordinates s, and q. AC is transformed into the schedule of operator execution, using the
property that the time component of the vector Ki is equal to the moment of execution of the operator,
regardless of the number of the execution period. At the same time, the resulting structure is not built
and the schedule is not formed because the resulting structure is described in VHDL on the base of
information in AC.

Method for the buffer design

Consider AC C′Av which performs the iterative algorithm with the period of L = 4 clock cycles,
and which consists only of input and output nodes. This AC is mapped into the data buffer. When
placing the nodes of CA in the space ℤ3, one should use some strategies to minimize the number of
connections between PUs. The location of the nodes of the delay operators according to the strategy
of placing the edges Dі,j in parallel to the axis Ot in the second step of the synthesis is shown in Fig. 2,

9 Information, Computing and Intelligent systems № 3

a. And the configuration C′Av according to the strategy of placing the edges Dі,j at an angle to the axis
Ot is shown Fig. 2, b. The structure configurations corresponding to these CAs are shown in Fig. 2,
c, and 2, d, respectively. Here, the bold points mean the nodes of input-output or some operator nodes,
and circles mean the delay nodes mapped into the registers. The bars mean the multiplexers attached
to the PU inputs, which perform the selection of the operand when it is read from the respective
register.

Fig. 2. AC which edges placed according to the strategy of RAM (a) or pipeline buffer (b)

synthesis, and respective RAM (c) and FIFO (d) configurations
Analysis of these structure configurations shows that they correspond to two-port RAM (one

port to read-write, second one only to read) and pipelined data buffer, respectively. Applying one or
another strategy of connection number minimizing, the designer can orient the process of synthesis
of the data buffer to implementation in the form of RAM or a register pipeline. The strategy should
be chosen taking into account the following features.

When synthesizing the buffer based on RAM, the variable xі is allocated in the respective
register, i.e. the chain of delay nodes is located on a straight, which is parallel to the axis Ot. Also,
one register is assigned to several variables whose periods of existence do not overlap, i.e. several
chains of delay nodes are located on a straight, which is parallel to the axis Ot, and these chains do
not overlap. At this process, the edges Dі,j, which are adjacent to the outputs of the edges Kі,j of the
AC before balancing the relation

 ma
i,
x
j
 (tDi,j) ≤ L (1)

is satisfied, where tDi,j is the time component of the vector-edge Dі,j. If it is not observed, it is necessary
to cut the balanced AC C′Av into several subconfigurations, each of which will corresponds to its own

Design of data buffers in field programmable gate arrays 10
RAM or ensure overwriting of the variable xі for which it is not observed the inequality (1), in the
second register of the RAM after L clock cycles. It is obvious that the volume of the resulting RAM
for AC C′Av with λ input nodes (bold points in Fig. 2) is equal to

 NР = λ. (2)
When the pipeline buffer is designed, then the variable xi is sent to the adjacent pipeline register

in each clock cycle and, passing through a chain of tDi,j registers is outputted from it to the input of
PU which receives this variable. This is equivalent to the fact that the chains of adjacent nodes Kі,j of
the delay operators at uniformly increasing coordinates si,j, and tі,j are placed along parallel lines,
located at an angle to the axis Ot (Fig. 2, b). Therefore, the value of tDi,j in (1) can be any, however,
to minimize the number of the register pipeline stages, the number of different values of the vectors
D′і,j must be minimal. The number of registers in the pipeline is equal to
 NP = ma

i,
x
j
 (tDi,j). (3)

Thus, AC which performs the data transfer between input and output ports after its balancing
and optimization according to one of two strategies gives a minimized amount of memory in the
resulting data buffer. We get a buffer structure with memory organized in the form of RAM or a
register pipeline. At the same time, the number of registers in RAM is smaller than in the pipeline of
registers, if the number of input nodes that are mapped to one port node (the number of different
variables entering one PU) in AC is less than the maximum delay of the variable that is calculated in
this PU, i.e. at

 λ = ma
i,
x
j
 (tDi,j). (4)

When the resulting pipelined buffer is performed in the SRL16 primitive, then the method must
take into account the fact that it has a single output (see Fig. 1). This adds the additional limitation to
AC placement in the space that only a single edge must connect any delay node with the node which
is mapped into the output port PU. AC in Fig. 2, b does not satisfy this condition. Therefore, it is split
into two subconfigurations in Fig 3, a, which satisfies it and is mapped into the structure with two
units implemented in SRL16 primitives (Fig 3, b).

The SRL16 primitive has an additional clock enable input, the control of which makes it
possible to slow down the data moving through the pipeline registers. When using this input, the
number of registers can be minimized if the value of R(Dj) is greater than the number of available
registers in the pipeline. Fig. 4 shows an example of the transformation of AC, shown in Fig. 3, a, for
the purpose of additional delay of the operands. Such delays correspond to the vectors Dj, which are
placed parallel to the axis Ot. Note, that the number of nodes that have the same coordinate s must
not be higher than the computation period L.

The Fig. 4 analysis shows that the technique of the clock enable control allows us to minimize
both the pipeline register number and output multiplexers substantially. This is important when the
pipeline registers are performed on the base of usual registers because it saves hardware and
minimizes the clock period.

If the nodes-sources of considered AC have different spatial coordinates s (in the examples
above s = 1), then an input multiplexor is obtained at the input of the SRL16 primitive. To minimize
such multiplexers, the method can be used which is described in [39].

Thus, the method of designing the pipelined datapaths with buffers based on SRL16 primitives
looks like the following. The initial data are AC, algorithm execution period L, and other optimization
parameters. The method is performed in the same way as described in [37, 38], with the exceptions
described below.

In the first stage of synthesis, the AC subgraphs corresponding to the transfer of operands
between computer resources with time delays and/or shuffling of operands, which are expected to be
mapped into separate data buffers, should be selected.

11 Information, Computing and Intelligent systems № 3

Fig. 3. AC which is split to AC in Fig. 2, b (a) and its mapping into SRL16 structures (b)
In the first stage of synthesis, the AC subgraphs corresponding to the transfer of operands

between computer resources with time delays and/or shuffling of operands, which are expected to be
mapped into separate data buffers, should be selected.

Fig. 4. Modified AC Fig. 3, a (a), and its mapping into SRL16 structures (b)

In the second stage, it is necessary to balance the dependence edges using the intermediate delay
nodes. The number of intermediate delay nodes is minimized, if possible. The delay nodes are placed
on parallel lines that are at an angle to the time axis or parallel to this axis in such a way that adjacent
delay nodes differ in time coordinates by one beat. The requirements for the correct placement of
nodes are fulfilled, including the requirement to implement a buffer with one input and one output. If

Design of data buffers in field programmable gate arrays 12
it is impossible to get a single input in the buffer, the heuristic of minimizing the number of inputs of
the additional multiplexer at the buffer input is used according to [39], and if it is impossible to receive
a buffer with one output, the chain of delay nodes is split so that they are mapped in additional buffers
(see Fig. 4).

The dependency edges together with the corresponding delay nodes which are incident to the
nodes consuming the buffered data should be mapped in the data buffer. When a control algorithm is
designed, if only edges are displayed in the buffer that is at an angle to the time axis, then operands
are written to the buffer in each clock cycle. If there are edges that are parallel to this axis, then writing
to the buffer is prohibited in the corresponding clock cycles (see Fig. 4).

At the third stage, the pipelined datapath is described in VHDL according to the method
presented in [38] and is compiled into an FPGA configuration that contains the buffers based on
SRL16 primitives, which correspond to the selected AC subgraphs.

Experimental results

Consider the design of the input buffer for the pipelined datapath performing the 8-point discrete
cosine transform (DCT). The DFG of this algorithm is often based on the Chen algorithm [41]. This
algorithm is distinguished in that its period of the pipelined computations is equal to L = 8 clock
cycles, eight input data of a single DCT transform need to be delayed and permutated in the input
buffer before their calculations. DFG of the first stage of this algorithm which needs the data buffer
is shown in Fig. 5.

Fig. 5. DFG of the first stage of the DCT algorithm

Optimized AC which is mapped into pipelined buffer and adder, and respective structure
configuration are illustrated in Fig. 6. Here, the resource names are placed in the Os axis and the clock
cycle number modulo L = 8 is mapped in the axis Ot. The addition-subtraction operator node has the
plus sign. This AC is described in VHDL as follows.

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.Numeric_STD.all;
entity DCT_BUF is
 port(
 CLK : in STD_LOGIC;
 RST : in STD_LOGIC;
 START : in STD_LOGIC;
 X : in SIGNED(8 downto 0);
 Y : out SIGNED(8 downto 0)
);
end DCT_BUF;
architecture synt of DCT_BUF is
 type TARRAY16 is array (0 to 15) of SIGNED(8 downto 0);
 type TN is array(0 to 7) of natural range 0 to 15;
 constant al: TN:=(7,8,8,9,8,9,11,12);
 constant ar: TN:=(0,1,3,4,7,8,8,9);
 signal r1,r2:TARRAY16; -- register array of SRL16
 signal cycle:natural range 0 to 7;
 signal sm,l,r: SIGNED(8 downto 0);
begin
 CT8:process(CLK) begin -- period counter
 if CLK'event and CLK='1' then
 if START='1' then
 cycle<=0;
 else
 cycle<= (cycle+1) mod 8;
 end if;

13 Information, Computing and Intelligent systems № 3
 end if;
 end process;

 l<= r1(al(cycle));
 r<= r2(ar(cycle));
 SRL16_BUF:process(CLK) begin -- SRL16 description
 if CLK'event and CLK='1' then
 r1<=X & r1(0 to 14); -- FIFO shift
 r2<=X & r2(0 to 14); -- FIFO shift
 case(cycle) is
 when 0|2|4|6 => sm<= l + r; -- adder
 when others => sm<= l - r; -- subtractor
 end case;
 end if;
 end process;

Y<=sm;
end synt;

Fig. 6. Balanced spatial SDF for DFG in Fig. 6 (a), and respective structure configuration (b)

Here, signals r1, r2 represent two pipeline register chains, which load the input data X in each

clock cycle. They are synthesized after splitting AC in Fig. 6, a in two subconfigurations like it is
done in Fig. 4. The signals from them l, r are read at addresses which are sampled from ROMs al, ar.
These signals are directed to the left and right inputs of the adder-subtractor with the register sm
deriving the result Y. The calculating period counter cycle counts modulo L = 8 and controls both the
sign of the adder sm and the pipeline register chains through the ROMs al, ar.

This project is compiled by the Xilinx ISE and Vivado CAD packages into FPGAs of different
series. The results of compilations are shown in Table 1.

This table analysis shows that the ISE synthesizer recognizes the template of the SRL16
primitive and the synthesis results are the data buffers with the minimum hardware volume and good
performance. The Vivado synthesizer first tries to compound both pipeline buffer branches into one
and then minimizes the trigger number by substituting the chains of registers with the SRL16
primitives. The inferred structure is illustrated in Fig. 7. One can see, that additionally, the synthesizer

Design of data buffers in field programmable gate arrays 14
doesn`t perform the resource sharing of the adder-subtractor. As a result, the hardware volume in the
register number is much higher.

Table1.
Results of a configuration of the buffer project in FPGAs

FPGA
series

Compiler Slice Flip
Flops

LUTs LUTs used
as logic

LUTs used
as SRL16

Minimum clock
period, ns

Virtex-4 ISE 14.7 12 37 19 18 3.14
Spartan-3A ISE 14.7 12 37 19 18 5.47
Spartan-6 ISE 14.7 12 39 29 10 4.72
Artix-7 Vivado2016 111 44 39 5 4.06

Fig.7. Data buffer structure derived by the Vivado design tool

Synthesis framework
As one can see from the method description and the design example, the considered algorithm

is given in the graphical form effectively. For the design method investigations, the synthesis
framework is developed named SDFCAD [42]. The framework is able to perform the graphical input
of SDF of the DSP algorithms with the given period L and data bit width. SDF can be optimized
either manually or automatically using one of the genetic programming algorithms [40]. One of two
strategies of the buffer design are used by the optimization as well. In particular, the pipelined buffers
for the DCT processor are synthesized automatically very well [42].

Conclusions

A new method of the data buffer design is proposed, which is intended for the complex
pipelined datapaths development and configuring in FPGA. The method is based on the SDF
representation in the three-dimensional space, optimization them and describing in VHDL.
Depending on the optimization method the derived buffer is based either on RAM or on the register
pipeline. The feature of the method consists in that the pipeline buffer is inferred into the SRL16
primitives of the AMD-Xilinx FPGA series which substantially saves the hardware. The method is
built in the experimental SDFCAD framework intended for the pipelined datapath synthesis.

References

1. FPGAs for Software Programmers. D. Koch, F. Hannig, D.Ziener – Ed-s. Springer, 2016. 327 p.
2. Meyer-Baese U. Digital Signal Processing with Field Programmable Gate Arrays. 4th Ed. Springer.

2014. 930 p.
3. Kim, K., Kumar, V.K.P. Parallel memory systems for image processing. IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, San Diego, California, USA (4–8 June,
1989), 1989, pp. 654–659. DOI: https://doi.org/10.1109/CVPR.1989.37915

4. Khan, S., Bailey, D., Sen Gupta, G. Simulation of triple buffer scheme (comparison with double
buffering scheme). Proceedings of the 2nd International Conference on Computer and Electrical
Engineering (ICCEE 2009), Dubai, UAE, 2009. Vol. 2, pp. 403–407. DOI:
https://doi.org/10.1109/ICCEE.2009.226

15 Information, Computing and Intelligent systems № 3
5. Churiwala S. (). Designing with Xilinx® FPGAs: Using Vivado. Springer, Switzerland. 2017.
6. Sadrozinski H. F.-W., Wu J. Applications of Field-Programmable Gate Arrays in Scientific

Research. CRC Press and Taylor & Francis. 2011. 144 p.
7. Sedcole, P., Cheung, P.Y.K., Constantinides, G.A. Luk, W. (). Run-time integration of

reconfigurable video processing systems. IEEE Transactions on VLSI Systems, 2007. Vol. 15. No.
9, pp. 1003–1016. DOI: https://doi.org/10.1109/TVLSI.2007.902203

8. Sano K., Nakahara H. Hardware Algorithms. In: Principles and Structures of FPGAs, H. Amano
−Ed. Springer, 2018, pp. 137-177.

9. Sklyarov V., Skliarova I., Barkalov A., Titarenko L. Synthesis and Optimization of FPGA-Based
Systems. Springer, 2014, 432 p.

10. Bailey D. G. Design for Embedded Image Processing on FPGAs. Wiley-Blackwell. 2011. 482 p.
11. Sass R., Schmidt A. G. Embedded Systems Design with Platform FPGAs. Principles and

Practices. Morgan Kaufmann Pub. 2010. 389 p.
12. Winterstein F., Fleming K., Yang H.-J., Bayliss S., Constantinides G. MATCHUP: Memory

Abstractions for Heap Manipulating Programs. FPGA '15: Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. February, 2015, pp. 136–145.
DOI: https://doi.org/10.1145/2684746.2689073

13. Woods R., McAllister J., Lightbody G., Yi Y. FPGA-based Implementation of Signal Processing
Systems. 2nd Ed. Wiley, 2017. 448 p.

14. Granado L., Berreteaga O. Creating Rich Human-machine Interfaces with Rational Rhapsody and
Qt for Industrial Multi-core Real-time Applications. Procedia Manufacturing. 2015. Vol.3, pp.
1903 – 1909. DOI: https://doi.org/10.1016/j.promfg.2015.07.233

15. Hwang J, Milne B, Shirazi N., Stroomer J. D. System Level Tools for DSP in FPGAs. Proc. 11th
Int. Conf. on Field Programmable Logic and Applications, 2001, pp. 534–543. DOI:
https://doi.org/10.1007/3-540-44687-7_55

16. Parhi K. K. VLSI Digital Signal Processing Systems. Design and Implementation. Wiley, 1999.
784 p.

17. Lee E. A., Neuendorffer S., Wirthlin M. J. Actor-Oriented Design of Embedded Hardware and
Software Systems. Journal of Circuits System and Computers. 2003. Vol. 12, pp. 231-260. DOI:
https://doi.org/10.1142/S0218126603000751

18. Pedersen M. R., Madsen J. Optimal register allocation by augmented left-edge algorithm on
arbitrary control-flow structures. NORCHIP’2012, 2012, pp. 1-6. DOI:
https://doi.org/10.1109/NORCHP.2012.6403107.

19. Murthy P. K., Edward A. Lee E. A. Multidimensional Synchronous Dataflow. IEEE Transactions
on Signal Processing. 2002. Vol. 50. No. 8, pp. 2064 – 2079. DOI:
https://doi.org/10.1109/TSP.2002.800830

20. Cong J., Jiang W., Liu B., Zou Y. Automatic memory partitioning and scheduling for throughput
and power optimization. 2009 IEEE/ACM International Conference on Computer-Aided Design.
Digest of Technical Papers, 2009, pp. 697-704. DOI: https://doi.org/10.1145/1687399.1687528.

21. Yu Y.W., Li P., Cong J. Theory and algorithm for generalized memory partitioning in high-level
synthesis. FPGA '14: Proceedings of the 2014 ACM/SIGDA international symposium on Field-
programmable gate arrays. Feb. 2014, pp. 199–208. DOI:
http://dx.doi.org/10.1145/2554688.2554780

22. Cong J., Wang J. PolySA: Polyhedral-Based Systolic Array Auto-Compilation. 2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2018, pp. 1-8, DOI:
http://10.1145/3240765.3240838

23. Gallo L., Cilardo A., Thomas D., Bayliss S., Constantinides G. A. Area implications of memory
partitioning for high-level synthesis on FPGAs. 24th International Conference on Field
Programmable Logic and Applications (FPL), 2014, pp. 1-4, DOI:
http://10.1109/FPL.2014.6927417

24. Wang Y., Zhang P., Cheng X., Cong J. An integrated and automated memory optimization flow
for FPGA behavioral synthesis. 17th Asia and South Pacific Design Automation Conference, 2012,
pp. 257-262, DOI: http://10.1109/ASPDAC.2012.6164955

Design of data buffers in field programmable gate arrays 16
25. Guo Z., Walid Najjar W., Buyukkurt B. Efficient hardware code generation for FPGAs. ACM

Transactions on Architecture and Code Optimization. Vol. 5. No 1, 2008, pp. 1–26.
DOI:https://doi.org/10.1145/1369396.1369402

26. Shi R., Wong J. S. J., So H. K. High-Throughput Line Buffer Microarchitecture for Arbitrary
Sized Streaming Image Processing. J Imaging. 2019. Vol. 5. No 3, 34 P. DOI:
https://doi.org/10.3390/jimaging5030034

27. Bailey D. G., Ambikumar A. S. Border Handling for 2D Transpose Filter Structures on an FPGA.
Journal of Imaging. 2018. Vol. 4. No 12, 138 P. DOI: https://doi.org/10.3390/jimaging4120138

28. Ikarashi Y., Ragan-Kelley J., Fukusato T., Kato J., Igarashi T.. Guided Optimization for Image
Processing Pipelines. IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 2021, pp. 1-5, DOI: https://doi.org/10.1109/VL/HCC51201.2021.9576341

29. Özkan, M. A., Reiche, O., Hannig, F., Teich, J. (). FPGA-based accelerator design from a domain-
specific language. Proceedings of the 26th International Conference on Field Programmable
Logic and Applications (FPL), Lausanne, Switzerland, 2016, pp.1–9. DOI:
https://doi.org/10.1109/FPL.2016.7577357

30. Guo Z., Najjar W., Buyukkurt B. Efficient hardware code generation for FPGAs. ACM Trans.
Archit. Code Optim. 2008. Vol. 5, No 1, pp. 6:1–6:26. DOI:
https://doi.org/10.1145/1369396.1369402

31. Najjar W. A., Villarreal J., Halstead R. J.ROCCC 2.0. In: FPGAs for Software Programmers. D.
Koch, F. Hannig, D.Ziener – Ed-s. Springer, 2016, pp. 191-204.

32. UltraFast Design Methodology Guide for the Vivado Design Suite. UG949 (v2013.3) October 23,
2013. 361 p. URL: www.xilinx.com

33. 7 Series FPGAs Memory Resources User Guide. UG473 (v1.14) July 3, 2019. 88 p. URL:
www.xilinx.com

34. Intel® Hyperflex™ Architecture High Performance Design Handbook. Ver.: 2021.10.04. 147 p.
URL: https://www.intel.com/programmable/technical-pdfs/683353.pdf

35. Chu J., Benaissa M. Low area memory-free FPGA implementation of the AES algorithm. 22nd
International Conference on Field Programmable Logic and Applications (FPL), 2012, pp. 623-
626, DOI: https://10.1109/FPL.2012.6339250

36. Sergiyenko A., Maslennikow O., Vinogradow Y. Tensor approach to the application specific
processor design. 2009 10th International Conference - The Experience of Designing and
Application of CAD Systems in Microelectronics, 2009, pp. 146-149.

37. Sergiyenko A., Serhienko A., Simonenko A. A method for synchronous dataflow retiming, 2017
IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), 2017, pp.
1015-1018, DOI: https:// 10.1109/UKRCON.2017.8100404.

38. Sergiyenko A. M., Simonenko V. P. Method of synchronous dataflow scheduling. System
research and information technologies, 2016. № 1, pp. 51-62. DOI: https://10.20535/SRIT.2308-
8893.2016.1.06

39. Sergiyenko A. M., Simonenko V. P. Otobrazenie perioditsheskich algorithmov w
programmiruemye logitsheskie integralnye schemy. Electronic Modeling. 2007. Vol. 29. № 2, pp.
49-61. (In Russian).

40. Sergiyenko A., Serhienko A., Romankevich V. Genetic Programming of Pipelined Datapaths for
FPGA, 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO),
2020, pp. 802-806, DOI: https://10.1109/ELNANO50318.2020.9088773.

41. Nikara J., Takala J., Akopian D., Saarinen J., Pipeline Architecture for DCT/IDCT. IEEE Int.
Symp. on Circuits and Systems, (ISCAS 2001), May 6-9, Sydney, Australia, 2001. P. 902–905.

42. Sergiyenko A., Serhienko A., Romankevich V. Genetic Programming of Discrete Cosine
Transform Processors. 6-th International Conference on High-Performance Computing (HPC-UA
2020). Kyiv, 06-07 Nov. 2020, pp. 1-6.

	DESIGN OF DATA BUFFERS IN FIELD PROGRAMMABLR GATE ARRAYS
	Introduction
	Methods for the buffer design
	Goals of the investigation
	FPGA resources for the buffer design
	Spatial SDF method
	Method for the buffer design
	Experimental results
	Synthesis framework
	Conclusions
	References

	ORGANIZATION OF FAST EXPONENTIATION ON GALOIS FIELDS FOR CRYPTOGRAPHIC DATA PROTECTION SYSTEMS
	Introduction
	Problem statement and review of methods for its solution
	Purpose and objectives of research
	Accelerated squaring method on Galois fields with Montgomery group reduction.
	Analysis of the obtained results
	Conclusion
	References

	ORGANIZATION OF PARALLEL EXECUTION OF MODULAR MULTIPLICATION TO SPEED UP THE COMPUTATIONAL IMPLEMENTATION OF PUBLIC-KEY CRYPTOGRAPHY
	Introduction
	Problem statement and review of methods for its solution
	Purpose and objectives of research
	The method of parallel calculation of the modular product on multicore processors
	Evaluation of the effectiveness of the method of parallel modular multiplication
	Conclusion
	References

	SIMULATION OF FLUID MOTION IN COMPLEX CLOSED SURFACES USING A LATTICE BOLTZMANN MODEL
	Introduction
	Literature review
	Methodology
	Experiments
	Results
	Conclusions
	References

	ZERO-KNOWLEDGE IDENTIFICATION OF REMOTE USERS BY UTILIZATION OF PSEUDORANDOM SEQUENCES
	Introduction
	Problem statement and review of methods for its solution
	Purpose and objectives of research
	The method of implementing the concept of "zero knowledge" using pseudo-random sequences for subscriber identification
	Effectiveness evaluation of the method
	Conclusion
	References

	ORGANIZATION OF PROTECTED FILTERING OF IMAGES IN CLOUDS
	Introduction
	Problem statement and review of methods for its solution
	Purpose and objectives of research
	Method of homomorphic encryption of image upon arithmetic mean filtration
	Evaluation of the developed method effectiveness
	Conclusion
	References

	FAST SECURE CALCULATION OF THE OPEN KEY CRYPTOGRAPHY PROCEDURES FOR IOT IN CLOUDS
	Introduction
	Problem statement and review of methods for its solution
	Purpose and objectives of research
	The method of protected modular exponentiation in the cloud based on multiplicative-additive exponential decomposition
	Evaluation of the developed method effectiveness
	6.Conclusion
	References

	METHODS OF EFFECTIVIZATION OF SCALABLE SYSTEMS: REWIEW
	Introduction
	Reasons for limitation
	Analysis of the subject area
	Quantum computing
	Dataflow as alternative paradigm.
	Network level and its specifics

	Comparative analysis
	Discussions
	Conclusions
	References.

	MODERN INFORMATION SYSTEMS SECURITY MEANS
	Introduction
	Information security threats: categories and specifics
	Threat analysis techniques
	Malicious threat detection techniques
	Conclusions
	References

	OVERVIEW OF OCR TOOLS FOR THE TASK OF RECOGNIZING TABLES AND GRAPHS IN DOCUMENTS
	Introduction
	OCR systems development
	The modern state of OCR processing for technical documents
	Conclusion
	Directions for future research
	References

	ABSTRACTS
	DESIGN OF DATA BUFFERS IN FIELD PROGRAMMABLR GATE ARRAYS (р. 4-17)
	ORGANIZATION OF FAST EXPONENTIATION ON GALOIS FIELDS FOR CRYPTOGRAPHIC DATA PROTECTION SYSTEMS (p. 18-26)
	ORGANIZATION OF PARALLEL EXECUTION OF MODULAR MULTIPLICATION TO SPEED UP THE COMPUTATIONAL IMPLEMENTATION OF PUBLIC-KEY CRYPTOGRAPHY (p. 27-33)
	SIMULATION OF FLUID MOTION IN COMPLEX CLOSED SURFACES USING A LATTICE BOLTZMANN MODEL (p. 34-42)
	ZERO-KNOWLEDGE IDENTIFICATION OF REMOTE USERS BY UTILIZATION OF PSEUDORANDOM SEQUENCES (p. 43-50)
	ORGANIZATION OF PROTECTED FILTERING OF IMAGES IN CLOUDS (p. 51-57)
	FAST SECURE CALCULATION OF THE OPEN KEY CRYPTOGRAPHY PROCEDURES FOR IOT IN CLOUDS (p. 58-64)
	METHODS OF EFFECTIVIZATION OF SCALABLE SYSTEMS: REWIEW (p. 65-79)
	MODERN INFORMATION SYSTEMS SECURITY MEANS (p. 80-89)
	OVERVIEW OF OCR TOOLS FOR THE TASK OF RECOGNIZING TABLES AND GRAPHS IN DOCUMENTS (p. 90-97)

	АНОТАЦІЇ
	РОЗРОБКА БУФЕРІВ ДАНИХ НА ПРОГРАМОВАНИХ ЛОГІЧНИХ ІНТЕГРАЛЬНИХ СХЕМАХ
	ОРГАНІЗАЦІЯ ШВИДКОГО ЕКСПОНЕНЦІЮВАННЯ НА ПОЛЯХ ГАЛУА ДЛЯ СИСТЕМ КРИПТОГРАФІЧНОГО ЗАХИСТУ ДАНИХ
	ОРГАНІЗАЦІЯ ПАРАЛЕЛЬНОГО ВИКОНАННЯ МОДУЛЯРНОГО МНОЖЕННЯ ДЛЯ ПРИСКОРЕННЯ ОБЧИСЛЮВАЛЬНОЇ РЕАЛІЗАЦІЇ КРИПТОГРАФІЇ З ВІДКРИТИМ КЛЮЧЕМ
	SIMULATION OF FLUID MOTION IN COMPLEX CLOSED SURFACES USING A LATTICE BOLTZMANN MODEL
	ІДЕНТИФІКАЦІЯ ВІДДАЛЕНИХ КОРИСТУВАЧІВ З НУЛЬОВИМ РОЗГОЛОШЕННЯМ З ВИКОРИСТАННЯМ ПСЕВДОВИПАДКОВИХ ПОСЛІДОВНОСТЕЙ
	ОРГАНІЗАЦІЯ ЗАХИЩЕНОЇ ФІЛЬТРАЦІЇ ЗОБРАЖЕНЬ В ХМАРАХ
	ШВИДКЕ ЗАХИЩЕНЕ ОБЧИСЛЕННЯ В ХМАРІ ПРОЦЕДУР КРИПТОГРАФІЇ З ВІДКРИТИМ КЛЮЧЕМ ДЛЯ IoT
	МЕТОДИ ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ МАСШТАБОВАНИХ СИСТЕМ: ОГЛЯД
	СУЧАСНІ ЗАСОБИ БЕЗПЕКИ ІНФОРМАЦІЙНИХ СИСТЕМ
	ОГЛЯД ІНСТРУМЕНТІВ OCR ДЛЯ ЗАВДАННЯ РОЗПІЗНАВАННЯ ТАБЛИЦЬ І ГРАФІКІВ У ДОКУМЕНТАХ

